八年级上册数学 全册全套试卷测试与练习(word解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学 全册全套试卷测试与练习(word 解析版)
一、八年级数学三角形填空题(难)
1.如图,ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D ,点,E F 分别在线段BD 、CD 上,点G 在EF 的延长线上,EFD ∆与EFH ∆关于直线EF 对称,若60,84,A BEH HFG n ︒︒︒∠=∠=∠=,则n =__________.
【答案】78.
【解析】
【分析】
利用ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D 得到∠DBC=
12∠ABC ,∠ACD=12(∠A+∠ABC),根据三角形的内角和得到∠D=12
∠A=30︒,利用外角定理得到∠DEH=96︒,由EFD ∆与EFH ∆关于直线EF 对称得到∠DEG=∠HEG=48︒,根据外角定理即可得到∠DFG=∠D+∠DEG=78︒.
【详解】
∵ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D
∴∠DBC=12∠ABC ,∠ACD=12
(∠A+∠ABC), ∵∠DBC+∠BCD+∠D=180︒,∠A+∠ABC+∠ACB=180︒, ∴∠D=12
∠A=30︒, ∵84BEH ︒∠=,
∴∠DEH=96︒,
∵EFD ∆与EFH ∆关于直线EF 对称,
∴∠DEG=∠HEG=48︒,∠DFG=∠HFG n ︒=,
∵∠DFG=∠D+∠DEG=78︒,
∴n=78.
故答案为:78.
【点睛】
此题考查三角形的内角和定理、外角定理,角平分线性质,轴对称图形的性质,此题中求出∠D=12
∠A=30︒是解题的关键.
2.如图,已知:四边形ABCD中,对角线BD平分∠ABC,∠ACB=74°,∠ABC=46°,且∠BAD+∠CAD=180°,那么∠BDC的度数为_____.
【答案】30°
【解析】
【分析】
延长BA和BC,过D点作DE⊥BA于E点,过D点作DF⊥BC于F点,根据BD是∠ABC的平分线可得出△BDE≌△BDF
,故DE=DF,过D点作DG⊥AC于G点,可得出
△ADE≌△ADG,△CDG≌△CDF,进而得出CD为∠ACF的平分线,得出∠DCA=53°,再根据三角形内角和定理即可得出结论.
【详解】
解:
延长BA和BC,过D点作DE⊥BA于E点,过D点作DF⊥BC于F点,
∵BD是∠ABC的平分线
在△BDE与△BDF中,
ABD CBD
BD BD
AED DFC
∠=∠


=

⎪∠=∠


∴△BDE≌△BDF(ASA),
∴DE=DF,
又∵∠BAD+∠CAD=180°
∠BAD+∠EAD=180°
∴∠CAD=∠EAD,
∴AD为∠EAC的平分线,
过D点作DG⊥AC于G点,
在Rt△ADE与Rt△ADG中,
AD AD
DE DG
=


=


∴△ADE≌△ADG(HL),
∴DE=DG,
∴DG =DF .
在Rt △CDG 与Rt △CDF 中,CD CD DG DF
=⎧⎨=⎩ , ∴Rt △CDG ≌Rt △CDF (HL ),
∴CD 为∠ACF 的平分线,
∠ACB =74°,
∴∠DCA =53°,
∴∠BDC =180°﹣∠CBD ﹣∠DCA ﹣∠ACB =180°﹣23°﹣53°﹣74°=30°.
故答案为:30°
【点睛】
本题考查了多边形的外角和内角,能熟记三角形的外角性质和三角形的内角和定理是解此题的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.
3.如图,1BA 和1CA 分别是ABC ∆的内角平分线和外角平分线,2BA 是1A BD ∠的角平分线, 2CA 是1A CD ∠的角平分线,3BA 是2A BD ∠的角平分线,3CA 是2A CD ∠的角平分线,若1A α∠=,则2018A ∠=_____________
【答案】
20172α
【解析】
【分析】 根据角平分线的定义可得∠A 1BC=12∠ABC ,∠A 1CD=12
∠ACD ,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1BC+∠A 1,整理即可得解,同理求出∠A 2,可以发现后一个角等于前一个角的
12,根据此规律即可得解. 【详解】
∵A 1B 是∠ABC 的平分线,A 1C 是∠ACD 的平分线,
∴∠A 1BC=12∠ABC ,∠A 1CD=12
∠ACD , 又∵∠ACD=∠A+∠ABC,∠A 1CD=∠A 1BC+∠A 1,
∴12(∠A+∠ABC )=12
∠ABC+∠A 1,
∴∠A 1=12
∠A , ∵∠A 1=α. 同理理可得∠A 2=
12∠A 1=12α,∠A 3=12∠A 2=212α, ……,
∴∠A 2018=
20172α, 故答案为
20172α.
【点睛】
本题主要考查的是三角形内角和定理,熟知三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义是解题的关键.
4.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是_____.
【答案】40°
【解析】
【分析】根据外角的概念求出∠ADC 的度数,再根据垂直的定义、四边形的内角和等于360°进行求解即可得.
【详解】∵∠ADE=60°,
∴∠ADC=120°,
∵AD ⊥AB ,
∴∠DAB=90°,
∴∠B=360°﹣∠C ﹣∠ADC ﹣∠A=40°,
故答案为40°.
【点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.
5.如图,∠1、∠2、∠3、∠4是五边形ABCDE 的4个外角,若∠A=100°,则
∠1+∠2+∠3+∠4= .
【答案】280°
【解析】
试题分析:先根据邻补角的定义得出与∠EAB相邻的外角∠5的度数,再根据多边形的外角和定理即可求解.
解:如图,∵∠EAB+∠5=180°,∠EAB=100°,
∴∠5=80°.
∵∠1+∠2+∠3+∠4+∠5=360°,
∴∠1+∠2+∠3+∠4=360﹣80°=280°
故答案为280°.
考点:多边形内角与外角.
6.如图,小新从A点出发,沿直线前进50米后向左转30°,再沿直线前进50米,又向左转30°,…照这样下去,小新第一次回到出发地A点时,一共走了__米.
【答案】600
【解析】
【分析】
【详解】
解:根据题意可知:小新从A点出发,沿直线前进50米后向左转30º,再沿直线前进50米,又向左转30º,……照这样下去,小新第一次回到出发地A点时,小新走的路线围成一个正多边形,且这个多边形的外角等于30º,所以这个正多边形的边数是12,小新一共走了12×50=600米,
故答案为:600.
二、八年级数学三角形选择题(难)
7.已知△ABC,(1)如图①,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+
1
2
∠A;(2)如图②,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;
(3)如图③,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°-1
2
∠A.上述说
法正确的个数是()
A.0个B.1个C.2个D.3个【答案】C
【解析】
【分析】
根据三角形的内角和外角之间的关系计算.
【详解】
解:(1)∵若P点是∠ABC和∠ACB的角平分线的交点,
∴∠ABP=∠PBC,∠ACP=∠PCB
∵∠A=180°-∠ABC-∠ACB=180°-2(∠PBC+∠PCB)
∠P=180°-(∠PBC+∠PCB)
∴∠P=90°+1
2
∠A;
故(1)的结论正确;
(2)∵∠A=∠ACB-∠ABC=2∠PCE-2∠PBC=2(∠PCE-∠PBC)∠P=∠PCE-∠PBC
∴2∠P=∠A
故(2)的结论是错误.
(3)∠P=180°-(∠PBC+∠PCB)
=180°-1
2
(∠FBC+∠ECB)
=180°-1
2
(∠A+∠ACB+∠A+∠ABC)
=180°-1
2
(∠A+180°)
=90°-1
2
∠A.
故(3)的结论正确.
正确的为:(1)(3).
故选:C
【点睛】
主要考查了三角形的内角和外角之间的关系.
(1)三角形的外角等于与它不相邻的两个内角和;
(2)三角形的内角和是180度.求角的度数常常要用到三角形的内角和是180°这一隐含的条件.
8.一个多边形除了一个内角外,其余各内角的和为2100°则这个多边形的对角线共有()
A.104条B.90条C.77条D.65条
【答案】C
【解析】
【分析】
n边形的内角和是(2)180
n-︒,即内角和一定是180度的整数倍,即可求解,据此可以求
出多边形的边数,在根据多边形的对角线总条数公式
()3
2
n n-
计算即可.
【详解】
解:
2
210018011
3
÷=,则正多边形的边数是11+2+1=14.
∴这个多边形的对角线共有
()()
314143
==77
22
n n--
条.
故选:C.
【点睛】
本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理;要注意每一个内角都应当大于0︒而小于180度.同时要牢记多边形
对角线总条数公式
()3
2
n n-

9.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论
①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()
A.①②③B.①③④C.①④D.①②④
【答案】C
【解析】
【分析】
根据三角形内角和定理以及三角形角平分线的定义可得∠BOC=90°+1
2
∠1,再结合三角形
外角性质可得∠ECD=∠OBC+∠2,从而可得∠BOC=90°+∠2,据此即可进行判断.【详解】
∵BO,CO分别平分∠ABC,∠ACB,
∴∠OBC=1
2
∠ABC,∠OCB=
1
2
∠ACB,
∵∠ABC+∠ACB+∠1=180°,∴∠ABC+∠ACB=180°-∠1,
∴∠OBC+∠OCB=1
2
(∠ABC+∠ACB)=
1
2
(180°-∠1)=90°-
1
2
∠1,
∴∠BOC=180°-∠OBC-∠OCB=180°-(90°-1
2
∠1)=90°+
1
2
∠1,
∵∠ACD=∠ABC+∠1,CE平分∠ACD,
∴∠ECD=1
2
∠ACD=
1
2
(∠ABC+∠1),
∵∠ECD=∠OBC+∠2,
∴∠2=1
2
∠1,即∠1=2∠2,
∴∠BOC=90°+1
2
∠1=90°+∠2,
∴①④正确,②③错误,
故选C.
【点睛】
本题考查了三角形内角和定理、三角形外角的性质、三角形的角平分线等知识,熟练掌握相关的性质及定理、运用数形结合思想是解题的关键.
10.已知△ABC的两条高分别为4和12,第三条高也为整数,则第三条高所有可能值为()
A.3和4 B.1和2 C.2和3 D.4和5
【答案】D
【解析】
【分析】
先设长度为4、12的高分别是a、b边上的,边c上的高为h,△ABC的面积是S,根据三
角形面积公式,可求a=2
4
S
;b=2
12
S
;c=2S
h
,结合三角形三边的不等关系,可得关于h
的不等式,解不等式即可.
【详解】
设长度为4、12的高分别是a,b边上的,边c上的高为h,△ABC的面积是S,那么
a=24S ;b=212S ;c=2S h
∵a-b <c <a+b , ∴
24S -212S <c <24S +212S , 即 3S <2S h <23
S , 解得3<h <6,
∴h=4或h=5,
故选D.
【点睛】
主要考查三角形三边关系;利用三角形面积的表示方法得到相关等式是解决本题的关键.
11.如图所示,小华从A 点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,……,照这样走下去,他第一次回到出发地A 点时,一共走的路程是( )
A .140米
B .150米
C .160米
D .240米
【答案】B
【解析】
【分析】 由题意可知小华走出了一个正多边形,根据正多边形的外角和公式可求解.
【详解】
已知多边形的外角和为360°,而每一个外角为24°,可得多边形的边数为360°÷24°=15,所以小明一共走了:15×10=150米.故答案选B .
【点睛】
本题考查多边形内角与外角,熟记公式是关键.
12.若(a ﹣3)2+|b ﹣6|=0,则以a 、b 为边长的等腰三角形的周长为( ) A .12
B .15
C .12或15
D .18
【答案】B
【解析】
【分析】
根据非负数的和为零,可得每个非负数同时为零,可得a 、b 的值,根据等腰三角形的判定,可得三角形的腰,根据三角形的周长公式,可得答案.
【详解】
由(a﹣3)2+|b﹣6|=0,得a﹣3=0,b﹣6=0.
则以a、b为边长的等腰三角形的腰长为6,底边长为3,
周长为6+6+3=15,
故选B.
【点睛】
本题考查了非负数的性质,利用非负数的和为零得出每个非负数同时为零是解题关键.
三、八年级数学全等三角形填空题(难)
13.将一副三角板按如图所示的方式摆放,其中△ABC为含有45°角的三角板,直线AD 是等腰直角三角板的对称轴,且斜边上的点D为另一块三角板DMN的直角顶点,DM、DN 分别交AB、AC于点E、F.则下列四个结论:
①BD=AD=CD;②△AED≌△CFD;③BE+CF=EF;④S四边形AEDF=1
4
BC2.其中正确结论
是_____(填序号).
【答案】①②
【解析】
分析:根据等腰直角三角形的性质可得AD=CD=BD,∠CAD=∠B=45°,故①正确;根据同角的余角相等求出∠CDF=∠ADE,然后利用“ASA”证明△ADE≌△CDF,判断出②,根据全等三角形的对应边相等,可得DE=DF=AF=AE,利用三角形的任意两边之和大于第三边,可得BE+CF>EF,判断出③,根据全等三角形的面积相等,可得S△ADF=S△BDE,从而求出四边形AEDF的面积,判断出④.
详解:∵∠B=45°,AB=AC
∴点D为BC的中点,
∴AD=CD=BD
故①正确;
由AD⊥BC,∠BAD=45°
可得∠EAD=∠C
∵∠MDN是直角
∴∠ADF+∠ADE=∠CDF+∠ADF=∠ADC=90°
∴∠ADE=∠CDF
∴△ADE≌△CDF(ASA)
故②正确;
∴DE=DF,AE=CF,
∴AF=BE
∴BE+AE=AF+AE
∴AE+AF>EF
故③不正确;
由△ADE≌△CDF可得S△ADF=S△BDE
∴S四边形AEDF=S△ACD=1
2×AD×CD=
1
2
×
1
2
BC×
1
2
BC=
1
8
BC2,
故④不正确.
故答案为①②.
点睛:此题主要查了等腰三角形的性质和全等三角形的判定与性质,以及三角形的三边关系,关键是灵活利用等腰直角三角形的边角关系和三线合一的性质.
14.如图,MN∥PQ,AB⊥PQ,点A,D,B,C分别在直线MN和PQ上,点E在AB
上,AD+BC=7,AD=EB,DE=EC,则AB=_____.
【答案】7
【解析】
由MN∥PQ,AB⊥PQ,可知∠DAE=∠EBC=90°,可判定△ADE≌△BCE,从而得出AE=BC,则AB=AE+BE=AD+BC=7.
故答案为:7.
点睛:本题考查了直角三角形全等的判定和性质以及平行线的性质,是基础知识,比较简单.
15.如图,点D、E、F、B在同一直线上,AB∥CD、AE∥CF,且AE=CF,若BD=10,
BF=2,则EF=__.
【答案】6
【解析】
【分析】
由于AB//CD、AE/CF,根据平行线的性质可以得到∠B=∠D,∠AEF=∠CFD,然后利用已知条件就可以证明△AEF≌△CFD,最后利用全等三角形的性质和已知条件即可求解.【详解】
解:∵AB//CD、AE/CF,
∴∠B=∠D,∠AEF=∠CFD,而AE=CF,
∴△AEF≌△CFD,
∴DF=EB,
∴DE=BF,
∴EF=BD-2BF=6.
故答案为:6.
【点睛】
本题主要考查了全等三角形的性质与判定,解题时首先利用平行线的性质构造全等条件证明三角形全等,然后利用全等三角形的性质即可解决问题.
16.已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出_____个.
【答案】7
【解析】
只要满足三边对应相等就能保证作出的三角形与原三角形全等,以腰为公共边时有6个,以底为公共边时有一个,答案可得.
解:以AB为公共边有三个,以CB为公共边有三个,以AC为公共边有一个,
所以一共能作出7个.
故答案为7
17.如图,AD=AB,∠C=∠E,AB=2,AE=8,则DE=_________.
【答案】6
【解析】
根据三角形全等的判定“AAS”可得△ADC≌△ABE,可得AD=AB=2,由AE=8可得
DE=AE-AD=6.
故答案为:6.
点睛:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有
边的参与,若有两边一角对应相等时,角必须是两边的夹角.
18.如图,△ABC与△DEF为等边三角形,其边长分别为a,b,则△AEF的周长为
___________.
【答案】a+b
【解析】
先根据全等三角形的判定AAS判定△AEF≌△BFD,得出AE=BF,从而得出△AEF的周长
=AF+AE+EF=AF+BF+EF=a+b.
故答案为:a+b
四、八年级数学全等三角形选择题(难)
19.如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G.下列结论:
①BD=CD;②AD+CF=BD;③CE=1
2
BF;④AE=BG.其中正确的是
A.①②B.①③C.①②③D.①②③④
【答案】C
【解析】
【分析】
根据∠ABC=45°,CD⊥AB可得出BD=CD,利用AAS判定Rt△DFB≌Rt△DAC,从而得出DF=AD,BF=AC.则CD=CF+AD,即AD+CF=BD;再利用AAS判定Rt△BEA≌Rt△BEC,得出
CE=AE=1
2
AC,又因为BF=AC所以CE=
1
2
AC=
1
2
BF,连接CG.因为△BCD是等腰直角三角
形,即BD=CD.又因为DH⊥BC,那么DH垂直平分BC.即BG=CG.在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.
【详解】
解:∵CD⊥AB,∠ABC=45°,
∴△BCD是等腰直角三角形.
∴BD=CD.故①正确;
在Rt△DFB和Rt△DAC中,
∵∠DBF=90°−∠BFD,∠DCA=90°−∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.
又∵∠BDF=∠CDA=90°,BD=CD,
∴△DFB≌△DAC.
∴BF=AC;DF=AD.
∵CD=CF+DF,
∴AD+CF=BD;故②正确;
在Rt△BEA和Rt△BEC中.
∵BE平分∠ABC,
∴∠ABE=∠CBE.
又∵BE=BE,∠BEA=∠BEC=90°,
∴Rt△BEA≌Rt△BEC.
∴CE=AE=1
2 AC.
又由(1),知BF=AC,
∴CE=1
2
AC=
1
2
BF;故③正确;
连接CG.
∵△BCD是等腰直角三角形,
∴BD=CD.
又DH⊥BC,
∴DH垂直平分BC.∴BG=CG.
在Rt△CEG中,
∵CG是斜边,CE是直角边,
∴CE<CG.
∵CE=AE,
∴AE<BG.故④错误.
故选C.
【点睛】
本题考查了等腰直角三角形、等腰三角形的判定与性质、全等三角形的判定与性质.此类问题涉及知识点较多,需要对相关知识点有很高的熟悉度.
20.如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN
于点C,AD⊥MN于点D,下列结论错误的是( )
A.AD+BC=AB B.与∠CBO互余的角有两个
C.∠AOB=90°D.点O是CD的中点
【答案】B
【解析】
【分析】
根据角平分线上的点到角的两边距离相等可得AD=AE,BC=BE,利用角平分线的定义和平角的性质可得到∠AOB的度数,再利用“HL”证明Rt△AOD和Rt△AOE全等,根据全等三角形对应边相等可得OD=OE,同理可得OC=OE,然后求出∠AOB=90°,然后对各选项分析判断即可得解.
【详解】
∵点A,B分别是∠NOP,∠MOP平分线上的点,∴AD=AE,BC=BE.
∵AB=AE+BE,∴AB=AD+BC,故A选项结论正确;
与∠CBO互余的角有∠COB,∠EOB,∠OAD,∠OAE共4个,故B选项结论错误;
∵点A、B分别是∠NOP、∠MOP平分线上的点,∴∠AOE=1
2
∠EOD,∠BOC=
1
2
∠MOE,
∴∠AOB=1
2
(∠EOD+∠MOE)=
1
2
×180°=90°,故C选项结论正确;
在Rt△AOD和Rt△AOE中,
AO AO
AD AE
=


=

,∴Rt△AOD≌Rt△AOE(HL),∴OD=OE,同理
可得OC=OE,∴OC=OD=OE,∴点O是CD的中点,故D选项结论正确.
故选B.
【点睛】
本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,余角的定义,熟记各性质并准确识图是解题的关键.
21.如图,△ABC中,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则下列结论不正确的是
A.BF=DF B.∠1=∠EFD C.BF>EF D.FD∥BC
【答案】B
【解析】
【分析】
根据余角的性质得到∠C=∠ABE,∠EBC=∠BAC.根据SAS推出△ABF≌△ADF,根据全等三角形的性质得到BF=DF,故A正确;由全等三角形的性质得到∠ABE=∠ADF,等量代换得到∠ADF=∠C,根据平行线的判定得到DF∥BC,故D正确;根据直角三角形的性质得到DF >EF,等量代换得到BF>EF;故C正确;根据平行线的性质得到
∠EFD=∠EBC=∠BAC=2∠1,故B错误.
【详解】
∵AB⊥BC,BE⊥AC,∴∠C+∠BAC=∠ABE+∠BAC=90°,∴∠C=∠ABE.同
理:∠EBC=∠BAC.
在△ABF与△ADF中,∵12
AD AB
AF AF
=


∠=∠

⎪=

,∴△ABF≌△ADF,∴BF=DF,故A正确,
∵△ABF≌△ADF,∴∠ABE=∠ADF,∴∠ADF=∠C,∴DF∥BC,故D正确;
∵∠FED=90°,∴DF>EF,∴BF>EF;故C正确;
∵DF∥BC,∴∠EFD=∠EBC.∵∠EBC=∠BAC=∠BAC=2∠1,∴∠EFD=2∠1,故B错误.
故选B.
【点睛】
本题考查了全等三角形的判定和性质,平行线的判定和性质,证得△ABF≌△ADF是解题的关键.
22.如图,点P是AB上任意一点,∠ABC=∠ABD,还应补充一个条件,才能推出
△APC≌△APD.从下列条件中补充一个条件,不一定能推出△APC≌△APD的是( )
A.BC=BD;B.AC=AD;C.∠ACB=∠ADB;D.∠CAB=∠DAB
【答案】B
【解析】
根据题意,∠ABC=∠ABD,AB是公共边,结合选项,逐个验证得出:
A、补充BC=BD,先证出△BPC≌△BPD,后能推出△APC≌△APD,故正确;
B、补充AC=AD,不能推出△APC≌△APD,故错误;
C、补充∠ACB=∠ADB,先证出△ABC≌△ABD,后能推出△APC≌△APD,故正确;
D、补充∠CAB=∠DAB,先证出△ABC≌△ABD,后能推出△APC≌△APD,故正确.
故选B.
点睛:本题考查了三角形全等判定,三角形全等的判定定理:有AAS,SSS,ASA,SAS.注意SSA是不能证明三角形全等的,做题时要逐个验证,排除错误的选项.
23.已知等边△ABC中,在射线BA上有一点D,连接CD,并以CD为边向上作等边△CDE,连接BE和AE,试判断下列结论:①AE=BD;②AE与AB所夹锐夹角为60°;③当D在线段AB或BA延长线上时,总有∠BDE-∠AED=2∠BDC;④∠BCD=90°时,CE2+AD2=AC2+DE2,正确的序号有()
A.①②B.①②③C.①②④D.①②③④
【答案】C
【解析】
【分析】
由∠BCD=∠ACD+60°,∠ACE=∠ACD+60°可得∠BCD=∠ACE,利用SAS可证明
△BCD≌△ACE,可得AE=BD,①正确;∠CBD=∠CAE=60°,进而可得∠EAD=60°,②正确,当∠BCD=90°时,可得∠ACD=∠ADC=30°,可得AD=AC,即可得CE2+AD2=AC2+DE2,④正确;当D点在BA延长线上时,∠BDE-∠BDC=60°,根据△BCD≌△ACE可得∠AEC=∠BDC,进而可得∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,即可证明∠BDE-∠BDC=∠BDC+∠AED,即∠BDE-∠AED=2∠BDC,当点D在AB上时可证明∠BDE-∠AED=120°,③错误,综上即可得答案.
【详解】
∵∠BCA=∠DCE=60°,
∴∠BCA+∠ACD=∠DCE+∠ACD,
∴∠BCD=∠ACE,
又∵AC=BC,CE=CD,
∴△BCD≌△ACE,
∴AE=BD,∠CBA=∠CAE=60°,∠AEC=∠BDC,①正确,
∴∠BAE=120°,
∴∠EAD=60°,②正确,
∵∠BCD=90°,∠BCA=60°,
∴∠ACD=∠ADC=30°,
∴AC=AD,
∵CE=DE,
∴CE2+AD2=AC2+DE2,④正确,
当D点在BA延长线上时,∠BDE-∠BDC=60°,
∵∠AEC=∠BDC,
∴∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,
∴∠BDE-∠BDC=∠BDC+∠AED
∴∠BDE-∠AED=2∠BDC,
如图,当点D 在AB 上时,
∵△BCD ≌△∠ACE ,
∴∠CAE=∠CBD=60°,
∴∠DAE=∠BAC+∠CAE=120°,
∴∠BDE-∠AED=∠DAE=120°,③错误
故正确的结论有①②④,
故选C.
【点睛】
此题主要考查等边三角形的性质和全等三角形的判定与性质等知识点的理解和掌握
24.如图,A ABC CB =∠∠,AD 、BD 、CD 分别平分ABC 的EAC ∠、ABC ∠、ACF ∠,以下结论:①AD BC ∥;②2ACB ADB ∠=∠;③90ADC ABD ∠=︒-∠;④BD 分ADC ∠;⑤3BDC BAC ∠=∠。

其中误的结论有( )
A .1个
B .2个
C .3个
D .4个
【答案】B
【解析】
【分析】 根据角平分线定义得出∠ABC=2∠ABD=2∠DBC ,∠EAC=2∠EAD ,∠ACF=2∠DCF ,根据三角形的内角和定理得出∠BAC+∠ABC+∠ACB=180°,根据三角形外角性质得出
∠ACF=∠ABC+∠BAC ,∠EAC=∠ABC+∠ACB ,根据已知结论逐步推理,即可判断各项.
解:∵AD平分∠EAC,
∴∠EAC=2∠EAD,
∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,
∴∠EAD=∠ABC,
∴AD∥BC,∴①正确;
∵AD∥BC,
∴∠ADB=∠DBC,
∵BD平分∠ABC,∠ABC=∠ACB,
∴∠ABC=∠ACB=2∠DBC,
∴∠ACB=2∠ADB,∴②正确;
在△ADC中,∠ADC+∠CAD+∠ACD=180°,
∵CD平分△ABC的外角∠ACF,
∴∠ACD=∠DCF,
∵AD∥BC,
∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB
∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,
∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°
∴∠ADC=90°-∠ABD,∴③正确;
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∵∠ADB=∠DBC,
1
90
2
ADC ABC ∠=︒-∠,
∴∠ADB不等于∠CDB,∴④错误;
∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,
∴∠BAC=2∠BDC,∴⑤错误;
综上所述,错误的是④⑤
即错误的有2个,
故选:B.
【点睛】
考查了三角形外角性质,角平分线定义,平行线的判定,三角形内角和定理的应用,主要考察学生的推理能力.
五、八年级数学轴对称三角形填空题(难)
25.在平面直角坐标系xOy中,已知点A(2,3),在x轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有_____个.
【答案】4
【解析】
以O 为圆心,OA 为半径画弧交x 轴于点P 1、P 3,以A 为圆心,AO 为半径画弧交x 轴于点P 4,作OA 的垂直平分线交x 轴于P 2.
【详解】
解:如图,使△AOP 是等腰三角形的点P 有4个.
故答案为4.
【点睛】
本题考查了在平面直角坐标系中寻找等腰三角形,掌握两圆一线找等腰三角形是解题的关键.
26.如图,点P 是AOB 内任意一点,5OP cm =,点P 与点C 关于射线OA 对称,点P 与点D 关于射线OB 对称,连接CD 交OA 于点E ,交OB 于点F ,当PEF 的周长是5cm 时,AOB ∠的度数是______度.
【答案】30
【解析】
【分析】
根据轴对称得出OA为PC的垂直平分线,OB是PD的垂直平分线,根据线段垂直平分线性
质得出
1
2
COA AOP COP,
1
2
POB DOB POD,PE=CE,OP=OC=5cm,
PF=FD,OP=OD=5cm,求出△COD是等边三角形,即可得出答案.【详解】
解:如图示:连接OC,OD,
∵点P与点C关于射线OA对称,点P与点D关于射线OB对称,∴OA为PC的垂直平分线,OB是PD的垂直平分线,
∵OP=5cm,

1
2
COA AOP COP,
1
2
POB DOB POD,PE=CE,OP=OC=5cm,PF=FD,
OP=OD=5cm,
∵△PEF的周长是5cm,
∴PE+EF+PF=CE+EF+FD=CD=5cm,∴CD=OD=OD=5cm,
∴△OCD是等边三角形,
∴∠COD=60°,

111
222
30 AOB AOP BOP COP DOP COD,
故答案为:30.
【点睛】
本题考查了线段垂直平分线性质,轴对称性质和等边三角形的性质和判定,能求出△COD 是等边三角形是解此题的关键.
27.如图,△ABC中,AB=8,AC=6,∠ABC与∠ACB的平分线交于点F,过点F作
DE∥BC,分别交AB、AC于点D、E,则△ADE的周长为_____.
【答案】14.
【解析】
【分析】
先根据角平分线的定义及平行线的性质得BD=DF,CE=EF,则△ADE的周长=AB+AC=14.
【详解】
∵BF平分∠ABC,
∴∠DBF=∠CBF,
∵DE∥BC,
∴∠CBF=∠DFB,
∴∠DBF=∠DFB,
∴BD=DF,
同理FE=EC,
∴△AED的周长=AD+AE+ED=AB+AC=8+6=14.
故答案为:14.
【点睛】
此题考查角平分线的性质,平行线的性质,等腰三角形的等角对等边的性质.
28.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交BC的延长线于F,若∠F =30°,DE=1,则EF的长是_____.
【答案】2
【解析】
【分析】
连接BE,根据垂直平分线的性质、直角三角形的性质,说明∠CBE=∠F,进一步说明BE =EF,,然后再根据直角三角形中,30°所对的直角边等于斜边的一半即可.
【详解】
解:如图:连接BE
∵AB的垂直平分线DE交BC的延长线于F,
∴AE=BE,∠A+∠AED=90°,
∵在Rt△ABC中,∠ACB=90°,
∴∠F+∠CEF=90°,
∵∠AED=∠FEC,
∴∠A=∠F=30°,
∴∠ABE=∠A=30°,∠ABC=90°﹣∠A=60°,
∴∠CBE=∠ABC﹣∠ABE=30°,
∴∠CBE=∠F,
∴BE=EF,
在Rt△BED中,BE=2DE=2×1=2,
∴EF=2.
故答案为:2.
【点睛】
本题考查了垂直平分线的性质、直角三角形的性质,其中灵活利用垂直平分线的性质和直角三角形30°角所对的边等于斜边的一半是解答本题的关键.
29.等腰三角形一边长等于4,一边长等于9,它的周长是__.
【答案】22
【解析】
【分析】
等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形;
【详解】
解:因为4+4=8<9,0<4<9+9=18,
∴腰的不应为4,而应为9,
∴等腰三角形的周长=4+9+9=22.
故答案为22.
【点睛】
本题主要考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.
30.在下列结论中:①有三个角是60︒的三角形是等边三角形;②有一个外角是120︒的等腰三角形是等边三角形;③有一个角是60︒,且是轴对称的三角形是等边三角形;④有一腰上的高也是这腰上的中线的等腰三角形是等边三角形.其中正确的是__________.
【答案】①②③④
【解析】
【分析】
依据等边三角形的定义,含有一个600角的等腰三角形是等边三角形判断即可.
【详解】
有三个角是600的三角形是等边三角形,故①正确;外角是1200时,邻补角为600,即有一个内角是600的等腰三角形是等边三角形,故②正确;轴对称的三角形是等腰三角形,且含有一个600
角,因此是等边三角形,故③正确;一腰上的高也是中线,故底边等于腰长,所以此三角形是等边三角形,故④正确.
故此题正确的是①②③④.
【点睛】
此题考查等边三角形的判定方法,熟记方法才能熟练运用.
六、八年级数学轴对称三角形选择题(难)
31.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )
A B C .32 D .不能确定
【答案】B
【解析】
已知,如图,P 为等边三角形内任意一点,PD 、PE 、PF 分别是点P 到边AB 、BC 、AC 的距离,连接AP 、BP 、CP ,过点A 作AH ⊥BC 于点H ,已知等边三角形的边长为3,可求得高
线AH S △ABC =12BC •AH =12AB •PD+12BC•PE +12
AC •PF ,所以1
2×3×AH =12×3×PD +12×3×PE +12
×3×PF ,即可得PD +PE +PF =AH P 到三角形三边
B.
点睛:本题考查了等边三角形的性质,根据三角形的面积求点P到三边的距离之和等于等边三角形的高是解题的关键,作出图形更形象直观.
32.如图,已知△ABC中,AB=AC,AD=AE,∠BAE=30°,则∠DEC等于()
A.7.5°B.10°C.15°D.18°
【答案】C
【解析】
根据等腰三角形性质求出∠C=∠B,根据三角形的外角性质求出∠B=∠C=∠AED+α﹣30°,根据AE=AD,可得∠AED=∠ADE=∠C+α,得出等式∠AED=∠AED+α﹣30°+α,求出
α=15°,
即得到∠DEC=α=15°,
故选C.
点睛:本题考查了等腰三角形的性质,三角形的内角和定理,三角形的外角性质等知识点的应用,主要考查学生运用定理进行推理的能力,本题有一点难度,但题型不错.
33.如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC 于F,AD交CE于G.则下列结论中错误的是( )
A.AD=BE B.BE⊥AC
C.△CFG为等边三角形D.FG∥BC
【答案】B
【解析】
△均为等边三角形,
试题解析:A.ABC和CDE
60AC BC EC DC ACB ECD ∴==∠=∠=︒,,,
在ACD 与BCE 中,
{AC BC
ACD BCE CD CF =∠=∠=,
ACD BCE ∴≌,
AD BE ∴=,正确.
B .据已知不能推出F 是A
C 中点,即AC 和BF 不垂直,所以AC BE ⊥错误,故本选项符合题意.
C.CFG 是等边三角形,理由如下:
180606060ACG BCA ∠=︒-︒-︒=︒=∠,
ACD BCE ≌,
CBE CAD ∴∠=∠,
在ACG 和BCF 中,{CAG CBF
AC BC
BCF ACG ∠=∠=∠=∠,
ACG BCF ∴≌,
CG CH ∴=,
又∵∠ACG=60° CFG ∴是等边三角形,正确.
D.CFG 是等边三角形,
60CFG ACB ∴∠︒=∠﹦,
.FG BC ∴ 正确.
故选B.
34.如图,ABC △,AB AC =,56BAC ︒∠=,BAC ∠的平分线与AB 的垂直平分线交于O ,将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与O 点恰好重合,则∠OEC 的度数为( )
A .132︒
B .130︒
C .112︒
D .110︒
【答案】C
【解析】
【分析】
连接OB 、OC ,根据角平分线的定义求出∠BAO ,根据等腰三角形两底角相等求出∠ABC ,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB ,根据等边对等角可得∠ABO=∠BAO ,再求出∠OBC ,然后判断出点O 是△ABC 的外心,根据三角形外心的性质可得OB=OC ,再根据等边对等角求出∠OCB=∠OBC ,根据翻折的性质可得OE=CE ,然后根据等边对等角求出∠COE ,再利用三角形内角和定理列式计算即可得出答案.
【详解】 如图,连接OB 、OC ,
∵56BAC ︒∠=,AO 为BAC ∠的平分线
∴11562822
BAO BAC ︒︒∠=∠=⨯= 又∵AB AC =,
∴()()
11180180566222
ABC BAC ︒︒︒︒∠=-∠=-= ∵DO 是AB 的垂直平分线, ∴OA OB =.
∴28ABO BAO ︒∠=∠=,
∴622834OBC ABC ABO ︒︒︒∠=∠-∠=-=
∵DO 是AB 的垂直平分线,AO 为BAC ∠的平分线
∴点О是ABC △的外心,
∴OB OC =,
∴34OCB OBC ︒∠=∠=,
∵将C ∠沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合
∴OE CE =,
∴34COE OCB ︒∠=∠=,
在OCE △中,1801803434112OEC COE OCB ︒︒︒︒︒∠=-∠-∠=--=
【点睛】
本题主要考查了线段垂直平分线上的点到线段两端点距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,做辅助线构造出等腰三角形是解决本题的关键.
35.如图所示,把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是()
A.1+2B.1+2
C.2-2D.2-1
【答案】B 【解析】
第一次折叠后,等腰三角形的底边长为1,腰长为
2
2

第一次折叠后,等腰三角形的底边长为
2
2
,腰长为
1
2
,所以周长为
1122
1
2222
++=+.
故答案为B.
36.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C的坐标分别为A(10,0 ),C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为()
A.(3,4),(2,4)B.(3,4),(2,4),(8,4)C.(2,4),(8,4)
D.(3,4),(2,4),(8,4),(2.5,4)
【答案】B
【解析】
试题解析:有两种情况:①以O为圆心,以5为半径画弧交BC于P点,此时OP=OD=5,在Rt△OPC中,OC=4,OP=5,
由勾股定理得PC=3,
则P的坐标是(3,4);
②以D为圆心,以5为半径画弧交BC于P′和P″点,此时D P′=DP″=OD=5,
过P′作P′N⊥OA于N,。

相关文档
最新文档