江苏省宜兴中学复数基础练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、复数选择题
1.已知复数2z i =-,若i 为虚数单位,则1i
z
+=( ) A .
3155
i + B .
1355i + C .113
i +
D .
13
i + 2.若复数(2)z i i =+(其中i 为虚数单位),则复数z 的模为( ) A .5 B
C
.D .5i 3.若复数1z i i ⋅=-+,则复数z 的虚部为( )
A .-1
B .1
C .-i
D .i
4.已知i 为虚数单位,则复数23i
i
-+的虚部是( ) A .35 B .35i - C .15- D .15i -
5.已知a 为正实数,复数1ai +(i 为虚数单位)的模为2,则a 的值为( )
A 3
B .1
C .2
D .3
6.复数312i
z i
=-的虚部是( ) A .65i -
B .35
i
C .
35
D .65
-
7.已知复数1z i i =+-(i 为虚数单位),则z =( ) A .1
B
.i
C
i
D
i
8.设1z 是虚数,211
1
z z z =+是实数,且211z -≤≤,则1z 的实部取值范围是( ) A .[]1,1- B .11,22⎡⎤
-
⎢⎥⎣
⎦ C .[]22-,
D .11,00,22
⎡⎫⎛⎤-⋃⎪ ⎢⎥⎣⎭⎝
⎦
9.已知复数5
12z i
=+,则z =( ) A .1
B
C
D .5
10.复数112z i =+,21z i =+(i 为虚数单位),则12z z ⋅虚部等于( ). A .1-
B .3
C .3i
D .i -
11.已知(),a bi a b R +∈是()()112i i +-的共轭复数,则a b +=( ) A .4 B .2
C .0
D .1-
12.设21i
z i
+=
-,则z 的虚部为( )
A .12
B .12-
C .
32
D .32
-
13.若复数z 满足213z z i -=+,则z =( ) A .1i +
B .1i -
C .1i -+
D .1i --
14.若复数()()1i 3i a +-(i 为虚数单位)的实部和虚部互为相反数,则实数a =( ) A .1- B .12
-
C .
13
D .1
15.若复数11i
z i
,i 是虚数单位,则z =( ) A .0
B .
12
C .1
D .2
二、多选题
16.i 是虚数单位,下列说法中正确的有( ) A .若复数z 满足0z z ⋅=,则0z =
B .若复数1z ,2z 满足1212z z z z +=-,则120z z =
C .若复数()z a ai a R =+∈,则z 可能是纯虚数
D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限 17.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( ) A .z =-1+2i B .|z |=5
C .12z i =+
D .5z z ⋅=
18.若复数351i
z i
-=-,则( )
A .z =
B .z 的实部与虚部之差为3
C .4z i =+
D .z 在复平面内对应的点位于第四象限 19.已知复数(),z x yi x y R =+∈,则( ) A .2
0z
B .z 的虚部是yi
C .若12z i =+,则1x =,2y =
D .z =
20.(多选题)已知集合{}
,n
M m m i n N ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( ) A .()()11i i -+
B .
11i
i
-+ C .
11i
i
+- D .()2
1i -
21.已知复数012z i =+(i 为虚数单位)在复平面内对应的点为0P ,复数z 满足
|1|||z z i -=-,下列结论正确的是( )
A .0P 点的坐标为(1,2)
B .复数0z 的共轭复数对应的点与点0P 关于
虚轴对称
C .复数z 对应的点Z 在一条直线上
D .0P 与z 对应的点Z 间的距离的最小值为
2
22.设复数z 满足1
z i z
+=,则下列说法错误的是( ) A .z 为纯虚数
B .z 的虚部为12
i -
C .在复平面内,z 对应的点位于第三象限
D .z =
23.下列说法正确的是( ) A .若2z =,则4z z ⋅=
B .若复数1z ,2z 满足1212z z z z +=-,则120z z =
C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等
D .“1a ≠”是“复数()()
()2
11z a a i a R =-+-∈是虚数”的必要不充分条件
24.若复数z 满足()1z i i +=,则( )
A .1z i =-+
B .z 的实部为1
C .1z i =+
D .22z i =
25.已知复数12ω=-(i 是虚数单位),ω是ω的共轭复数,则下列的结论正确的
是( ) A .2ωω=
B .31ω=-
C .210ωω++=
D .ωω>
26.已知1z ,2z 为复数,下列命题不正确的是( ) A .若12z z =
,则12=z z B .若12=z z ,则12z z =
C .若12z z >则12z z >
D .若12z z >,则12z z >
27.已知复数122,2z i z i =-=则( ) A .2z 是纯虚数 B .12z z -对应的点位于第二象限
C .123z z +=
D .12z z =
28.已知复数(
)(()()2
11z m m m i m R =-+-∈,则下列说法正确的是( )
A .若0m =,则共轭复数1z =-
B .若复数2z =,则m
C .若复数z 为纯虚数,则1m =±
D .若0m =,则2420z z ++=
29.已知i 为虚数单位,下列说法正确的是( )
A .若,x y R ∈,且1x yi i +=+,则1x y ==
B .任意两个虚数都不能比较大小
C .若复数1z ,2z 满足22
12
0z z +=,则120z z == D .i -的平方等于1
30.设(
)(
)
2
2
25322z t t t t i =+-+++,t ∈R ,i 为虚数单位,则以下结论正确的是( )
A .z 对应的点在第一象限
B .z 一定不为纯虚数
C .z 一定不为实数
D .z 对应的点在实轴的下方
【参考答案】***试卷处理标记,请不要删除
一、复数选择题 1.B 【分析】
利用复数的除法法则可化简,即可得解. 【详解】 ,. 故选:B. 解析:B 【分析】
利用复数的除法法则可化简1i
z
+,即可得解. 【详解】
2z i =-,()()()()12111313
222555
i i i i i i z i i i +++++∴
====+--+. 故选:B.
2.B 【分析】
由已知等式,利用复数的运算法则化简复数,即可求其模. 【详解】 ,所以, 故选:B
解析:B 【分析】
由已知等式,利用复数的运算法则化简复数,即可求其模.
(2)21z i i i =+=-,所以|z |=
故选:B
3.B 【分析】 ,然后算出即可. 【详解】
由题意,则复数的虚部为1 故选:B
解析:B 【分析】
1i
z i -+=
,然后算出即可. 【详解】 由题意()111
11
i i i i z i i i i -+-+--====+⋅-,则复数z 的虚部为1 故选:B
4.A 【分析】
先由复数的除法运算化简复数,再由复数的概念,即可得出其虚部. 【详解】
因为,所以其虚部是. 故选:A.
解析:A 【分析】
先由复数的除法运算化简复数23i
i
-+,再由复数的概念,即可得出其虚部. 【详解】 因为
22(3)2613
3(3)(3)1055
i i i i i i i i -----===--++-,所以其虚部是35
. 故选:A.
5.A 【分析】
利用复数的模长公式结合可求得的值. 【详解】
,由已知条件可得,解得. 故选:A.
【分析】
利用复数的模长公式结合0a >可求得a 的值. 【详解】
0a >,由已知条件可得12ai +==,解得a =
故选:A.
6.C 【分析】
由复数除法法则计算出后可得其虚部. 【详解】 因为,
所以复数z 的虚部是. 故选:C .
解析:C 【分析】
由复数除法法则计算出z 后可得其虚部. 【详解】 因为
33(12)3663
12(12)(12)555
i i i i i i i i +-===-+--+, 所以复数z 的虚部是3
5
. 故选:C .
7.D 【分析】
先对化简,求出,从而可求出 【详解】 解:因为, 所以, 故选:D
解析:D 【分析】
先对1z i i =+-化简,求出z ,从而可求出z 【详解】
解:因为1z i i i i =+-==,
所以z i =,
故选:D
【分析】
设,由是实数可得,即得,由此可求出. 【详解】 设,, 则,
是实数,,则, ,则,解得, 故的实部取值范围是. 故选:B.
解析:B 【分析】
设1z a bi =+,由211
1
z z z =+
是实数可得221a b +=,即得22z a =,由此可求出1122a -≤≤. 【详解】
设1z a bi =+,0b ≠, 则21222222111a bi a b z z a bi a bi a b i z a bi a b a b a b -⎛⎫⎛⎫=+
=++=++=++- ⎪ ⎪++++⎝⎭⎝⎭
, 2z 是实数,22
0b
b a b
∴-
=+,则221a b +=, 22z a ∴=,则121a -≤≤,解得11
22
a -≤≤,
故1z 的实部取值范围是11,22⎡⎤-⎢⎥⎣
⎦. 故选:B.
9.C 【分析】
根据模的运算可得选项. 【详解】 . 故选:C.
解析:C 【分析】
根据模的运算可得选项. 【详解】
512z i =
===+
故选:C.
10.B 【分析】
化简,利用定义可得的虚部. 【详解】
则的虚部等于 故选:B
解析:B 【分析】
化简12z z ⋅,利用定义可得12z z ⋅的虚部. 【详解】
()()1212113z z i i i ⋅=+⋅+=-+
则12z z ⋅的虚部等于3 故选:B
11.A 【分析】
先利用复数的乘法运算法则化简,再利用共轭复数的定义求出a+bi ,从而确定a ,b 的值,求出a+b . 【详解】 , 故选:A
解析:A 【分析】
先利用复数的乘法运算法则化简()()112i i +-,再利用共轭复数的定义求出a +bi ,从而确定a ,b 的值,求出a +b . 【详解】
()()112i i +-1223i i i =-++=-
3a bi i ∴+=+
3,1a b ==,4a b +=
故选:A
12.C
根据复数的除法运算,先化简复数,即可得出结果. 【详解】 因为, 所以其虚部为. 故选:C.
解析:C 【分析】
根据复数的除法运算,先化简复数,即可得出结果. 【详解】
因为()()()()21223113
111222
i i i i z i i i i ++++-=
===+--+, 所以其虚部为3
2
. 故选:C.
13.A 【分析】
采用待定系数法,设,由复数运算和复数相等可求得,从而得到结果. 【详解】 设,则, ,,解得:, . 故选:A.
解析:A 【分析】
采用待定系数法,设(),z a bi a b R =+∈,由复数运算和复数相等可求得,a b ,从而得到结果. 【详解】
设(),z a bi a b R =+∈,则z a bi =-,
()()22313z z a bi a bi a bi i ∴-=+--=+=+,133a b =⎧∴⎨=⎩,解得:1
1a b =⎧⎨=⎩
,
1z i ∴=+.
故选:A. 14.B 【分析】
利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.
解:,所以复数的实部为,虚部为,因为实部和虚部互为相反数,所以,解得 故选:B
解析:B 【分析】
利用复数代数形式的乘法运算化简,再由实部加虚部为0求解. 【详解】
解:()()()()2
1i 3i 33331a i ai ai a a i +-=-+-=++-,所以复数()()1i 3i a +-的实部为
3a +,虚部为31a -,因为实部和虚部互为相反数,所以3310a a ++-=,解得
12a =-
故选:B 15.C 【分析】
由复数除法求出,再由模计算. 【详解】 由已知, 所以. 故选:C .
解析:C 【分析】
由复数除法求出z ,再由模计算. 【详解】
由已知21(1)21(1)(1)2
i i i
z i i i i ---=
===-++-, 所以1z i =-=. 故选:C .
二、多选题 16.AD 【分析】
A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;
B 选项,举出反例,根据复数模的计算公式,即可判断出结果;
C 选项,根据纯虚数的定义,可判断出结果;
D 选项,设出复数,根据题
解析:AD
【分析】
A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;
B 选项,举出反例,根据复数模的计算公式,即可判断出结果;
C 选项,根据纯虚数的定义,可判断出结果;
D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.
【详解】
A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0a b ,即0z =;A 正确;
B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;
C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;
D 选项,设(),z a bi a b R =+∈,则()2
222234z a bi a abi b i =+=+-=+, 所以22324a b ab ⎧-=⎨=⎩
,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--, 所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.
17.AD
【分析】
因为复数Z 在复平面上对应的向量,得到复数,再逐项判断.
【详解】
因为复数Z 在复平面上对应的向量,
所以,,|z|=,,
故选:AD
解析:AD
【分析】
因为复数Z 在复平面上对应的向量(1,2)OZ =-,得到复数12z i =-+,再逐项判断.
【详解】
因为复数Z 在复平面上对应的向量(1,2)OZ =-,
所以12z i =-+,12z i =--,|z 5z z ⋅=,
故选:AD
18.AD
【分析】
根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.
【详解】
解:,
,
z 的实部为4,虚部为,则相差5,
z 对应的坐标为,故z 在复平面内对应的点位于第四象限,所以AD 正
解析:AD
【分析】
根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.
【详解】 解:()()()()
351358241112i i i i z i i i i -+--====---+,
z ∴==
z 的实部为4,虚部为1-,则相差5,
z 对应的坐标为()41-,,故z 在复平面内对应的点位于第四象限,所以AD 正确, 故选:AD. 19.CD
【分析】
取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.
【详解】
对于A 选项,取,则,A 选项错误;
对于B 选项,复数的虚部为,B 选项错误;
解析:CD
【分析】
取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.
【详解】
对于A 选项,取z i ,则210z =-<,A 选项错误;
对于B 选项,复数z 的虚部为y ,B 选项错误;
对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;
对于D 选项,z =
D 选项正确.
故选:CD.
【点睛】
本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题. 20.BC
【分析】
根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.
【详解】
根据题意,中,
时,;
时,
;时,;
时,,
.
选项A 中,;
选项B 中,;
选项C 中,;
选项D 中,.
解析:BC
【分析】
根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.
【详解】 根据题意,{}
,n M m m i n N ==∈中, ()4n k k N =∈时,1n i =;
()41n k k N =+∈时,
n i i =;()42n k k N =+∈时,1n i =-;
()43n k k N =+∈时,n i i =-,
{}1,1,,M i i ∴=--.
选项A 中,()()112i i M -+=∉;
选项B 中,()()()2
11111i i i i i i M --==-+-∈+; 选项C 中,()()()
2
11111i i i i i i M ++==-+∈-; 选项D 中,()212i i M -=-∉.
故选:BC.
【点睛】
此题考查复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解. 21.ACD
【分析】
根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出,利用,结合复数模的运算进行化简,
由此判断出点的轨迹,由此判读C 选项的正确
解析:ACD
【分析】
根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出z ,利用|1|||z z i -=-,结合复数模的运算进行化简,由此判断出Z 点的轨迹,由此判读C 选项的正确性.结合C 选项的分析,由点到直线的距离公式判断D 选项的正确性.
【详解】
复数012z i =+在复平面内对应的点为0(1,2)P ,A 正确;
复数0z 的共轭复数对应的点与点0P 关于实轴对称,B 错误;
设(,)z x yi x y R =+∈,代入|1|||z z i -=-,得|(1)(1)i|x yi x y -+=+-,即
=y x =;即Z 点在直线y x =上,C 正确; 易知点0P 到直线y x =的垂线段的长度即为0P 、Z 之间距离的最小值,结合点到直线的距
2
=,故D 正确. 故选:ACD
【点睛】
本小题主要考查复数对应的坐标,考查共轭复数,考查复数模的运算,属于基础题. 22.AB
【分析】
先由复数除法运算可得,再逐一分析选项,即可得答案.
【详解】
由题意得:,即,
所以z 不是纯虚数,故A 错误;
复数z 的虚部为,故B 错误;
在复平面内,对应的点为,在第三象限,故C 正确
解析:AB
【分析】 先由复数除法运算可得1122z i =-
-,再逐一分析选项,即可得答案. 【详解】
由题意得:1z zi +=,即111122
z i i -==---, 所以z 不是纯虚数,故A 错误;
复数z 的虚部为12
-,故B 错误;
在复平面内,z 对应的点为1
1(,)22
--,在第三象限,故C 正确;
2
z ==,故D 正确. 故选:AB
【点睛】
本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.
23.AD
【分析】
由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.
【详解】
若,则,故A 正确;
设,
由,可得
则,而不一定为0,故B 错误;
当时
解析:AD
【分析】 由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.
【详解】 若2z =,则2
4z z z ⋅==,故A 正确;
设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈ 由1212z z z z +=-,可得()()()()222222
121212121212z z a a b b z z a a b b +=+++=-=-+-
则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;
当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误;
若复数()()
()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠± 所以“1a ≠”是“复数()()
()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确; 故选:AD
本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.
24.BC
【分析】
先利用复数的运算求出复数z ,然后逐个分析判断即可
【详解】
解:由,得,
所以z 的实部为1,,,
故选:BC
【点睛】
此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭 解析:BC
【分析】
先利用复数的运算求出复数z ,然后逐个分析判断即可
【详解】
解:由()1z i i +=,得2(1)2(1)11(1)(1)2
i i z i i i i --====-++-, 所以z 的实部为1,1z i =+,22z i =-,
故选:BC
【点睛】
此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭复数,属于基础题
25.AC
【分析】
根据复数的运算进行化简判断即可.
【详解】
解:∵所以,
∴,故A 正确,
,故B 错误,
,故C 正确,
虚数不能比较大小,故D 错误,
故选:AC.
【点睛】
本题主要考查复数的有关概念
解析:AC
【分析】
根据复数的运算进行化简判断即可.
解:∵12ω=-所以122
ω=--,
∴213142422ωω=
--=--=,故A 正确,
32111312244ωωω⎛⎫⎛⎫⎛⎫==---=--= ⎪⎪ ⎪⎝⎭
⎝⎭⎝⎭,故B 错误,
21
111022ωω++=--++=,故C 正确, 虚数不能比较大小,故D 错误,
故选:AC .
【点睛】
本题主要考查复数的有关概念和运算,结合复数的运算法则进行判断是解决本题的关键.属于中档题.
26.BCD
【分析】
根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.
【详解】
因为两个复数之间只有等与不等,不能比较大小
解析:BCD
【分析】
根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.
【详解】
因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确;
当两个复数的模相等时,复数不一定相等, 比如11i i -=+,但是11i i -≠+,所以B 项是错误的;
因为当两个复数相等时,模一定相等,所以A 项正确;
故选:BCD.
【点睛】
该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.
27.AD
【分析】
利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.
利用复数的相关概念可判断A 正确;
对于B 选项,对应的
解析:AD
【分析】
利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.
【详解】
利用复数的相关概念可判断A 正确;
对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;
对于C 选项,122+=+z z i
,则12z z +==,故C 错;
对于D 选项,()122224z z i i i ⋅=-⋅=+
,则12z z =
=D 正确. 故选:AD
【点睛】
本题考查复数的相关概念及复数的计算,较简单.
28.BD
【分析】
根据每个选项里的条件,求出相应的结果,即可判断选项的正误.
【详解】
对于A ,时,,则,故A 错误;
对于B ,若复数,则满足,解得,故B 正确;
对于C ,若复数z 为纯虚数,则满足,解得,
解析:BD
【分析】
根据每个选项里的条件,求出相应的结果,即可判断选项的正误.
【详解】
对于A ,0m =
时,1z =-
,则1z =-,故A 错误;
对于B ,若复数2z =
,则满足(()212
10m m m ⎧-=⎪⎨-=⎪⎩
,解得m ,故B 正确; 对于C ,若复数z
为纯虚数,则满足(()210
10m m m ⎧-=⎪⎨--≠⎪⎩,解得1m =-,故C 错误; 对于D ,若0m =
,则1z =-+
,(
)()221420412z z ++=+--+=+,故
D 正确.
故选:BD.
本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.
29.AB
【分析】
利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.
【详解】
对于选项A ,∵,且,根据复数相等的性质,则,故正确;
对于选项B ,
解析:AB
【分析】
利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.
【详解】
对于选项A ,∵,x y R ∈,且1x yi i +=+,根据复数相等的性质,则1x y ==,故正确;
对于选项B ,∵虚数不能比较大小,故正确;
对于选项C ,∵若复数1=z i ,2=1z 满足2212
0z z +=,则120z z ≠≠,故不正确; 对于选项D ,∵复数()2
=1i --,故不正确;
故选:AB .
【点睛】
本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于基础题. 30.CD
【分析】
利用配方法得出复数的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.
【详解】
,,
所以,复数对应的点可能在第一象限,也可能在第二象限,故A 错误 解析:CD
【分析】
利用配方法得出复数z 的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.
【详解】
2
2549492532488t t t ⎛+⎫= ⎪⎝⎭+-->-,()2222110t t t ++=++>, 所以,复数z 对应的点可能在第一象限,也可能在第二象限,故A 错误;
当222530220
t t t t ⎧+-=⎨++≠⎩,即3t =-或12t =时,z 为纯虚数,故B 错误; 因为2220t t ++>恒成立,所以z 一定不为实数,故C 正确;
由选项A 的分析知,z 对应的点在实轴的上方,所以z 对应的点在实轴的下方,故D 正确. 故选:CD.
【点睛】
本题考查复数的几何意义与复数的概念相关命题真假的判断,解题的关键就是求出复数虚部和实部的取值范围,考查计算能力与推理能力,属于中等题.。