文县高中2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文县高中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 设曲线y=ax 2在点(1,a )处的切线与直线2x ﹣y ﹣6=0平行,则a=( )
A .1
B .
C .
D .﹣1
2. 设x ,y ∈R ,且满足,则x+y=( )
A .1
B .2
C .3
D .4
3. 数列1,﹣4,7,﹣10,13,…,的通项公式a n 为( )
A .2n ﹣1
B .﹣3n+2
C .(﹣1)n+1(3n ﹣2)
D .(﹣1)n+13n ﹣2
4. 2016年3月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取
20名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为350,500,150,按分
层抽样的方法,应从青年职工中抽取的人数为( ) A. 5 B.6 C.7
D.10
【命题意图】本题主要考查分层抽样的方法的运用,属容易题.
5. 某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为( )1111]
A .10
B .51
C .20
D .30 6. 设为虚数单位,则( )
A .
B .
C .
D .
7. 设a ,b ∈R ,i 为虚数单位,若2+a i
1+i =3+b i ,则a -b 为( )
A .3
B .2
C .1
D .0
8. 已知正方体被过一面对角线和它对面两棱中点的平面截去一个三棱台后的几何体的主(正)视图和俯视图如下,则它的左(侧)视图是( )
A .
B .
C .
D .
9. 已知,则f{f[f (﹣2)]}的值为( ) A .0
B .2
C .4
D .8
10.已知向量(1,2)a =,(1,0)b =,(3,4)c =,若λ为实数,()//a b c λ+,则λ=( ) A .
14 B .1
2
C .1
D .2 11.高三年上学期期末考试中,某班级数学成绩的频率分布直方图如图所示,数据分组依次如下:[70,90),[90,110),[100,130),[130,150),估计该班级数学成绩的平均分等于( )
A .112
B .114
C .116
D .120
12.在△ABC 中,AB 边上的中线CO=2,若动点P 满足=(sin 2θ)+(cos 2θ)
(θ∈R ),则(+)
•
的最小值是( )
A .1
B .﹣1
C .﹣2
D .0
二、填空题
13.如图,已知m ,n 是异面直线,点A ,B m ∈,且6AB =;点C ,D n ∈,且4CD =.若M ,N 分
别是AC ,BD 的中点,MN =m 与n 所成角的余弦值是______________.
【命题意图】本题考查用空间向量知识求异面直线所成的角,考查空间想象能力,推理论证能力,运算求解能力.
14.定义)}(),(min{x g x f 为)(x f 与)(x g 中值的较小者,则函数},2min{)(2x x x f -=的取值范围是
15.已知圆2
2
240C x y x y m +-++=:,则其圆心坐标是_________,m 的取值范围是________. 【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力.
16.设是空间中给定的个不同的点,则使成立的点的个数有_________个.
17.已知集合M={x||x|≤2,x ∈R},N={x ∈R|(x ﹣3)lnx 2=0},那么M ∩N= .
18.过原点的直线l 与函数y=的图象交于B ,C 两点,A 为抛物线x 2=﹣8y 的焦点,则|+
|= .
三、解答题
19.在数列{a n }中,a 1=1,a n+1=1﹣,b n =
,其中n ∈N *
.
(1)求证:数列{b n }为等差数列;
(2)设c n =b n+1•(),数列{c n }的前n 项和为T n ,求T n ;
(3)证明:1++
+…+
≤2
﹣1(n ∈N *
)
20.(本小题满分12分)
数列{}n b 满足:122n n b b +=+,1n n n b a a +=-,且122,4a a ==. (1)求数列{}n b 的通项公式; (2)求数列{}n a 的前项和n S .
21.(本题满分12分)已知数列}{n a 的前n 项和为n S ,且332-=n n a S ,(+∈N n ). (1)求数列}{n a 的通项公式;
(2)记n
n a n b 1
4+=
,n T 是数列}{n b 的前n 项和,求n T . 【命题意图】本题考查利用递推关系求通项公式、用错位相减法求数列的前n 项和.重点突出对运算及化归能力的考查,属于中档难度.
22.如图:等腰梯形ABCD ,E 为底AB 的中点,AD=DC=CB=AB=2,沿ED 折成四棱锥A ﹣BCDE ,使AC=.
(1)证明:平面AED ⊥平面BCDE ; (2)求二面角E ﹣AC ﹣B 的余弦值.
23.(文科)(本小题满分12分)
我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟
确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超过的部分 按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨), 将数据按照[)[)[)0,0.5,0.5,1,
,4,4.5分成9组,制成了如图所示的频率分布直方图.
(1)求直方图中的值;
(2)设该市有30万居民,估计全市居民中月均用量不低于3吨的人数,并说明理由;
(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.
24.2008年奥运会在中国举行,某商场预计2008年从1日起前x 个月,顾客对某种奥运商品的需求总量p (x )
件与月份x 的近似关系是
且x ≤12),该商品的进价q (x )元与月份x 的近似关系是q (x )=150+2x ,(x ∈N*且x ≤12). (1)写出今年第x 月的需求量f (x )件与月份x 的函数关系式;
(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,则此商场今年销售该商品的月
利润预计最大是多少元?
文县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1.【答案】A
【解析】解:y'=2ax,
于是切线的斜率k=y'|x=1=2a,∵切线与直线2x﹣y﹣6=0平行
∴有2a=2
∴a=1
故选:A
【点评】本题考查导数的几何意义:曲线在切点处的导数值是切线的斜率.
2.【答案】D
【解析】解:∵(x﹣2)3+2x+sin(x﹣2)=2,
∴(x﹣2)3+2(x﹣2)+sin(x﹣2)=2﹣4=﹣2,
∵(y﹣2)3+2y+sin(y﹣2)=6,
∴(y﹣2)3+2(y﹣2)+sin(y﹣2)=6﹣4=2,
设f(t)=t3+2t+sint,
则f(t)为奇函数,且f'(t)=3t2+2+cost>0,
即函数f(t)单调递增.
由题意可知f(x﹣2)=﹣2,f(y﹣2)=2,
即f(x﹣2)+f(y﹣2)=2﹣2=0,
即f(x﹣2)=﹣f(y﹣2)=f(2﹣y),
∵函数f(t)单调递增
∴x﹣2=2﹣y,
即x+y=4,
故选:D.
【点评】本题主要考查函数奇偶性的应用,利用条件构造函数f(t)是解决本题的关键,综合考查了函数的性质.
3.【答案】C
【解析】解:通过观察前几项可以发现:数列中符号是正负交替,每一项的符号为(﹣1)n+1,绝对值为3n ﹣2,故通项公式a n=(﹣1)n+1(3n﹣2).
故选:C.
4.【答案】C
5. 【答案】D 【解析】
试题分析:分段间隔为5030
1500
=,故选D. 考点:系统抽样 6. 【答案】C
【解析】【知识点】复数乘除和乘方
【试题解析】
故答案为:C 7. 【答案】
【解析】选A.由2+a i
1+i
=3+b i 得,
2+a i =(1+i )(3+b i )=3-b +(3+b )i , ∵a ,b ∈R ,
∴⎩⎪⎨⎪⎧2=3-b a =3+b
,即a =4,b =1,∴a -b =3(或者由a =3+b 直接得出a -b =3),选A. 8. 【答案】A
【解析】解:由题意可知截取三棱台后的几何体是7面体,左视图中前、后平面是线段, 上、下平面也是线段,轮廓是正方形,AP 是虚线,左视图为:
故选A .
【点评】本题考查简单几何体的三视图的画法,三视图是常考题型,值得重视.
9. 【答案】C 【解析】解:∵﹣2<0 ∴f (﹣2)=0
∴f (f (﹣2))=f (0) ∵0=0
∴f (0)=2即f (f (﹣2))=f (0)=2 ∵2>0
∴f (2)=22
=4
即f{f[(﹣2)]}=f (f (0))=f (2)=4 故选C .
10.【答案】B
【解析】
试题分析:因为(1,2)a =,(1,0)b =,所以()()1,2a b λλ+=+,又因为()//a b c λ+,所以
()1
4160,2
λλ+-==
,故选B. 考点:1、向量的坐标运算;2、向量平行的性质. 11.【答案】B
【解析】解:根据频率分布直方图,得; 该班级数学成绩的平均分是
=80×0.005×20+100×0.015×20 +120×0.02×20+140×0.01×20 =114. 故选:B .
【点评】本题考查了根据频率分布直方图,求数据的平均数的应用问题,是基础题目.
12.【答案】 C
【解析】解:∵ =(sin 2θ)+(cos 2θ)(θ∈R ),
且sin 2θ+cos 2
θ=1,
∴=(1﹣cos 2θ)+(cos 2θ)=
+cos 2θ•(
﹣
),
即﹣
=cos 2θ•(
﹣
),
可得
=cos 2θ•
,
又∵cos 2
θ∈[0,1],∴P 在线段OC 上,
由于AB 边上的中线CO=2,
因此(+)•=2•,设|
|=t ,t ∈[0,2],
可得(
+
)•
=﹣2t (2﹣t )=2t 2﹣4t=2(t ﹣1)2﹣2,
∴当t=1时,(
+
)•
的最小值等于﹣2.
故选C .
【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题.
二、填空题
13.【答案】512
【
解
析
】
14.【答案】(],1-∞ 【解析】
试题分析:函数(){}
2
min 2,f x x x =-的图象如下图:
观察上图可知:()f x 的取值范围是(],1-∞。
考点:函数图象的应用。
15.【答案】(1,2)-,(,5)-∞.
【解析】将圆的一般方程化为标准方程,2
2
(1)(2)5x y m -++=-,∴圆心坐标(1,2)-, 而505m m ->⇒<,∴m 的范围是(,5)-∞,故填:(1,2)-,(,5)-∞.
16.【答案】1
【解析】【知识点】平面向量坐标运算
【试题解析】设
设,则
因为,
所以,所以
因此,存在唯一的点M,使成立。
故答案为:
17.【答案】{1,﹣1}.
【解析】解:合M={x||x|≤2,x∈R}={x|﹣2≤x≤2},
N={x∈R|(x﹣3)lnx2=0}={3,﹣1,1},
则M∩N={1,﹣1},
故答案为:{1,﹣1},
【点评】本题主要考查集合的基本运算,比较基础.
18.【答案】4.
【解析】解:由题意可得点B和点C关于原点对称,∴|+|=2||,再根据A为抛物线x2=﹣8y的焦点,可得A(0,﹣2),
∴2||=4,
故答案为:4.
【点评】本题主要考查抛物线的方程、简单性质,属于基础题,利用
|
+
|=2||是解题的关键.
三、解答题
19.【答案】
【解析】(1)证明:b n+1﹣b n
=
﹣
=
﹣
=1,又b 1=1.∴数列{b n }为
等差数列,首项为1,公差为1. (2)解:由(1)可得:b n =n . c n =b n+1•
(
)
=(n+1
)
. ∴数列{c n }的前n 项和为T n
=
+3
×
++…+(n+1
)
.
=
+3
×
+…
+n
+(n+1
)
,
∴T n
=
+
++…
+﹣(n+1
)
=
+﹣(n+1
),
可得T n
=
﹣. (3)证明:
1+
+
+…
+≤
2﹣1(n ∈N *)即为:
1+
++…
+
≤﹣1.
∵
=
<
=2(k=2,3,…).
∴
1+
++…
+≤1+2[
(
﹣1)+
()+…+
(
﹣
)
]=1+2
=2
﹣1.
∴
1+
++…
+
≤
2
﹣1(n ∈N *
).
20.【答案】(1)122n n b +=-;(2)222(4)n n S n n +=-++. 【解析】
试题分析:(1)已知递推公式122n n b b +=+,求通项公式,一般把它进行变形构造出一个等比数列,由等比数列的通项公式可得n b ,变形形式为12()n n b x b x ++=+;(2)由(1)可知122(2)n n n n a a b n --==-≥,这是数列{}n a 的后项与前项的差,要求通项公式可用累加法,即由112()()n n n n n a a a a a ---=-+-
+
211()a a a +-+求得.
试题解析:(1)112222(2)n n n n b b b b ++=+⇒+=+,∵
12
22
n n b b ++=+,
又121224b a a +=-+=,
∴23
12(21)
(2222)22222221
n
n n n a n n n +-=+++
+-+=
-+=--.
∴224(12)(22)
2(4)122
n n n n n S n n +-+=
-=-++-. 考点:数列的递推公式,等比数列的通项公式,等比数列的前项和.累加法求通项公式. 21.【答案】
【解析】(1)当1=n 时,323321111=⇒=-=a a a S ;………………1分 当2≥n 时,332,33211-=-=--n n n n a S a S ,
∴当2≥n 时,n n n n n a a a S S 2)(32211=-=---,整理得13-=n n a a .………………3分 ∴数列}{n a 是以3为首项,公比为3的等比数列. ∴数列}{n a 的通项公式为n n a 3=.………………5分
22.【答案】
【解析】(1)证明:取ED的中点为O,
由题意可得△AED为等边三角形,
,,
∴AC2=AO2+OC2,AO⊥OC,
又AO⊥ED,ED∩OC=O,AO⊥面ECD,又AO⊆AED,
∴平面AED⊥平面BCDE;…
(2)如图,以O为原点,OC,OD,OA分别为x,y,z轴,建立空间直角坐标系,
则E(0,﹣1,0),A(0,0,),C(,0,0),B(,﹣2,0),
,,,
设面EAC的法向量为,
面BAC的法向量为
由,得,∴,
∴,
由,得,∴,
∴,
∴,
∴二面角E﹣AC﹣B的余弦值为.…
2016年5月3日
a ;(2)3.6万;(3)2.9. 23.【答案】(1)0.3
【解析】
(3)由图可得月均用水量不低于2.5吨的频率为:
()0.50.080.160.30.40.520.7385%⨯++++=<;
月均用水量低于3吨的频率为:
()0.50.080.160.30.40.520.30.8885%⨯+++++=>;
则0.850.73
2.50.5 2.90.30.5
x -=+⨯
=⨯吨.1 考点:频率分布直方图.
24.【答案】
【解析】解:(1)当x=1时,f (1)=p (1)=37.
当2≤x ≤12时,
且x ≤12)
验证x=1符合f (x )=﹣3x 2+40x ,∴f (x )=﹣3x 2
+40x (x ∈N*且x ≤12).该商场预计销售该商品的月利润为
g (x )=(﹣3x 2+40x )(185﹣150﹣2x )=6x 3﹣185x 2+1400x ,(x ∈N*且x ≤12),
令h (x )=6x 3﹣185x 2+1400x (1≤x ≤12),h'(x )=18x 2
﹣370x+1400,令h'(x )=0,解得
(舍
去).>0;当5<x ≤12时,h'(x )<0.
∴当x=5时,h (x )取最大值h (5)=3125.max =g (5)=3125(元).
综上,5月份的月利润最大是3125元.
【点评】本题考查利用函数知识解决应用题的有关知识.新高考中的重要的理念就是把数学知识运用到实际生活中,如何建模是解决这类问题的关键.同时要熟练地利用导数的知识解决函数的求最值问题.。