2019中考数学热点难点突破《分式方程中的参数问题》(解析版)
分式方程篇(解析版)--中考数学必考考点总结+题型专训
知识回顾微专题分式方程--中考数学必考考点总结+题型专训考点一:分式方程之分式方程的解与解分式方程1.分式方程的定义:分母中含有未知数的方程叫做分式方程。
2.分式方程的解:使分式方程成立的未知数的值叫做分式方程的解。
3.解分式方程。
具体步骤:①去分母——分式方程的两边同时乘上分母的最简公分母。
把分式方程化成整式方程。
②解整式方程。
③检验——把解出来的未知数的值带入公分母中检验公分母是否为0。
若公分母不为0,则未知数的值即是原分式方程的解。
若公分母为0,则未知数的值是原分式方程的曾根,原分式方程无解。
1.(2022•营口)分式方程3=x 的解是()A .x =2B .x =﹣6C .x =6D .x =﹣2【分析】方程两边都乘x (x ﹣2)得出3(x ﹣2)=2x ,求出方程的解,再进行检验即可.【解答】解:=,方程两边都乘x (x ﹣2),得3(x ﹣2)=2x ,解得:x =6,检验:当x =6时,x (x ﹣2)≠0,所以x =6是原方程的解,即原方程的解是x =6,故选:C .2.(2022•海南)分式方程12-x ﹣1=0的解是()A .x =1B .x =﹣2C .x =3D .x =﹣3【分析】方程两边同时乘以(x ﹣1),把分式方程化成整式方程,解整式方程检验后,即可得出分式方程的解.【解答】解:去分母得:2﹣(x ﹣1)=0,解得:x =3,当x =3时,x ﹣1≠0,∴x =3是分式方程的根,故选:C .3.(2022•毕节市)小明解分式方程33211+=+x xx ﹣1的过程如下.解:去分母,得3=2x ﹣(3x +3).①去括号,得3=2x ﹣3x +3.②移项、合并同类项,得﹣x =6.③化系数为1,得x =﹣6.④以上步骤中,开始出错的一步是()A .①B .②C .③D .④【分析】按照解分式方程的一般步骤进行检查,即可得出答案.【解答】解:去分母得:3=2x ﹣(3x +3)①,去括号得:3=2x ﹣3x ﹣3②,∴开始出错的一步是②,故选:B .4.(2022•无锡)分式方程xx 132=-的解是()A .x =1B .x =﹣1C .x =3D .x =﹣3【分析】将分式方程转化为整式方程,求出x 的值,检验即可得出答案.【解答】解:=,方程两边都乘x (x ﹣3)得:2x =x ﹣3,解得:x =﹣3,检验:当x =﹣3时,x (x ﹣3)≠0,∴x =﹣3是原方程的解.故选:D .5.(2022•济南)代数式23+x 与代数式12-x 的值相等,则x =.【分析】根据题意列方程,再根据解分式方程的步骤和方法进行计算即可.【解答】解:由题意得,=,去分母得,3(x ﹣1)=2(x +2),去括号得,3x ﹣3=2x +4,移项得,3x ﹣2x =4+3,解得x =7,经检验x =7是原方程的解,所以原方程的解为x =7,故答案为:7.6.(2022•绵阳)方程113-+=-x x x x 的解是.【分析】先在方程两边乘最简公分母(x ﹣3)(x ﹣1)去分母,然后解整式方程即可.【解答】解:=,方程两边同乘(x ﹣3)(x ﹣1),得x (x ﹣1)=(x +1)(x ﹣3),解得x =﹣3,检验:当x =﹣3时,(x ﹣3)(x ﹣1)≠0,∴方程的解为x =﹣3.故答案为:x =﹣3.7.(2022•盐城)分式方程121-+x x =1的解为.【分析】先把分式方程转化为整式方程,再求解即可.【解答】解:方程的两边都乘以(2x ﹣1),得x +1=2x ﹣1,解得x =2.经检验,x =2是原方程的解.故答案为:x =2.8.(2022•内江)对于非零实数a ,b ,规定a ⊕b =a 1﹣b1.若(2x ﹣1)⊕2=1,则x 的值为.【分析】利用新规定对计算的式子变形,解分式方程即可求得结论.【解答】解:由题意得:=1,解得:x =.经检验,x =是原方程的根,∴x =.故答案为:.9.(2022•永州)解分式方程112+-x x =0去分母时,方程两边同乘的最简公分母是.【分析】根据最简公分母的定义即可得出答案.【解答】解:去分母时,方程两边同乘的最简公分母是x (x +1).故答案为:x (x +1).10.(2022•常德)方程()xx x x 25212=-+的解为.【分析】方程两边同乘2x (x ﹣2),得到整式方程,解整式方程求出x 的值,检验后得到答案.【解答】解:方程两边同乘2x (x ﹣2),得4x ﹣8+2=5x ﹣10,解得:x =4,检验:当x =4时,2x (x ﹣2)=16≠0,∴x =4是原方程的解,∴原方程的解为x =4.11.(2022•宁波)定义一种新运算:对于任意的非零实数a ,b ,a ⊗b =a 1+b 1.若(x +1)⊗x =xx 12+,则x 的值为.【分析】根据新定义列出分式方程,解方程即可得出答案.【解答】解:根据题意得:+=,化为整式方程得:x +x +1=(2x +1)(x +1),解得:x =﹣,检验:当x =﹣时,x (x +1)≠0,∴原方程的解为:x =﹣.故答案为:﹣.12.(2022•成都)分式方程xx x -+--4143=1的解为.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣x ﹣1=x ﹣4,解得:x =3,经检验x =3是分式方程的解,故答案为:x =3.13.(2022•牡丹江)若关于x 的方程11--x mx =3无解,则m 的值为()A .1B .1或3C .1或2D .2或3【分析】先去分母,再根据条件求m .【解答】解:两边同乘以(x ﹣1)得:mx ﹣1=3x ﹣3,∴(m ﹣3)x =﹣2.当m ﹣3=0时,即m =3时,原方程无解,符合题意.当m ﹣3≠0时,x =,∵方程无解,∴x ﹣1=0,∴x =1,∴m ﹣3=﹣2,∴m =1,综上:当m =1或3时,原方程无解.故选:B .14.(2022•通辽)若关于x 的分式方程:2﹣221--x k =x-21的解为正数,则k 的取值范围为()A .k <2B .k <2且k ≠0C .k >﹣1D .k >﹣1且k ≠0【分析】先解分式方程可得x =2﹣k ,再由题意可得2﹣k >0且2﹣k ≠2,从而求出k 的取值范围.【解答】解:2﹣=,2(x ﹣2)﹣(1﹣2k )=﹣1,2x ﹣4﹣1+2k =﹣1,2x =4﹣2k ,x =2﹣k ,∵方程的解为正数,∴2﹣k >0,∴k <2,∵x ≠2,∴2﹣k ≠2,∴k ≠0,∴k <2且k ≠0,故选:B .15.(2022•黑龙江)已知关于x 的分式方程xx m x ----1312=1的解是正数,则m 的取值范围是()A .m >4B .m <4C .m >4且m ≠5D .m <4且m ≠1【分析】先利用m 表示出x 的值,再由x 为正数求出m 的取值范围即可.【解答】解:方程两边同时乘以x ﹣1得,2x ﹣m +3=x ﹣1,解得x =m ﹣4.∵x 为正数,∴m ﹣4>0,解得m >4,∵x ≠1,∴m ﹣4≠1,即m ≠5,∴m 的取值范围是m >4且m ≠5.故选:C .16.(2022•德阳)如果关于x 的方程12-+x mx =1的解是正数,那么m 的取值范围是()A .m >﹣1B .m >﹣1且m ≠0C .m <﹣1D .m <﹣1且m ≠﹣2【分析】先去分母将分式方程化成整式方程,再求出方程的解x =﹣1﹣m ,利用x >0和x ≠1得出不等式组,解不等式组即可求出m 的范围.【解答】解:两边同时乘(x ﹣1)得,2x +m =x ﹣1,解得:x =﹣1﹣m ,又∵方程的解是正数,且x ≠1,∴,即,解得:,∴m 的取值范围为:m <﹣1且m ≠﹣2.故答案为:D .17.(2022•重庆)关于x 的分式方程x x x a x -++--3133=1的解为正数,且关于y 的不等式组()⎪⎩⎪⎨⎧-+≤+132229a y y y 的解集为y ≥5,则所有满足条件的整数a 的值之和是()A .13B .15C .18D .20【分析】解分式方程得得出x =a ﹣2,结合题意及分式方程的意义求出a >2且a ≠5,解不等式组得出,结合题意得出a <7,进而得出2<a <7且a ≠5,继而得出所有满足条件的整数a 的值之和,即可得出答案.【解答】解:解分式方程得:x =a ﹣2,∵x >0且x ≠3,∴a ﹣2>0且a ﹣2≠3,∴a >2且a ≠5,解不等式组得:,∵不等式组的解集为y ≥5,∴<5,∴a <7,∴2<a <7且a ≠5,∴所有满足条件的整数a 的值之和为3+4+6=13,故选:A .18.(2022•重庆)若关于x 的一元一次不等式组⎪⎩⎪⎨⎧--≥-a x x x <153141的解集为x ≤﹣2,且关于y 的分式方程111+=+-y ay y ﹣2的解是负整数,则所有满足条件的整数a 的值之和是()A .﹣26B .﹣24C .﹣15D .﹣13【分析】解不等式组得出,结合题意得出a >﹣11,解分式方程得出y =,结合题意得出a =﹣8或﹣5,进而得出所有满足条件的整数a 的值之和是﹣8﹣5=﹣13,即可得出答案.【解答】解:解不等式组得:,∵不等式组的解集为x ≤﹣2,∴>﹣2,∴a >﹣11,解分式方程=﹣2得:y=,∵y 是负整数且y ≠﹣1,∴是负整数且≠﹣1,∴a =﹣8或﹣5,∴所有满足条件的整数a 的值之和是﹣8﹣5=﹣13,故选:D .19.(2022•遂宁)若关于x 的方程122+=x mx 无解,则m 的值为()A .0B .4或6C .6D .0或4【分析】解分式方程可得(4﹣m )x =﹣2,根据题意可知,4﹣m =0或2x +1=0,求出m 的值即可.【解答】解:=,2(2x +1)=mx ,4x +2=mx ,(4﹣m )x =﹣2,∵方程无解,∴4﹣m =0或2x +1=0,即4﹣m =0或x =﹣=﹣,∴m =4或m =0,故选:D .20.(2022•黄石)已知关于x 的方程()1111++=++x x ax x x 的解为负数,则a 的取值范围是.【分析】先求整式方程的解,然后再解不等式组即可,需要注意分式方程的分母不为0.【解答】解:去分母得:x +1+x =x +a ,解得:x =a ﹣1,∵分式方程的解为负数,∴a ﹣1<0且a ﹣1≠0且a ﹣1≠﹣1,∴a <1且a ≠0,∴a 的取值范围是a <1且a ≠0,故答案为:a <1且a ≠0.21.(2022•齐齐哈尔)若关于x 的分式方程4222212-+=++-x mx x x 的解大于1,则m 的取值范围是.【解答】解:,给分式方程两边同时乘以最简公分母(x +2)(x ﹣2),得(x +2)+2(x ﹣2)=x +2m ,去括号,得x +2+2x ﹣4=x +2m ,解方程,得x =m +1,检验:当m +1≠2,m +1≠﹣2,即m ≠1且m ≠﹣3时,x =m +1是原分式方程的解,根据题意可得,m +1>1,∴m >0且m ≠1.知识回顾故答案为:m >0且m ≠1.22.(2022•泸州)若方程xx x -=+--23123的解使关于x 的不等式(2﹣a )x ﹣3>0成立,则实数a 的取值范围是.【分析】先解分式方程,再将x 代入不等式中即可求解.【解答】解:+1=,+=,=0,解得:x =1,∵x ﹣2≠0,2﹣x ≠0,∴x =1是分式方程的解,将x =1代入不等式(2﹣a )x ﹣3>0,得:2﹣a ﹣3>0,解得:a <﹣1,∴实数a 的取值范围是a <﹣1,故答案为:a <﹣1.考点二:分式方程之分式方程的应用1.列分式方程解实际应用题的步骤:①审题——仔细审题,找出题目中的等量关系。
专题03 分式方程及其应用-2019年中考数学年年考的28个重点微专题(解析版)
专题03 分式方程及其应用一、基础知识1.分式方程的意义:分母中含有未知数的方程叫做分式方程.2.分式方程的解法:(1)去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);(2)按解整式方程的步骤求出未知数的值;(3)验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).二、本专题典型题考法及解析【例题1】解方程:2-x 12x 24-x x 2=++. 【答案】x=3【解析】方程两边都乘以(x+2)(x-2),得x+2(x-2)=x+2.解得x=3. 经检验,x=3是原方程的解.【例题2】遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x 万千克,则改良后平均每亩产量为1.5x 万千克,根据题意列方程为( ) A .36369201.5x x +-= B .3636201.5x x-= C .36936201.5x x +-= D .36369201.5x x ++= 【答案】A .【解析】设原计划每亩平均产量x 万千克,则改良后平均每亩产量为1.5x 万千克,根据题意列方程为 3636201.5x x-= 【例题3】某绿色食品有限公司准备购进A 和B 两种蔬菜,B 种蔬菜每吨的进价比A 中蔬菜每吨的进价多0.5万元,经计算用4.5万元购进的A 种蔬菜的吨数与用6万元购进的B 种蔬菜的吨数相同,请解答下列问题:(1)求A ,B 两种蔬菜每吨的进价;(2)该公司计划用14万元同时购进A,B两种蔬菜,若A种蔬菜以每吨2万元的价格出售,B种蔬菜以每吨3万元的价格出售,且全部售出,请求出所获利润W(万元)与购买A种蔬菜的资金a(万元)之间的函数关系式;(3)在(2)的条件下,要求A种蔬菜的吨数不低于B种蔬菜的吨数,若公司欲将(2)中的最大利润全部用于购买甲、乙两种型号的电脑赠给某中学,甲种电脑每台2100元,乙种电脑每台2700元,请直接写出有几种购买电脑的方案.【答案】见解析。
中考数学复习典型压轴题专题讲解4---分式方程的含参问题与应用
中考数学复习典型压轴题专题讲解中考数学复习典型压轴题专题讲解专题04分式方程的含参问题与应用分式方程的含参问题与应用【解题解题方法指导方法指导方法指导】】1. 分式方程的定义:分母中含有未知数的方程叫做分式方程.判断一个方程是否为分式方程主要是看这个方程的分母中是否含有未知数.2.解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.3.分式方程的增根问题:(1)增根的定义:在分式方程变形时,有可能产生不适合原方程的根,即代入分式方程后分母的值为0或是转化后的整式方程的根恰好是原方程未知数的允许值之外的值的根,叫做原方程的增根.(2)增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取哪些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.(3)检验增根的方法:把由分式方程化成的整式方程的解代入最简公分母,看最简公分母是否为0,如果为0,则是增根;如果不是0,则是原分式方程的根.4.分式方程的应用列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作时间等等.列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.题型剖析】】【题型剖析解分式方程【类型1】解分式方程【例1】(2019•江都区三模)解方程:【分析】先去分母,将方程化为一元一次方程,然后解之即可,最后验根.【解析】去分母,得4x﹣5(x﹣1)=0,去括号,得4x﹣5x+5=0,合并同类项,得﹣x+5=0,解得x=5,检验:将x=5代入原分式方程,左边=0=右边,∴原分式方程的解为x=5.【方法小结】本题考查了实数运算以及解分式方程,熟练掌握特殊三角函数值与幂的运算、解分式方程是解题的关键.【变式1-1】(2019•润州区二模)(1)解方程:。
专题09 分式方程中的参数问题(解析版)
八下数学思维解法技巧培优小专题专题9 分式方程中的参数问题题型一由分式方程解的情况求参数的值或取值范围【典例1】(2019•淅川县期末)若关于x的方程2m−3x−1−xx−1=0无解,则m的值是()A.3B.2C.1D.﹣1【点拨】分式方程去分母转化为整式方程,由分式方程无解得到x﹣1=0,求出x的值,代入整式方程求出m的值即可.【解析】解:去分母得:2m﹣3﹣x=0,由分式方程无解,得到x﹣1=0,即x=1,把x=1代入整式方程得:2m﹣4=0,解得:m=2,故选:B.【典例2】(2019•吉安县期末)若mx−3−1−x3−x=0无解,则m的值是()A.3B.﹣3C.﹣2D.2【点拨】分式方程去分母转化为整式方程,求出整式方程的解得到m的值,经检验即可得到分式方程的解.【解析】解:去分母得:m﹣x+1=0,由分式方程无解,得到x﹣3=0,即x=3,把x=3代入整式方程得:m=2,故选:D.【典例3】(2019•齐齐哈尔)关于x的分式方程2x−ax−1−11−x=3的解为非负数,则a的取值范围为a≤4且a≠3.【点拨】根据解分式方程的方法和方程2x−ax−1−11−x=3的解为非负数,可以求得a的取值范围.【解析】解:2x−ax−1−11−x=3,方程两边同乘以x﹣1,得2x ﹣a +1=3(x ﹣1), 去括号,得 2x ﹣a +1=3x ﹣3, 移项及合并同类项,得 x =4﹣a ,∵关于x 的分式方程2x−a x−1−11−x=3的解为非负数,x ﹣1≠0,∴{4−a ≥0(4−a)−1≠0, 解得,a ≤4且a ≠3, 故答案为:a ≤4且a ≠3.【典例4】(2019•江阴市期中)若分式方程x−2x−3−2=mx−3有增根,则m 的值为 1 . 【点拨】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m 的值.【解析】解:方程的两边都乘以(x ﹣3),得 x ﹣2﹣2(x ﹣3)=m , 化简,得 m =﹣x +4,原方程的增根为x =3, 把x =3代入m =﹣x +4, 得m =1, 故答案为:1.【典例5】(2019•江都区四模)若关于x 的分式方程1x−2−m 2−x=1的解是正数,求m 的取值范围.【点拨】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程的解为正数确定出m 的范围即可.【解析】解:去分母得:1+m =x ﹣2, 解得:x =m +3,由分式方程的解为正数,得到m +3>0,且m +3≠2,解得:m >﹣3且m ≠﹣1.题型二 分式方程与不等式的综合【典例6】(2019•九龙坡区校级月考)已知关于x 的分式方程2−ax 1−x−1x−1+1=0有整数解,且关于x 的不等式组{3x ≤2(x −12)2x −x−13<a的解集为x ≤﹣1,则符合条件的所有整数a 的个数为( ) A .2 B .3 C .4 D .5【点拨】解分式方程得x =4a+1且x ≠1,则整数a 为0,1,﹣2,﹣3,﹣5时分式方程的解为整数解,再解不等式组得到a >−43,从而得到满足条件的整数a 的值. 【解析】解:去分母得2﹣ax +1+1﹣x =0, 解得x =4a+1且x ≠1,当整数a 为0,1,﹣2,﹣3,﹣5时,分式方程的解为整数解, 解不等式组为{x ≤−1x <3a−15,而不等式组的解集为x ≤﹣1, 所以3a−15>−1,解得a >−43,∴满足条件的整数a 的值为0,1. 故选:A .【典例7】(2019•巴南区期中)若关于x 的分式方程m 2−x−1=1−xx−2的解为正数,且关于y 的不等式组{2y−53≤−3y −m −1>−1无解,那么符合条件的所有整数m 的和为( )A .5B .3C .1D .0【点拨】根据题意可以求得m 的取值范围,从而可以得到符合条件的m 的整数值,从而可以解答本题. 【解析】解:由方程m2−x−1=1−xx−2,解得,x =4﹣m ,则{4−m >04−m ≠2, 解得,m <4且m ≠2,∵关于y 的不等式组{2y−53≤−3y −m −1>−1无解,解得,m ≥﹣2,由上可得,m 的取值范围是:﹣2≤m <4,且m ≠2, ∴符合条件的所有整数m 的和为:﹣2+(﹣1)+0+1+3=1, 故选:C .【典例8】(2019•沙坪坝区校级月考)若实数a 使关于x 的不等式组{13x −1≤x−1212a −3x >0有且只有4个整数解,且使关于x 的方程2x−1+5−a 1−x=−2的解为正数,则符合条件的所有整数a 的和为( )A .7B .10C .12D .1【点拨】解不等式组求得其解集,根据不等式组只有4个整数解得出a 的取值范围,解分式方程得出x =5−a2,由方程的解为正数且分式有意义得出a 的取值范围,综合两者所求最终确定a 的范围,据此可得答案.【解析】解:解不等式组{13x −1≤x−1212a −3x >0得,−3≤x <a 6, ∵不等式组只有4个整数解, ∴0<a6≤1, ∴0<a ≤6, 解分式方程2x−1+5−a1−x=−2得:x =5−a2, ∵分式方程的解为正数, ∴5−a 2>0,且5−a 2≠1,解得:a <5且a ≠3,综上可得,a 的取值范围为0<a <5,且a ≠3, 则符合条件的所有整数a 的和为:1+2+4=7. 故选:A .【典例9】(2019•沙坪坝区校级一模)如果关于x 的不等式组{5x+36≤x +115a −x ≥0至少有3个整数解,且关于x的分式方程axx−5=1−a 5−x−3xx−5的解为整数,则符合条件的所有整数a 的取值之和为( )A .﹣10B .﹣9C .﹣7D .﹣3【点拨】先分别解不等式组里的两个不等式,因为不等式组有解,写出其解集为﹣3≤x ≤15a ,根据不等式组至少有3个整数解,可得a 的取值,再解分式方程得x =a−1a+3,根据解为整数即得到a 的范围.得到两个a 的范围必须同时满足,即求得可得到的整数a 的值.【解析】解:解不等式组{5x+36≤x +115a −x ≥0,得:﹣3≤x ≤15a , ∵至少有3个整数解, ∴15a ≥﹣1,∴a ≥﹣5, 解方程:ax x−5=1−a 5−x−3x x−5,ax =a ﹣1﹣3x , x =a−1a+3,∵分式方程有解且解为整数,a−1a+3≠5,∴a ≠﹣4,a +3是a ﹣1的约数, ∵a ≥﹣5,∴a =﹣5,﹣2,﹣1,1,∴符合条件的所有整数a 的和为﹣7, 故选:C .【典例10】(2019•长寿区模拟)若关于x 的方程k 1−x=3x−1−2有非负实数解,关于x 的一次不等式组{x−12−2x ≤1x +k ≤2有解,则满足这两个条件的所有整数k 的值的和是 ﹣6 .【点拨】分式方程去分母转化为整式方程,表示出分式方程的解,由分式方程有非负实数解确定出k 的范围,由不等式有解确定出k 的范围,进而确定出k 的具体范围,求出整数解,进而求出之和即可. 【解析】解:分式方程去分母得:﹣k =3﹣2x +2, 解得:x =k+52,由分式方程有非负实数解,得到k+52≥0,且k+52≠1,解得:k ≥﹣5且k ≠﹣3, 不等式组整理得:{x ≥−1x ≤2−k,由不等式组有解,得到2﹣k ≥﹣1,即k ≤3,综上,k 的范围为﹣5≤k ≤3,且k ≠﹣3,即整数k =﹣5,﹣4,﹣2,﹣1,0,1,2,3, 则所有满足题意整数k 的值的和为﹣6, 故答案为:﹣6巩固练习1.(2019•九龙坡区期末)关于x 的分式方程ax−24−x+6x−4=−3的解为正数,且关于x 的不等式组{x >1a+x 2≥x −72有解,则满足上述要求的所有整数a 的绝对值之和为( )A .12B .14C .16D .18【点拨】根据分式方程的解为正数即可得出a <2且a ≠1,根据不等式组有解,即可得出a >﹣5,找出﹣5<a <2且a ≠1中所有的整数,将其相加即可得出结论. 【解析】解:解分式方程得x =43−a , 因为分式方程的解为正数, 所以43−a>0且43−a≠4,解得:a <3且a ≠2, 解不等式a+x 2≥x −72,得:x ≤a +7,∵不等式组有解, ∴a +7>1, 解得:a >﹣6,综上,﹣6<a <3,且a ≠2,则满足上述要求的所有整数a 绝对值之和为5+4+3+2+1+0+1=16, 故选:C .2.(2019•南岸区模拟)若数k 使关于x 的不等式组{3x +k ≤0x3−x−12≤1只有4个整数解,且使关于y 的分式方程k y−1+1=y+ky+1的解为正数,则符合条件的所有整数k 的积为( ) A .2 B .0 C .﹣3 D .﹣6【点拨】解不等式组求得其解集,根据不等式组只有4个整数解得出k 的取值范围,解分式方程得出y =﹣2k +1,由方程的解为整数且分式有意义得出k 的取值范围,综合两者所求最终确定k 的范围,据此可得答案.【解析】解:解不等式组{3x +k ≤0x3−x−12≤1得:﹣3≤x ≤−k3, ∵不等式组只有4个整数解, ∴0≤−k3<1, 解得:﹣3<k ≤0, 解分式方程k y−1+1=y+ky+1得:y =﹣2k +1,∵分式方程的解为正数, ∴﹣2k +1>0且﹣2k +1≠1, 解得:k <12且k ≠0,综上,k 的取值范围为﹣3<k <0,则符合条件的所有整数k 的积为﹣2×(﹣1)=2, 故选:A .3.(2019•嘉祥县模拟)若关于x 的方程3x−1=1−k1−x无解,则k 的值为( ) A .3B .1C .0D .﹣1【点拨】分式方程去分母转化为整式方程,由分式方程无解确定出x 的值,代入整式方程计算即可求出k 的值.【解析】解:去分母得:3=x ﹣1+k , 由分式方程无解,得到x =1, 把x =1代入整式方程得:k =3, 故选:A .4.(2019•碑林区校级期末)若关于x 的分式方程x+a x−2+a 2=12x−4无解,则a 的值为( )A .−32B .2C .−32或2D .−32或﹣2【点拨】分式方程去分母转化为整式方程,由分式方程无解确定出a 的值即可. 【解析】解:去分母得:2x +2a +ax ﹣2a =1, 整理得:(a +2)x =1,由分式方程无解,得到a +2=0或x =1a+2=2, 解得:a =﹣2或a =−32, 故选:D .5.(2019•渝中区校级期中)关于y 的分式方程3−a y−2=y−62−y 有正整数解,且关于x 的不等式{3x +32<3a 2x−36≥23无解,则满足条件的所有整数a 的和为( ) A .﹣4B .0C .﹣8D .﹣12【点拨】依据不等式组无解,即可得到a ≤4;依据分式方程有正整数解,即可得到a >﹣12且a ≠﹣4,进而得出﹣12<a ≤4且a ≠﹣4,根据y =a+124是正整数,可得a =﹣8,0,4,计算和可得结论. 【解析】解:解不等式3x +32<3a 得,x <2a−12, 解不等式2x−36≥23得,x ≥72,∵不等式组无解, ∴72≥2a−12,解得a ≤4;由分式方程3−ay−2=y−62−y , 可得y =a+124, ∵分式方程有正整数解, ∴y >0且y ≠2, 即a+124>0且a+124≠2,解得a >﹣12且a ≠﹣4, ∴﹣12<a ≤4且a ≠﹣4,∵a+124是正整数,∴a =﹣8,0,4,∴满足条件的所有整数a 的和=﹣8+0+4=﹣4, 故选:A .6.(2019•渝中区二模)若数a 使关于x 的不等式组{x−22≤−12x +27x +4>−a有且只有4个整数解,且使关于y 的分式方程2y−1+a 1−y=3的解为正数,则符合条件的所有整数a 的和为( ) A .﹣2B .0C .3D .6【点拨】先分别解不等式组里的两个不等式,因为不等式组有解,写出其解集为−4−a 7<x ≤3,得到在此范围内的整数解为x =0,1,2,3,进而得到−4−a 7的范围,求得此时满足的a 的范围;再解分式方程得y =5−a3,解为正数即得到a 的范围.得到两个a 的范围必须同时满足,即求得可得到的整数a 的值. 【解析】解:解不等式x−22≤−12x +2,得:x ≤3解不等式7x +4>﹣a ,得:x >−4−a7∵不等式组有且只有4个整数解 ∴在−4−a 7<x ≤3的范围内只有4个整数解∴整数解为x =0,1,2,3 ∴−1≤−4−a7<0 解得:﹣4<a ≤3① 解方程:2y−1+a 1−y=3解得:y =5−a 3∵分式方程有解且解为正数∴{5−a3≠15−a3>0 解得:a <5且a ≠2② ∴所有满足①②的整数a 的值有:﹣3,﹣2,﹣1,0,1,3 ∴符合条件的所有整数a 的和为﹣2故选:A .7.(2019•江油市一模)若数a 使关于x 的不等式组{x−22≤−12x +22x +4>−a有且仅有四个整数解,且使关于y 的分式方程ay−2+22−y=2有非负数解,则满足条件的整数a 的值是 ﹣2 .【点拨】先解不等式组,根据不等式组有且仅有四个整数解,得出﹣4<a ≤﹣2,再解分式方程a y−2+22−y=2,根据分式方程有非负数解,得到a ≥﹣2且a ≠2,进而得到满足条件的整数a 的值.【解析】解:解不等式组{x−22≤−12x +22x +4>−a ,可得{x ≤3x >−a+42,∵不等式组有且仅有四个整数解, ∴﹣1≤−a+42<0, ∴﹣4<a ≤﹣2, 解分式方程a y−2+22−y=2,可得y =12(a +2),又∵分式方程有非负数解, ∴y ≥0,且y ≠2,即12(a +2)≥0,12(a +2)≠2,解得a ≥﹣2且a ≠2,∴满足条件的整数a 的值为﹣2, 故答案为:﹣2.8.(2019•保康县模拟)若关于x 的方程x+m x−3+3m 3−x=2的解为正数,则m 的取值范围是 m <3且m ≠32.【点拨】分式方程去分母转化为整式方程,由分式方程的解为正数,确定出m 的范围即可. 【解析】解:去分母得:x +m ﹣3m =2x ﹣6, 解得:x =6﹣2m ,由分式方程的解为正数,得到6﹣2m >0,且6﹣2m ≠3, 解得:m <3且m ≠32, 故答案为:m <3且m ≠32,9.(2019•沙坪坝区校级期中)关于x的分式方程2x−1+kxx2−1=3x+1会产生增根,则k=﹣4或6.【点拨】根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,把增根代入化为整式方程的方程即可求出k的值.【解析】解:方程两边都乘(x+1)(x﹣1),得2(x+1)+kx=3(x﹣1),即(k﹣1)x=﹣5,∵最简公分母为(x+1)(x﹣1),∴原方程增根为x=±1,∴把x=1代入整式方程,得k=﹣4.把x=﹣1代入整式方程,得k=6.综上可知k=﹣4或6.故答案为:﹣4或6。
2019年数学中考真题知识点汇编09--分式方程及其应用(含解析)
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】一、选择题6.(2019·苏州) 小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完)已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本.设软面笔记本每本售价为x 元,根据题意可列出的方程为 ( )A .15243x x =+ B .15243x x =- C .15243x x =+ D .15243x x=- 【答案】A【解析】“小明5.(2019·株洲)关于x 的分式方程2503x x -=-的解为( ) A .﹣3 B .﹣2 C .2 D .3 【答案】B【解析】解分式方程,去分母,化分式方程为整式方程,方程两边同时乘以x(x-3)得, 2(x-3)-5x=0,解得,x=-2,所以答案为B 。
4.(2019·益阳)解分式方程321212=-+-xx x 时,去分母化为一元一次方程,正确的是( ) A.x+2=3 B.x-2=3 C.x-2=3(2x-1) D.x+2=3(2x-1) 【答案】C【解析】两边同时乘以(2x-1),得x-2=3(2x-1) .故选C.1. (2019·济宁)世界文化遗产“三孔”景区已经完成5G 幕站布设,“孔夫子家”自此有了5G 网络.5G 网络峰值速率为4G 网络峰值速率的10倍,在峰值速率下传输500兆数据,5G 网络比4G 网络快45秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是( ) A .5005004510x x -= B .5005004510x x -= C .500050045x x -= D .500500045x x-= 【答案】A【解析】由题意知:设4G 网络的峰值速率为每秒传输x 兆数据,则5G 网络的峰值速率为每秒传输10x 兆数据,4G 传输500兆数据用的时间是500x ,5G 传输500兆数据用的时间是50010x,5G 网络比4G 网络快45秒,所以5005004510x x-=.2. (2019·淄博)解分式方程11222x x x-=---时,去分母变形正确的是( ) A .112(2)x x -+=--- B .112(2)x x -=--C .112(2)x x -+=+-D .112(2)x x -=---【答案】D .【解析】方程两边同乘以x -2,得112(2)x x -=---,故选D .二、填空题 11.(2019·江西)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的班马线路段A-B-C 横穿双向行驶车道,其中AB =BC =6米,在绿灯亮时,小明共用11秒通过AC ,其中通过BC 的速度是通过AB 速度的1.2倍,求小明通过AB 时的速度.设小明通过AB 时的速度是x 米/秒,根据题意列方程得: .【答案】112.166=+xx 【解析】设小明通过AB 时的速度是x 米/秒,则通过BC 的速度是通1.2x 米/秒,根据题意列方程得112.166=+xx .1. (2019·岳阳)分式方程121x x =+的解为x = . 【答案】1【解析】去分母,得:x +1=2x ,解得x =1,经检验x =1是原方程的解.2. (2019·滨州)方程+1=的解是____________.【答案】x=1【解析】去分母,得x -3+x -2=-3,解得x=1.当x=1时,x -2=-1,所以x=1是分式方程的解.3. (2019·巴中)若关于x 的分式方程2222xmm x x有增根,则m 的值为________.【答案】1【解析】解原分式方程,去分母得:x -2m =2m(x -2),若原分式方程有增根,则x =2,将其代入这个一元一次方程,得2-2m =2m(2-2),解之得,m =1.4. (2019·凉山)方程1121122=-+--xx x 解是 . 【答案】x =-2【解析】原方程可化为1)1)(1(2112=-+---x x x x ,去分母得(2x -1)(x +1)-2=(x +1)(x -1),解得x 1=1,x 2=-2,经检验x 1=1是增根,x 2=-2是原方程的解,∴原方程的解为x =-2.故答案为x =-2.11.(2019·淮安)方程121=+x 的解是 . 【答案】-1【解析】两边同时乘以(x+2),得x+2=1,解得x=-1.5. (2019·重庆B 卷)某磨具厂共有六个生产车间,第一、二、三、四车间每天生产相同数量的产品,第五、六车间每天生产的产品数量分别是第一车间每天生产的产品数量的34 和83.甲、乙两组检验员进驻该厂进行产品检验.在同时开始检验产品时,每个车间原有成品一样多,检验期间各车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是 【答案】1819【解析】设第一车间每天生产的产品数量为12m ,则第五、六车间每天生产的产品数量分别9m 、32m; 设甲、乙两组检验员的人数分别为x ,y 人;检查前每个车间原有成品为n.∵甲组6天时间将第一、二、三车间所有成品同时检验完 ∴每个甲检验员的速度=1212126m m m n n nx6()+++++∵乙组先用2天将第四、五车间的所有成品同时检验完∴每个乙检验员的速度=1292m m n ny2()+++∵乙再用了4天检验完第六车间的所有成品∴每个乙检验员的速度=324m ny6⨯+∵每个检验员的检验速度一样∴1212122(129)632624m m m n n n m m n n m nx y y 6()++++++++⨯+==∴1819x y =.三、解答题19.(2019山东省德州市,19,8)先化简,再求值:(﹣)÷(﹣)•(++2),其中+(n ﹣3)2=0.【解题过程】(﹣)÷(﹣)•(++2)=÷•=••=﹣.∵+(n ﹣3)2=0.∴m +1=0,n ﹣3=0,∴m =﹣1,n =3.∴﹣=﹣=.∴原式的值为.18.(2019·遂宁)先化简,再求值ba a ab a b a b ab a +--÷-+-2222222 ,其中a,b 满足01)22=++-b a ( 解:b a a b a a b a b a b a +--÷-+-=2)())(2)((原式=b a b a b a b a +--⨯+-21=b a +-1∵01)22=++-b a (∴a=2,b=-1,∴原式=-117.(2)(2019·泰州,17题,8分)【解题过程】去分母:2x -5+3(x -2)=3x -3,去括号:2x -5+3x -6=3x -3,移项,合并:2x =8,系数化为1:x =4,经检验,x =4是原分式方程的解.21.(2019山东滨州,21,10分)先化简,再求值:(-)÷,其中x 是不等式组的整数解.【解题过程】 解:原式=[-]•=•=,………………………………………………………………………………5分解不等式组,得1≤x <3,…………………………………………………………7分 则不等式组的整数解为1、2.……………………………………………………8分 当x=1时,原式无意义;…………………………………………………………9分 当x =2,∴原式=.……………………………………………………………10分17. (2)(2019·温州)224133x x x x x+-++. 【解题过程】原式=24-13x x x ++=233x x x ++=3(3)x x x ++=1x .19.(2019山东威海,19,7)列方程解应用题小明和小刚约定周末到某体育公园去打羽毛球.他们到体育公园的距离分别是1200米,300米.小刚骑自行车的速度是小明步行速度的3倍,若二人同时到达,则小明需提前4分钟出发,求小明和小刚两人的速度. 【解题过程】设小明的速度为x 米/分钟,则小刚的速度为3x 米/分钟, 根据题意,得, 解得x =50经检验,得x =50是分式方程的解, 所以,3x =150.答:小明和小刚两人的速度分别是50x 米/分钟,小刚的速度为150米/分钟. 20.(2019山东省青岛市,20,8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天. (1)求甲、乙两人每天各加工多少个这种零件(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲加工了多少天? 【解题过程】解:(1)设乙每天加工x 个零件,则甲每天加工1.5x 个零件,由题意得:60060051.5x x=+ 化简得600 1.56005 1.5x ⨯=+⨯ 解得40x = 1.560x ∴=经检验,40x =是分式方程的解且符合实际意义. 答:甲每天加工60个零件,乙每天加工,40个零件. (2)设甲加工了x 天,乙加工了y 天,则由题意得 604030001501207800x y x y +=⎧⎨+⎩①② 由①得75 1.5y x =-③将③代入②得150120(75 1.5)7800x x +- 解得40x ,答:甲至少加工了40天. 24.(2019·衡阳)某商店购进A 、B 两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等. (1)求购买一个A 商品和一个B 商品各需多少元:(2)商店准备购买A 、B 两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A 、B 商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?1000300043x x-=解:(1)设买一个B 商品为x 元,则买一个A 商品为(x +10)元,则30010010x x=+,解得x =5元.所以买一个A 商品为需要15元,买一个B 商品需要5元. (2)设买A 商品为y 个,则买B 商品(80-y ) 由题意得4(80)1000155(80)1050y y y y ≥-⎧⎨≤+-≤⎩,解得64≤y ≤65;所以两种方案:①买A 商品64个,B 商品16个 ;②买A 商品65个,B 商品15个.20.(2019·黄冈)为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(l )班、其他班步行的平均速度. 【解题过程】1. (2019·自贡)解方程:xx−1−2x =1. 解:方程两边乘以x (x -1)得, x 2-2(x -1)=x (x -1) 解得,x =2.检验:当x =2时,x (x -1)≠0, ∴x =2是原分式方程的解. ∴原分式方程的解为x =2.2. (2019·眉山) 在我市“青山绿水”行动中,某社区计划对面积为3600m 2的区域进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,如果两队各自独立完成面积为600m 2区域的绿化时,甲队比乙队少用6天. (1)求甲、乙两工程队每天各能完成多少面积的绿化;(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用为0.5万元,社区要使这次绿化的总费用不超过40万元,则至少应安排乙工程队绿化多少天?解:(1)设乙队每天能完成的绿化面积为xm 2,则甲队每天能完成的绿化面积为2xm 2,根据题意,得:60060062x x-=,解得:x=50,经检验,x=50是原方程的解,∴2x=100. 答:甲队每天能完成的绿化面积为100m 2,乙队每天能完成的绿化面积为50m 2.(2)设甲工程队施工a 天,乙工程队施工b 天刚好完成绿化任务.由题意得:100a+50b=3600,则a=722b-=1362b -+,根据题意,得:1.2×722b-+0.5b ≤40,解得:b ≥32.答:至少应安排乙工程队绿化32天.3. (2019·乐山)如图,点A 、B 在数轴上,它们对应的数分别为2-,1+x x,且点A 、B 到原点的距离相等.求x 的值.解:根据题意得:21=+x x, 去分母,得)1(2+=x x , 去括号,得22+=x x ,解得2-=x经检验,2-=x 是原方程的解.4. (2019·达州) 端午节前后,张阿姨两次到超市购买同一种粽子, 节前,按标价购买,用了96元;节后,按标价的6折购买,用了72元,两次一共购买了27个,这种粽子的标价是多少? 解:设粽子的标价是x 元,则节后价格为0.6x, 根据题意得:276.07296=+x x ,57.6+72=16.2x,x=8,经检验:x=8是原分式方程的解,且符合题意. 答:这种粽子的标价是8元.5. (2019·巴中)在”扶贫攻坚”活动中,某单位计划选购甲,乙两种物品慰问贫困户,已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同. ①请问甲,乙两种物品的单价各为多少?②如果该单位计划购买甲,乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?解:(1)设甲物品x 元,则乙物品单价为(x -10)元,根据题意得:50045010x x ,解之,得x =100,经检验,x =100是原分式方程的解,所以x -10=90,答:甲物品单价为100元,乙物品单价为90元.(2)设购买甲种物品a 件,则购买乙种物品(55-a)件,根据题意得5000≤100a+90(55-a)≤5050,解之,得5≤a ≤10,因为a 是整数,所以a 可取的值有6个,故共有6种选购方案.6.(2019·泰安)端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A,B 两种粽子1100个,购买A 种粽子与购买B 种粽子的费用相同.已知A 种粽子的单价是B 种粽子单价的1.2倍. (1)求A,B 两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A,B 两种粽子共2600个,已知A,B 两种粽子的进价不变.求A 种粽子最多能购进多少个?BA解:(1)设B 种粽子单价为x 元,则A 种粽子单价为1.2x 元,购买A 种粽子与购买B 种粽子的费用相同,共花费3000元,故两种粽子都花费1500元,根据题意得:1500150011001.2x x+=,解之,得x =2.5,经检验,x =2.5是原分式方程的解,∴1.2x =3,答:A 种粽子单价为3元,B 种粽子单价为2.5元;(2)设购进A 种粽子y 个,则购进B 种粽子(2600-y)个,根据题意得:3y+2.5(2600-y)≤7000,解之,得:y ≤1000,∴y 的最大值为1000,故A 种粽子最多能购进1000个.7. (2019·无锡)解方程:(2)1421+=-x x .解:去分母得x +1=4(x -2),解得 x =3,经检验 x = 3是方程的解.。
分式方程中的参数大揭秘
x
ax +
1
=
3
-
x
3 +
1 只有一解?
解 原方程可化为整式方程
( a + 3)x2 - 2x - 2 = 0.
¹
( 1 ) 当 a + 3 = 0, 即 a = - 3时,
- 2x - 2 = 0, x = - 1, 这使原方程分母为 0,
_ a X - 3.
( 2 ) 当 a + 3 X 0, 即 a X - 3时, 方程 ¹ 为 关于 x 的一元二次方程.
解 原方程去分母整理得
2x2 = m + 1.
¹
因为原方程的增根可能是 x = 0或 x = 1,
把 x = 0 代入方程 ¹ 得 m = - 1,
# 27#
初中数学教与学
把 x = 1代入方程 ¹ 中得 m = 1, 所以 m = ? 1.
三、参数使方程只有一解
例 4 a 为 何 值 时, 关 于 x 的 方 程 2 x
x=
1 2
,
这不是原方程的增根,
_ k = 0符合题意;
( 2 ) 当 k X 0时, 方程 ¹ 为关于 x 的一元
二次方程.
( i) 如果方程 ¹ 没有实数根, 也就不会使
原 方程产生增根, 由 $ = ( 3k - 2) 2 + 4k < 0得
k无实数值.
( ii) 如果方程 ¹ 有实数 根, 就 得舍去 使
¹ 得 a = - 1, 这满足 ¾. 再把 a = - 1代入方
程 ¹ 中得 x = - 1 或 x = - 2.
这时 x = - 1为原方程增根; x = - 2为原
方程的解, 且在 - 3与 3之间.
中考数学压轴题揭秘-分式方程及应用(Word版+答案)
分式方程及应用【考点1】解分式方程【例1】(2019•上海)解方程: 1【变式1-1】(2019•宁夏)解方程:1.【变式1-2】(2019•广安)解分式方程:1.【考点2】已知分式方程的解,求字母参数的值【例2】(2019•株洲)关于x的分式方程解为x=4,则常数a的值为()A.a=1 B.a=2 C.a=4 D.a=10【变式2-1】(2019•张家界)若关于x的分式方程1的解为x=2,则m的值为()A.5 B.4 C.3 D.2【考点3】分式方程的特殊解问题【例3】(2019•鸡西)已知关于x的分式方程1的解是非正数,则m的取值范围是()A.m≤3 B.m<3 C.m>﹣3 D.m≥﹣3【变式3-1】(2019•荆州)已知关于x的分式方程2的解为正数,则k的取值范围为()A.﹣2<k<0 B.k>﹣2且k≠﹣1 C.k>﹣2 D.k<2且k≠1【变式3-2】(2019•齐齐哈尔)关于x的分式方程3的解为非负数,则a的取值范围为.【考点4】分式方程的无解(增根)问题【例4】(2019•烟台)若关于x的分式方程1有增根,则m的值为.【变式4-1】(2019•巴中)若关于x的分式方程2m有增根,则m的值为.【考点5】分式方程的应用问题【例5】(2019•丹东)甲、乙两同学的家与某科技馆的距离均为4000m.甲、乙两人同时从家出发去科技馆,甲同学先步行800m,然后乘公交车,乙同学骑自行车.已知乙骑自行车的速度是甲步行速度的4倍,公交车的速度是乙骑自行车速度的2倍,结果甲同学比乙同学晚到2.5min.求乙到达科技馆时,甲离科技馆还有多远.【变式5-1】(2019•铁岭)某超市用1200元购进一批甲玩具,用800元购进一批乙玩具,所购甲玩具件数是乙玩具件数的,已知甲玩具的进货单价比乙玩具的进货单价多1元.(1)求:甲、乙玩具的进货单价各是多少元?(2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变),购进乙玩具的件数比甲玩具件数的2倍多60件,求:该超市用不超过2100元最多可以采购甲玩具多少件?【变式5-2】(2019•南通)列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”.为传承优秀传统文化,某校购进《西游记》和《三国演义》若干套,其中每套《西游记》的价格比每套《三国演义》的价格多40元,用3200元购买《三国演义》的套数是用2400元购买《西游记》套数的2倍,求每套《三国演义》的价格.1.(2019•海南)分式方程1的解是()A.x=1 B.x=﹣1 C.x=2 D.x=﹣22.(2019•益阳)解分式方程3时,去分母化为一元一次方程,正确的是()A.x+2=3 B.x﹣2=3C.x﹣2=3(2x﹣1)D.x+2=3(2x﹣1)3.(2019•遂宁)关于x的方程1的解为正数,则k的取值范围是()A.k>﹣4 B.k<4 C.k>﹣4且k≠4 D.k<4且k≠﹣4 4.(2019•重庆)若关于x的一元一次不等式组的解集是x≤a,且关于y的分式方程1有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.6.5.(2018•阿坝州)若x=4是分式方程的根,则a的值为()A.6 B.﹣6 C.4 D.﹣46.(2018•巴中)若分式方程有增根,则实数a的取值是()A.0或2 B.4 C.8 D.4或87.(2019•鞍山)为了美化校园环境,某中学今年春季购买了A,B两种树苗在校园四周栽种,已知A种树苗的单价比B种树苗的单价多10元,用600元购买A种树苗的棵数恰好与用450元购买B种树苗的棵数相同.若设A种树苗的单价为x元,则可列出关于x的方程为.8.(2019•永州)方程的解为x=.9.(2019•锦州)甲、乙两地相距1000km,如果乘高铁列车从甲地到乙地比乘特快列车少用3h,已知高铁列车的平均速度是特快列车的1.6倍,设特快列车的平均速度为xkm/h,根据题意可列方程为.10.(2019•铜仁市)分式方程的解为y=.11.(2019•襄阳)定义:a*b,则方程2*(x+3)=1*(2x)的解为.12.(2019•宿迁)关于x的分式方程1的解为正数,则a的取值范围是.13.(2018•齐齐哈尔)若关于x的方程无解,则m的值为.14.(2019•随州)解关于x的分式方程:.15.(2019•朝阳)佳佳文具店购进A,B两种款式的笔袋,其中A种笔袋的单价比B种袋的单价低10%.已知店主购进A种笔袋用了810元,购进B种笔袋用了600元,且所购进的A种笔袋的数量比B种笔袋多20个.请问:文具店购进A,B两种款式的笔袋各多少个?16.(2019•西藏)列方程(组)解应用题绿水青山就是金山银山,为了创造良好的生态环境,防止水土流失,某村计划在荒坡上种树600棵,由于青年志愿者支援,实际每天种树的棵树是原计划的2倍,结果提前4天完成任务,则原计划每天种树多少棵?17.(2019•沈阳)2019年3月12日是第41个植树节,某单位积极开展植树活动,决定购买甲、乙两种树苗,用800元购买甲种树苗的棵数与用680元购买乙种树苗的棵数相同,乙种树苗每棵比甲种树苗每棵少6元.(1)求甲种树苗每棵多少元?(2)若准备用3800元购买甲、乙两种树苗共100棵,则至少要购买乙种树苗多少棵?18.(2019•云南)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.19.(2019•柳州)小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,已知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同.(1)求大本作业本与小本作业本每本各多少元?(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元.则大本作业本最多能购买多少本?20.(2019•郴州)某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?分式方程及应用【考点1】解分式方程【例1】(2019•上海)解方程: 1【答案】x=﹣4【解析】去分母得:2x2﹣8=x2﹣2x,即x2+2x﹣8=0,分解因式得:(x﹣2)(x+4)=0,解得:x=2或x=﹣4,经检验x=2是增根,分式方程的解为x=﹣4.点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.【变式1-1】(2019•宁夏)解方程:1.【答案】x=4【解析】1,方程两边同时乘以(x+2)(x﹣1),得2(x﹣1)+(x+2)(x﹣1)=x(x+2),∴x=4,经检验x=4是方程的解;∴方程的解为x=4;点睛:本题考查分式方程的解;掌握分式方程的求解方法,验根是关键.【变式1-2】(2019•广安)解分式方程:1.【答案】x=4【解析】1,方程两边乘(x﹣2)2得:x(x﹣2)﹣(x﹣2)2=4,解得:x=4,检验:当x=4时,(x﹣2)2≠0.所以原方程的解为x=4.点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.【考点2】已知分式方程的解,求字母参数的值【例2】(2019•株洲)关于x的分式方程解为x=4,则常数a的值为()A.a=1 B.a=2 C.a=4 D.a=10【答案】D【解析】把x=4代入方程,得0,解得a=10.故选:D.点睛:此题考查了分式方程的解,分式方程注意分母不能为0.【变式2-1】(2019•张家界)若关于x的分式方程1的解为x=2,则m的值为()A.5 B.4 C.3 D.2【答案】B【解析】∵关于x的分式方程1的解为x=2,∴x=m﹣2=2,解得:m=4.故选:B.点睛:此题主要考查了分式方程的解,正确解方程是解题关键.【考点3】分式方程的特殊解问题【例3】(2019•鸡西)已知关于x的分式方程1的解是非正数,则m的取值范围是()A.m≤3 B.m<3 C.m>﹣3 D.m≥﹣3【答案】A【解析】1,方程两边同乘以x﹣3,得2x﹣m=x﹣3,移项及合并同类项,得x=m﹣3,∵分式方程1的解是非正数,x﹣3≠0,∴,解得,m≤3,故选:A.点睛:本题考查分式方程的解、解一元一次不等式,解答本题的关键是明确解分式方程的方法.【变式3-1】(2019•荆州)已知关于x的分式方程2的解为正数,则k的取值范围为()A.﹣2<k<0 B.k>﹣2且k≠﹣1 C.k>﹣2 D.k<2且k≠1【答案】B【解析】∵2,∴2,∴x=2+k,∵该分式方程有解,∴2+k≠1,∴k≠﹣1,∵x>0,∴2+k>0,∴k>﹣2,∴k>﹣2且k≠﹣1,故选:B.点睛:本题考查分式方程的解法,解题的关键是熟练运用分式方程的解法,本题属于基础题型.【变式3-2】(2019•齐齐哈尔)关于x的分式方程3的解为非负数,则a的取值范围为.【答案】a≤4且a≠3【解析】3,方程两边同乘以x﹣1,得2x﹣a+1=3(x﹣1),2x﹣a+1=3x﹣3,移项及合并同类项,得x=4﹣a,∵关于x的分式方程3的解为非负数,x﹣1≠0,∴,解得,a≤4且a≠3,故答案为:a≤4且a≠3.点睛:本题考查分式方程的解、解一元一次不等式,解答本题的关键是明确解分式方程的方法.【考点4】分式方程的无解(增根)问题【例4】(2019•烟台)若关于x的分式方程1有增根,则m的值为.【解析】.方程两边都乘(x﹣2),得3x﹣x+2=m+3∵原方程有增根,∴最简公分母(x﹣2)=0,解得x=2,当x=2时,m=3.故答案为3.点睛:本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.【变式4-1】(2019•巴中)若关于x的分式方程2m有增根,则m的值为.【答案】1【解析】方程两边都乘x﹣2,得x﹣2m=2m(x﹣2)∵原方程有增根,∴最简公分母x﹣2=0,解得x=2,当x=2时,m=1故m的值是1,点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.【考点5】分式方程的应用问题【例5】(2019•丹东)甲、乙两同学的家与某科技馆的距离均为4000m.甲、乙两人同时从家出发去科技馆,甲同学先步行800m,然后乘公交车,乙同学骑自行车.已知乙骑自行车的速度是甲步行速度的4倍,公交车的速度是乙骑自行车速度的2倍,结果甲同学比乙同学晚到2.5min.求乙到达科技馆时,甲离科技馆还有多远.【答案】乙到达科技馆时,甲离科技馆还有1600m【解析】(1)设甲步行的速度为x米/分,则乙骑自行车的速度为4x米/分,公交车的速度是8x米/分钟,根据题意得 2.5,解得x=80.经检验,x=80是原分式方程的解.所以2.5×8×80=1600(m)答:乙到达科技馆时,甲离科技馆还有1600m.点睛:本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.【变式5-1】(2019•铁岭)某超市用1200元购进一批甲玩具,用800元购进一批乙玩具,所购甲玩具件数是乙玩具件数的,已知甲玩具的进货单价比乙玩具的进货单价多1元.(1)求:甲、乙玩具的进货单价各是多少元?(2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变),购进乙玩具的件数比甲玩具件数的2倍多60件,求:该超市用不超过2100元最多可以采购甲玩具多少件?【解析】(1)设甲种玩具的进货单价为x元,则乙种玩具的进价为(x﹣1)元,根据题意得:,解得:x=6,经检验,x=6是原方程的解,∴x﹣1=5.答:甲种玩具的进货单价6元,则乙种玩具的进价为5元.(2)设购进甲种玩具y件,则购进乙种玩具(2y+60)件,根据题意得:6y+5(2y+60)≤2100,解得:y≤112,∵y为整数,∴y最大值=112答:该超市用不超过2100元最多可以采购甲玩具112件.点睛:本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.【变式5-2】(2019•南通)列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”.为传承优秀传统文化,某校购进《西游记》和《三国演义》若干套,其中每套《西游记》的价格比每套《三国演义》的价格多40元,用3200元购买《三国演义》的套数是用2400元购买《西游记》套数的2倍,求每套《三国演义》的价格.【答案】每套《三国演义》的价格为80元【解析】设每套《三国演义》的价格为x元,则每套《西游记》的价格为(x+40)元,依题意,得:2,解得:x=80,经检验,x=80是所列分式方程的解,且符合题意.答:每套《三国演义》的价格为80元.点睛:.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.1.(2019•海南)分式方程1的解是()A.x=1 B.x=﹣1 C.x=2 D.x=﹣2【答案】B【解析】1,两侧同时乘以(x+2),可得x+2=1,解得x=﹣1;经检验x=﹣1是原方程的根;故选:B.点睛:本题考查分式方程的解法;熟练掌握分式方程的方法是解题的关键.2.(2019•益阳)解分式方程3时,去分母化为一元一次方程,正确的是()A.x+2=3 B.x﹣2=3C.x﹣2=3(2x﹣1)D.x+2=3(2x﹣1)【答案】C【解析】方程两边都乘以(2x﹣1),得x﹣2=3(2x﹣1),故选:C.点睛:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.3.(2019•遂宁)关于x的方程1的解为正数,则k的取值范围是()A.k>﹣4 B.k<4 C.k>﹣4且k≠4 D.k<4且k≠﹣4【答案】C【解析】分式方程去分母得:k﹣(2x﹣4)=2x,解得:x,根据题意得:0,且2,解得:k>﹣4,且k≠4.故选:C.点睛:此题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为0.4.(2019•重庆)若关于x的一元一次不等式组的解集是x≤a,且关于y的分式方程1有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.6【答案】B【解析】由不等式组得:∵解集是x≤a,∴a<5;由关于y的分式方程1得2y﹣a+y﹣4=y﹣1∴y,∵有非负整数解,∴0,∴5>a≥﹣3,且a=﹣3,a=﹣1(舍,此时分式方程为增根),a=1,a=3它们的和为1.故选:B.点睛:本题综合考查了含参一元一次不等式,含参分式方程得问题,需要考虑的因素较多,属于易错题.5.(2018•阿坝州)若x=4是分式方程的根,则a的值为()A.6 B.﹣6 C.4 D.﹣4【答案】A【解析】将x=4代入分式方程可得:,化简得1,解得a=6.故选:A.点睛:本题主要考查分式方程及其解法.注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.6.(2018•巴中)若分式方程有增根,则实数a的取值是()A.0或2 B.4 C.8 D.4或8【答案】D【解析】方程两边同乘x(x﹣2),得3x﹣a+x=2(x﹣2),由题意得,分式方程的增根为0或2,当x=0时,﹣a=﹣4,解得,a=4,当x=2时,6﹣a+2=0,解得,a=8,故选:D.点睛:本题考查的是分式方程的增根,增根的定义:在分式方程变形时,有可能产生不适合原方程的根,即代入分式方程后分母的值为0或是转化后的整式方程的根恰好是原方程未知数的允许值之外的值的根,叫做原方程的增根.7.(2019•鞍山)为了美化校园环境,某中学今年春季购买了A,B两种树苗在校园四周栽种,已知A种树苗的单价比B种树苗的单价多10元,用600元购买A种树苗的棵数恰好与用450元购买B种树苗的棵数相同.若设A种树苗的单价为x元,则可列出关于x的方程为.【答案】.【解析】设A种树苗的单价为x元,则B种树苗的单价为(x﹣10)元,所以用600元购买A种树苗的棵数是,用450元购买B种树苗的棵数是.由题意,得.故答案是:.点睛:考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.8.(2019•永州)方程的解为x=.【答案】﹣1【解析】去分母得:2x=x﹣1,解得:x=﹣1,经检验x=﹣1是分式方程的解,故答案为:﹣1点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.9.(2019•锦州)甲、乙两地相距1000km,如果乘高铁列车从甲地到乙地比乘特快列车少用3h,已知高铁列车的平均速度是特快列车的1.6倍,设特快列车的平均速度为xkm/h,根据题意可列方程为.【答案】【解析】由题意可得,,故答案为:.点睛:本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.10.(2019•铜仁市)分式方程的解为y=.【答案】-3【解析】去分母得:5y=3y﹣6,解得:y=﹣3,经检验y=﹣3是分式方程的解,则分式方程的解为y=﹣3.故答案为:﹣3点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.11.(2019•襄阳)定义:a*b,则方程2*(x+3)=1*(2x)的解为.【答案】x=1【解析】2*(x+3)=1*(2x),,4x=x+3,x=1,经检验:x=1是原方程的解,故答案为:x=1.点睛:本题考查了解分式方程和新定义的理解,熟练掌握解分式方程的步骤是关键.12.(2019•宿迁)关于x的分式方程1的解为正数,则a的取值范围是.【答案】a<5且a≠3【解析】去分母得:1﹣a+2=x﹣2,解得:x=5﹣a,5﹣a>0,解得:a<5,当x=5﹣a=2时,a=3不合题意,故a<5且a≠3.故答案为:a<5且a≠3.点睛:此题主要考查了分式方程的解,注意分式的解是否有意义是解题关键.13.(2018•齐齐哈尔)若关于x的方程无解,则m的值为.【答案】﹣1或5或.【解析】去分母得:x+4+m(x﹣4)=m+3,可得:(m+1)x=5m﹣1,当m+1=0时,一元一次方程无解,此时m=﹣1,当m+1≠0时,则x±4,解得:m=5或,综上所述:m=﹣1或5或,故答案为:﹣1或5或.点睛:此题主要考查了分式方程的解,正确分类讨论是解题关键.14.(2019•随州)解关于x的分式方程:.【答案】x是分式方程的解【解析】去分母得:27﹣9x=18+6x,移项合并得:15x=9,解得:x,经检验x是分式方程的解.点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.15.(2019•朝阳)佳佳文具店购进A,B两种款式的笔袋,其中A种笔袋的单价比B种袋的单价低10%.已知店主购进A种笔袋用了810元,购进B种笔袋用了600元,且所购进的A种笔袋的数量比B种笔袋多20个.请问:文具店购进A,B两种款式的笔袋各多少个?【答案】文具店购进A种款式的笔袋60个,B种款式的笔袋40个【解析】设文具店购进B种款式的笔袋x个,则购进A种款式的笔袋(x+20)个,依题意,得:(1﹣10%),解得:x=40,经检验,x=40是所列分式方程的解,且符合题意,∴x+20=60.答:文具店购进A种款式的笔袋60个,B种款式的笔袋40个.点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.16.(2019•西藏)列方程(组)解应用题绿水青山就是金山银山,为了创造良好的生态环境,防止水土流失,某村计划在荒坡上种树600棵,由于青年志愿者支援,实际每天种树的棵树是原计划的2倍,结果提前4天完成任务,则原计划每天种树多少棵?【答案】原计划每天种树75棵【解析】设原计划每天种树x棵.由题意,得 4解得,x=75经检验,x=75是原方程的解.答:原计划每天种树75棵.点睛:此题主要考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.工程类问题主要用到公式:工作总量=工作效率×工作时间.17.(2019•沈阳)2019年3月12日是第41个植树节,某单位积极开展植树活动,决定购买甲、乙两种树苗,用800元购买甲种树苗的棵数与用680元购买乙种树苗的棵数相同,乙种树苗每棵比甲种树苗每棵少6元.(1)求甲种树苗每棵多少元?(2)若准备用3800元购买甲、乙两种树苗共100棵,则至少要购买乙种树苗多少棵?【解析】(1)设甲种树苗每棵x元,根据题意得:,解得:x=40,经检验:x=40是原方程的解,答:甲种树苗每棵40元;(2)设购买乙中树苗y棵,根据题意得:40(100﹣y)+34y≤3800,解得:y≥33,∵y是正整数,∴y最小取34,答:至少要购买乙种树苗34棵.点睛:本题考查了分式方程的应用及一元一次不等式的应用,解题的关键是根据题意找到等量关系,难度不大.18.(2019•云南)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.【解析】设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x 千米/小时,由题意得:,解得:x=60,经检验,x=60是所列方程的解,则1.5x=90,答:甲、乙两所学校师生所乘大巴车的平均速度分别为60千米/小时、90千米/小时.点睛:本题主要考查分式方程的应用,解题的关键是理解题意,找到题目中蕴含的相等关系,并依据相等关系列出方程.19.(2019•柳州)小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,已知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同.(1)求大本作业本与小本作业本每本各多少元?(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元.则大本作业本最多能购买多少本?【解析】(1)设小本作业本每本x元,则大本作业本每本(x+0.3)元,依题意,得:,解得:x=0.5,经检验,x=0.5是原方程的解,且符合题意,∴x+0.3=0.8.答:大本作业本每本0.8元,小本作业本每本0.5元.(2)设大本作业本购买m本,则小本作业本购买2m本,依题意,得:0.8m+0.5×2m≤15,解得:m.∵m为正整数,∴m的最大值为8.答:大本作业本最多能购买8本.点睛:本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.20.(2019•郴州)某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?【解析】(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,依题意,得:,解得:x=6,经检验,x=6是原方程的解,且符合题意,∴x+2=8.答:每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件.(2)设A型机器安排m台,则B型机器安排(10﹣m)台,依题意,得:,解得:6≤m≤8.∵m为正整数,∴m=6,7,8.答:共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.点睛:本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.。
重难点 含参类方程与不等式问题 中考数学复习
重难点突破 含参类方程与不等式问题目 录题型01 根据分式方程解的情况求字母的值或取值范围题型02 整式方程(组)与一元一次不等式组结合求参数的问题题型03 同解方程组题型04 根据二元一次方程组解满足的情况求参数题型05 二元一次方程组整数解问题题型06 利用相反数求二元一次方程组参数题型07 已知方程的解求参数题型08 根据一元二次方程根的情况求参数题型09 根据一元一次不等式组的整数解求参数的取值范围题型10 根据一元一次不等式组的解集的情况求参数的取值范围题型11整式方程(组)与一元一次不等式结合求参数的问题题型01 根据分式方程解的情况求字母的值或取值范围1.(2023·山东淄博·中考真题)已知x =1是方程m2−x −1x−2=3的解,那么实数m 的值为( )A .−2B .2C .−4D .42.(2023·黑龙江牡丹江·中考真题)若分式方程ax +2=1−3x +2的解为负数,则a 的取值范围是( )A .a <−1且a ≠−2B .a <0且a ≠−2C .a <−2且a ≠−3D .a <−1且a ≠−33.(2023·山东日照·中考真题)若关于x 的方程xx−1−2=3m2x−2解为正数,则m 的取值范围是( )A .m >−23B .m <43C .m >−23且m ≠0D .m <43且m ≠234.(2023·四川巴中·中考真题)关于x 的分式方程x +mx−2+12−x =3有增根,则m = .5.(2020·黑龙江牡丹江·中考真题)若关于x 的分式方程2x−1=mx 有正整数解,则整数m 的值是( )A .3B .5C .3或5D .3或4题型02 整式方程(组)与一元一次不等式组结合求参数的问题6.(2020·重庆·中考真题)若关于xx +3≤a的解集为x ≤a ;且关于y 的分式方程y−a y−2+3y−4y−2=1有正整数解,则所有满足条件的整数a 的值之积是( )A .7B .-14C .28D .-567.(2023·重庆·中考真题)若关于x 的一元一次不等式组x +32≤42x−a ≥2,至少有2个整数解,且关于y 的分式方程a−1y−2+42−y =2有非负整数解,则所有满足条件的整数a 的值之和是 .8.(2024·重庆·模拟预测)已知关于x 的一元一次不等式组2(3−x )+1<−xx +a−2<0有解且最多5个整数解,且关于y 的分式方程y +ay−3−3=43−y 的解为正整数,则满足条件的所有整数a 的和为 .9.(2024·重庆开州·二模)若关于x 的方程x +22−x+ax x−2=−2有正整数解,且关于y 的不等式组2y−43<22a−y−1≤0至少有两个整数解,则符合条件的所有整数a 的和为 .10.(2024·四川成都·模拟预测)若整数a 使得关于x 的分式方程ax−122−x+3=xx−2有整数解,且使得二次函数y =(a−2)x 2+2(a−1)x +a +1的值恒为非负数,则所有满足条件的整数a 的值之和是.题型03 同解方程组11.(2020·广东·中考真题)已知关于x,y的方程组ax+23y=−103x+y=4与x−y=2x+by=15的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为26,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.12.(2021·广东·二模)解关于x、y的方程组时,小明发现方程组ax+by=2x−y=8的解和方程组5x+2y=b2x+3y=−9的解相同.(1)求方程组的解;(2)求关于t的方程(at﹣b)2+2(at﹣b)﹣3=0的解.题型04 根据二元一次方程组解满足的情况求参数13.(2023·四川眉山·中考真题)已知关于x,y的二元一次方程组3x−y=4m+1x+y=2m−5的解满足x−y=4,则m 的值为()A.0B.1C.2D.314.(2022·山东聊城·中考真题)关于x,y的方程组2x−y=2k−3x−2y=k的解中x与y的和不小于5,则k的取值范围为()A.k≥8B.k>8C.k≤8D.k<815.(2023·四川泸州·中考真题)关于x,y的二元一次方程组2x+3y=3+ax+2y=6的解满足x+y>22,写出a的一个整数值.16.(2024·浙江宁波·模拟预测)若关于x,y的方程组2x−y=5kx+y=4k+3的解满足x−y≤5,则k的取值范围是.题型05 二元一次方程组整数解问题17.(2022·广东揭阳·模拟预测)如果关于x,y的方程组4x−3y=66x+my=26的解是整数,那么整数m的值为( )A.4,−4,−5,13B.4,−4,−5,−13C.4,−4,5,13D.−4,5,−5,1318.(23-24八年级上·重庆沙坪坝·期末)关于x,y的二元一次方程组kx+y=43x+y=0的解为整数,关于z的不等式组3z>z−44z−2k−13≤1有且仅有2个整数解,则所有满足条件的整数k的和为( )A.6B.7C.11D.1219.(22-23七年级下·重庆·阶段练习)已知关于x,y的二元一次方程组ax+2y=612x−y=1的解为整数,且关于z的方程z−a2−z3=1的解为非负数,求满足条件的所有整数a的和为()A.2B.4C.9D.11题型06 利用相反数求二元一次方程组参数20.(2022·四川南充·二模)已知x、y满足方程组x+2y=2m−12x+y=5,且x与y互为相反数,则m的值为()A.m=−2B.m=2C.m=−3D.m=321.(2020·浙江杭州·模拟预测)已知关于x,y的方程组3x−5y=2ax−2y=a−5则下列结论中正确的是()①当a=5时,方程组的解是x=10y=20;②当x,y的值互为相反数时,a=20;③当2x⋅2y=212时,a=14;④不存在一个实数a,使得x=y.A.①②④B.①②③C.②③④D.②③22.(2021·内蒙古包头·二模)若满足方程组4x+y=3m+32x−y=m−1的x与y互为相反数,则m的值为()A.2B.−2C.11D.−11题型07 已知方程的解求参数23.(2023·湖南永州·中考真题)关于x的一元一次方程2x+m=5的解为x=1,则m的值为()A.3B.−3C.7D.−724.(2021·浙江金华·中考真题)已知x=2y=m是方程3x+2y=10的一个解,则m的值是.25.(2023·江苏镇江·中考真题)若x=1是关于x的一元二次方程x2+mx−6=0的一个根,则m的值为.26.(2023·四川内江·中考真题)已知a、b是方程x2+3x−4=0的两根,则a2+4a+b−3=.题型08 根据一元二次方程根的情况求参数27.(2023·广东广州·中考真题)已知关于x的方程x2−(2k−2)x+k2−1=0有两个实数根,则(k−1)2−(2−k )2的化简结果是( )A .−1B .1C .−1−2kD .2k−328.(2023·江苏连云港·中考真题)若关于x 的一元二次方程x 2−2x +m =0有两个不相等的实数根,则m 的取值范围是 .29.(2021·四川内江·中考真题)若关于x 的一元二次方程ax 2+4x−2=0有实数根,则a 的取值范围为 .30.(2023·湖北襄阳·中考真题)关于x 的一元二次方程x 2+2x +3−k =0有两个不相等的实数根.(1)求k 的取值范围;(2)若方程的两个根为α,β,且k 2=αβ+3k ,求k 的值.题型09 根据一元一次不等式组的整数解求参数的取值范围31.(2023·广东潮州·二模)如果关于x 的不等式组6x−m ≥05x−n <0的整数解仅为1,2,3,那么适合这个不等式组的整数对(m,n )共有( )A .42对B .36对C .30对D .11对32.(2024·河南安阳·一模)已知不等式组2(x−1)>3x +12x <a,有四个整数解,则a 的取值范围为 .33.(2023·四川宜宾·中考真题)若关于x+1>x +a①1≥52x−9②所有整数解的和为14,则整数a 的值为 .题型10 根据一元一次不等式组的解集的情况求参数的取值范围34.(2023·湖北鄂州·中考真题)已知不等式组x−a >2x +1<b的解集是−1<x <1,则(a +b )2023=( )A .0B .−1C .1D .202335.(2023·湖北黄石·中考真题)若实数a 使关于x 的不等式组−2<x−1<3x−a >0的解集为−1<x <4,则实数a的取值范围为.36.(2023·山东聊城·≥x−23≥x的解集为x ≥m ,则m 的取值范围是 .题型11 整式方程(组)与一元一次不等式结合求参数的问题37.(2022·四川泸州·中考真题)若方程x−3x−2+1=32−x 的解使关于x 的不等式(2−a )x−3>0成立,则实数a 的取值范围是 .38.(2023·四川泸州·一模)已知方程3−a a−4−a =14−a ,且关于x 的不等式a ≤x <b 只有3个整数解,则b 的取值范围是 .39.(2021·湖北荆州·中考真题)已知:a 是不等式5(a−2)+8<6(a−1)+7的最小整数解,请用配方法解关于x 的方程x 2+2ax +a +1=0.40.(2022·江苏苏州·一模)若不等式3x +2≤4x−1的最小整数解是方程23x−13mx =1的解,求m 的值.重难点突破 含参类方程与不等式问题解析目 录题型01 根据分式方程解的情况求字母的值或取值范围题型02 整式方程(组)与一元一次不等式组结合求参数的问题题型03 同解方程组题型04 根据二元一次方程组解满足的情况求参数题型05 二元一次方程组整数解问题题型06 利用相反数求二元一次方程组参数题型07 已知方程的解求参数题型08 根据一元二次方程根的情况求参数题型09 根据一元一次不等式组的整数解求参数的取值范围题型10 根据一元一次不等式组的解集的情况求参数的取值范围题型11整式方程(组)与一元一次不等式结合求参数的问题原创精品资源学科网独家享有版权,侵权必究!题型01 根据分式方程解的情况求字母的值或取值范围1.(2023·山东淄博·中考真题)已知x =1是方程m2−x −1x−2=3的解,那么实数m 的值为( )A .−2B .2C .−4D .4【答案】B 【分析】将x =1代入方程,即可求解.【详解】解:将x =1代入方程,得m2−1−11−2=3解得:m =2故选:B .【点睛】本题考查分式方程的解,解题的关键是将x =1代入原方程中得到关于m 的方程.2.(2023·黑龙江牡丹江·中考真题)若分式方程ax +2=1−3x +2的解为负数,则a 的取值范围是( )A .a <−1且a ≠−2B .a <0且a ≠−2C .a <−2且a ≠−3D .a <−1且a ≠−3【详解】解:去分母得:a =x +2−3,解得:x =a +1,∵分式方程ax +2=1−3x +2的解是负数,∴a +1<0,x +2≠0,即a +1+2≠0,解得:a <−1且a ≠−3,故选:D .【点睛】此题主要考查了分式方程的解,正确解分式方程是解题关键.3.(2023·山东日照·中考真题)若关于x的方程xx−1−2=3m2x−2解为正数,则m的取值范围是()A.m>−23B.m<43C.m>−23且m≠0D.m<43且m≠234.(2023·四川巴中·中考真题)关于x的分式方程x+mx−2+12−x=3有增根,则m=.∴m =2x−5=−1,故答案为:−1.【点睛】本题考查分式方程的知识,解题的关键是掌握分式方程的增根.5.(2020·黑龙江牡丹江·中考真题)若关于x 的分式方程2x−1=mx 有正整数解,则整数m 的值是( )A .3B .5C .3或5D .3或4题型02 整式方程(组)与一元一次不等式组结合求参数的问题6.(2020·重庆·中考真题)若关于x x +3≤a的解集为x ≤a ;且关于y 的分式方程y−a y−2+3y−4y−2=1有正整数解,则所有满足条件的整数a 的值之积是( )A .7B .-14C .28D .-56【答案】A【分析】不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a 的值,求出之和即可.7.(2023·重庆·中考真题)若关于x的一元一次不等式组2≤42x−a≥2,至少有2个整数解,且关于y的分式方程a−1y−2+42−y=2有非负整数解,则所有满足条件的整数a的值之和是.解得:a≥1且a≠5∴a的取值范围是1≤a≤6,且a≠5∴a可以取:1,3,∴1+3=4,故答案为:4.【点睛】本题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解题关键.8.(2024·重庆·模拟预测)已知关于x的一元一次不等式组2(3−x)+1<−xx+a−2<0有解且最多5个整数解,且关于y的分式方程y+ay−3−3=43−y的解为正整数,则满足条件的所有整数a的和为.故答案为:−20.9.(2024·重庆开州·二模)若关于x的方程x+22−x +axx−2=−2有正整数解,且关于y的不等式组2y−43<22a−y−1≤0至少有两个整数解,则符合条件的所有整数a的和为.故答案为:1.10.(2024·四川成都·模拟预测)若整数a使得关于x的分式方程ax−122−x +3=xx−2有整数解,且使得二次函数y=(a−2)x2+2(a−1)x+a+1的值恒为非负数,则所有满足条件的整数a的值之和是.题型03 同解方程组11.(2020·广东·中考真题)已知关于x,y的方程组ax+23y=−103x+y=4与x−y=2x+by=15的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为26,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.12.(2021·广东·二模)解关于x、y的方程组时,小明发现方程组ax+by=2x−y=8的解和方程组5x+2y=b2x+3y=−9的解相同.(1)求方程组的解;(2)求关于t的方程(at﹣b)2+2(at﹣b)﹣3=0的解.题型04 根据二元一次方程组解满足的情况求参数13.(2023·四川眉山·x,y的二元一次方程组3x−y=4m+1x+y=2m−5的解满足x−y=4,则m 的值为()A.0B.1C.2D.3【答案】B【分析】将方程组的两个方程相减,可得到x−y=m+3,代入x−y=4,即可解答.【详解】解:3x−y=4m+1①x+y=2m−5②,①−②得2x−2y=2m+6,∴x−y=m+3,代入x−y=4,可得m+3=4,解得m=1,故选:B.【点睛】本题考查了根据解的情况求参数,熟练利用加减法整理代入是解题的关键.14.(2022·山东聊城·中考真题)关于x,y的方程组2x−y=2k−3x−2y=k的解中x与y的和不小于5,则k的取值范围为()A.k≥8B.k>8C.k≤8D.k<8【答案】A【分析】由两式相减,得到x+y=k−3,再根据x与y 的和不小于5列出不等式即可求解.【详解】解:把两个方程相减,可得x+y=k−3,根据题意得:k−3≥5,解得:k≥8.所以k的取值范围是k≥8.故选:A.【点睛】本题考查二元一次方程组、不等式,将两式相减得到x与y的和是解题的关键.2,写出15.(2023·四川泸州·中考真题)关于x,y的二元一次方程组2x+3y=3+ax+2y=6的解满足x+y>2a的一个整数值.16.(2024·浙江宁波·模拟预测)若关于x,y的方程组2x−y=5kx+y=4k+3的解满足x−y≤5,则k的取值范围是.【答案】k≤3【分析】本题主要考查二元一次方程组和一元一次不等式的解法,把方程组的解求出,即用k表示出x、y,代入不等式x−y≤5,转化为关于k的一元一次不等式,可求得k的取值范围.【详解】解:2x−y=5k①x+y=4k+3②由①+②可得:3x=9k+3,所以:x=3k+1③把③代入②得:3k+1+y=4k+3,解得:y=k+2,代入x−y≤5可得:3k+1−(k+2)≤5,解得:k≤3,故答案为:k≤3.题型05 二元一次方程组整数解问题17.(2022·广东揭阳·模拟预测)如果关于x,y的方程组4x−3y=66x+my=26的解是整数,那么整数m的值为( )A.4,−4,−5,13B.4,−4,−5,−13C.4,−4,5,13D.−4,5,−5,13318.(23-24八年级上·重庆沙坪坝·期末)关于x,y的二元一次方程组kx+y=43x+y=0的解为整数,关于z的不等式组3z>z−44z−2k−13≤1有且仅有2个整数解,则所有满足条件的整数k的和为( )A.6B.7C.11D.1219.(22-23七年级下·重庆·阶段练习)已知关于x,y的二元一次方程组12x−y=1的解为整数,且关于z的方程z−a2−z3=1的解为非负数,求满足条件的所有整数a的和为()A.2B.4C.9D.11题型06 利用相反数求二元一次方程组参数20.(2022·四川南充·二模)已知x、y满足方程组x+2y=2m−12x+y=5,且x与y互为相反数,则m的值为()A.m=−2B.m=2C.m=−3D.m=3【答案】A【分析】根据题意可得x+y=0,由方程组的解法可得3x+3y=2m+4,代入计算即可.【详解】解:x+2y=2m−1①2x+y=5②,①+②得,3x+3y=2m+4,即3(x+y)=2m+4,又∵x与y互为相反数,∴x+y=0,即2m+4=0,解得m=-2,故选:A.【点睛】本题考查二元一次方程组的解,掌握二元一次方程组的解法以及相反数的定义是正确解答的前提.21.(2020·浙江杭州·模拟预测)已知关于x,y的方程组3x−5y=2ax−2y=a−5则下列结论中正确的是()①当a=5时,方程组的解是x=10y=20;②当x,y的值互为相反数时,a=20;③当2x⋅2y=212时,a=14;④不存在一个实数a,使得x=y.A.①②④B.①②③C.②③④D.②③由题意得:x+y=12,把x=25−ay=15−a代入得:25-a+15-a =12,解得:a=14,本选项正确;④若x=y,则有−2x=2a−x=a−5,可得a=a-5,矛盾,故不存在一个实数a使得x=y,本选项正确.则正确的选项有②③④,故选:C.【点睛】本题考查二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.22.(2021·内蒙古包头·二模)若满足方程组4x+y=3m+32x−y=m−1的x与y互为相反数,则m的值为()A.2B.−2C.11D.−11题型07 已知方程的解求参数23.(2023·湖南永州·中考真题)关于x的一元一次方程2x+m=5的解为x=1,则m的值为()A.3B.−3C.7D.−7【答案】A【分析】把x=1代入2x+m=5再进行求解即可.【详解】解:把x=1代入2x+m=5得:2+m=5,解得:m=3.故选:A.【点睛】本题主要考查了一元一次方程的解,以及解一元一次方程,解题的关键是掌握使一元一次方程左右两边相等的未知数的值是一元一次方程的解,以及解一元一次方程的方法和步骤.24.(2021·浙江金华·中考真题)已知x=2y=m是方程3x+2y=10的一个解,则m的值是.【答案】2【分析】把解代入方程,得6+2m=10,转化为关于m的一元一次方程,求解即可.【详解】∵x=2y=m是方程3x+2y=10的一个解,∴6+2m=10,解得m=2,故答案为:2.【点睛】本题考查了二元一次方程的解,一元一次方程的解法,灵活运用方程的解的定义,转化为一元一次方程求解是解题的关键.25.(2023·江苏镇江·中考真题)若x=1是关于x的一元二次方程x2+mx−6=0的一个根,则m的值为.26.(2023·四川内江·中考真题)已知a、b是方程x2+3x−4=0的两根,则a2+4a+b−3=.【答案】−2【分析】利用一元二次方程的解的定义和根与系数的关系,可得a+b=−3,a2+3a−4=0,从而得到a2+3a=4,然后代入,即可求解.【详解】解:∵a,b是方程x2+3x−4=0的两根,∴a+b=−3,a2+3a−4=0,∴a2+3a=4,∴a2+4a+b−3=a2+3a+a+b−3=4+(−3)−3=−2.故答案为:−2.【点睛】本题主要考查了一元二次方程的解的定义和根与系数的关系,熟练掌握一元二次方程的解的定义和根与系数的关系是解题的关键.题型08 根据一元二次方程根的情况求参数27.(2023·广东广州·中考真题)已知关于x的方程x2−(2k−2)x+k2−1=0有两个实数根,则(k−1)2−(2−k)2的化简结果是()A.−1B.1C.−1−2k D.2k−328.(2023·江苏连云港·中考真题)若关于x的一元二次方程x2−2x+m=0有两个不相等的实数根,则m的取值范围是.【答案】m<1【分析】此题考查了根的判别式,熟练掌握根的判别式与方程解的情况之间的关系是解本题的关键.根据方程有两个不相等的实数根,得到根的判别式大于0,求出m的范围即可.【详解】解:∵关于x的一元二次方程x2−2x+m=0有两个不相等的实数根,∴Δ=4−4m>0,解得:m<1.故答案为:m<1.29.(2021·四川内江·中考真题)若关于x的一元二次方程ax2+4x−2=0有实数根,则a的取值范围为.30.(2023·湖北襄阳·中考真题)关于x的一元二次方程x2+2x+3−k=0有两个不相等的实数根.(1)求k的取值范围;(2)若方程的两个根为α,β,且k2=αβ+3k,求k的值.题型09 根据一元一次不等式组的整数解求参数的取值范围31.(2023·广东潮州·二模)如果关于x的不等式组6x−m≥05x−n<0的整数解仅为1,2,3,那么适合这个不等式组的整数对(m,n)共有( )A.42对B.36对C.30对D.11对33.(2023·四川宜宾·中考真题)若关于x +1>x+a①1≥52x−9②所有整数解的和为14,则整数a的值为.综上,整数a的值为2或−1故答案为:2或−1.【点睛】本题考查了含参数的一元一次不等式组的整数解问题,掌握一元一次不等式组的解法,理解参数的意义是解题的关键.题型10 根据一元一次不等式组的解集的情况求参数的取值范围34.(2023·湖北鄂州·中考真题)已知不等式组x−a>2x+1<b的解集是−1<x<1,则(a+b)2023=( )A.0B.−1C.1D.202335.(2023·湖北黄石·中考真题)若实数a使关于x的不等式组−2<x−1<3x−a>0的解集为−1<x<4,则实数a 的取值范围为.【答案】a≤−1/−1≥a【分析】根据不等式的性质解一元一次不等组,再根据不等式组的取值方法即可且求解.【详解】解:−2<x−1<3①x−a>0②,由①得,−1<x <4;由②得,x >a ;∵解集为−1<x <4,∴a ≤−1,故答案为:a ≤−1.【点睛】本题主要考查解不等式组,求不等式组解集,掌握解不等式组的方法,不等组的取值方法等知识是解题的关键.题型11 整式方程(组)与一元一次不等式结合求参数的问题37.(2022·四川泸州·中考真题)若方程x−3x−2+1=32−x 的解使关于x 的不等式(2−a )x−3>0成立,则实数a 的取值范围是 .把x =1代入不等式(2−a )x−3>0得:2−a−3>0解得a <−1故答案为:a <−1【点睛】本题综合考查分式方程的解法和一元一次不等式的解法,解题的关键是熟记相关运算法则.38.(2023·四川泸州·一模)已知方程3−a a−4−a =14−a ,且关于x 的不等式a ≤x <b 只有3个整数解,则b 的取值范围是 .39.(2021·湖北荆州·中考真题)已知:a 是不等式5(a−2)+8<6(a−1)+7的最小整数解,请用配方法解关于x 的方程x 2+2ax +a +1=0.25 / 3140.(2022·江苏苏州·一模)若不等式3x +2≤4x−1的最小整数解是方程23x−13mx =1的解,求m 的值.。
2019年中考专题复习第九讲分式方程(含详细参考答案)
2019年中考专题复习第九讲 分式方程【基础知识回顾】一、 分式方程的概念分母中含有 的方程叫做分式方程【名师提醒:分母中是否含有未知数是区分分式方程和整式方程的根本依据】二、分式方程的解法:1、解分式方程的基本思路是 把分式方程转化为整式方程:即分式方程 ﹥整式方程2、解分式方程的一般步骤:①、 ②、 ③、3、增根:在进行分式方程去分母的变形时,有时可能产生使原方程分母为 的根称为方程的增根。
因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为 的根是增根应舍去。
【名师提醒:1、分式方程解法中的验根是一个必备的步骤,不被省略2、分式方程有增根与无解并非用一个概念,无解既包含产生增根这一情况,也包含原方程去分母后的整式方程无解。
如:1x a x ---3x=1有增根,则a= ,若该方程无解,则a= 。
】三、分式方程的应用:解题步骤同其它方程的应用一样,不同的是列出的方程是分式方程,所以在解分式方程应用题同样必须 ,既要检验是否为原方程的根,又要检验是否符合题意。
转化 去分母【名师提醒:分式方程应用题常见类型有行程问题、工作问题、销售问题等,其中行程问题中又出现逆水、顺水航行这一类型】【重点考点例析】考点一:分式方程的解()A.a=1 B.a=2【思路分析】根据分式方程的解的定义把x=4代入原分式方程得到关于a的一次考点三:由实际问题抽象出分式方程例3 (2018•嘉兴)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x个,则根据考点四:分式方程的应用例 4 (2018•玉林)山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.(1)求二月份每辆车售价是多少元?(2)为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店A.x=1 B.x=2C.x=-1 D.无解2.(2018•临沂)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1-5月份每辆车的销售价格是多少万元?设今年1-5月份每辆车的销售价格为x万元.根据题意,列方程正确的是()A.5000500012% 1(0) x x-=+B.()500 500010% 021x x++=C.5000500012% 1(0) x x-=-D.()500 500010% 021x x+-=4.(2018•威海)某自动化车间计划生产480个零件,当生产任务完成一半时,多少个零件?5.(2018•东营)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.6.(2018•菏泽)列方程(组)解应用题:为顺利通过国家义务教育均衡发展验收,我市某中学配备了两个多媒体教室,购买了笔记本电脑和台式电脑共120台,购买笔记本电脑用了7.2万元,购买台式电脑用了24万元,已知笔记本电脑单价是台式电脑单价的1.5倍,那么笔记本电脑和台式电脑的单价各是多少?【备考真题过关】一、选择题A.5 B.4C.3 D.2范围是()A.m≤3B.m≤3且m≠2C.m<3 D.m<3且m≠23.(2018•荆州)解分式方程14322x x-=--时,去分母可得()A.1-3(x-2)=4 B.1-3(x-2)=-4C.-1-3(2-x)=-4 D.1-3(2-x)=44.(2018•成都)分式方程1112xx x++=-的解是()A.x=1 B.x=-1C.x=3 D.x=-35. (2018•通辽)学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A.9000100 05001xx-=-B.10090000100 5x x-=-C.910000000100 5xx-=-D.1000 900001005xx-=-二、填空题三、解答题11.(2018•柳州)解方程21 2x x =- .12.(2018•贺州)解分式方程:241 111x x x -+=-+ 。
专题04 分式方程中的参数问题(解析版)
专题04 分式方程中的参数问题考纲要求:1. 了解分式方程的概念2.会解可化为一元一次方程的分式方程(方程中的分式不超过两个),会对分式方程的解进行检验.3.会用分式方程解决简单的事件问题.基础知识回顾:1.分式方程的定义:分母中含有未知数的方程叫做分式方程.2.解分式方程的一般步骤:()1去分母化分式方程为整式方程.()2解这个整式方程,求出整式方程的根.()3检验,得出结论.一般代入原方程的最简公分母进行检验.3.增根是分式方程化为整式方程的根,但它使得原分式方程的分母为零.应用举例:招数一、分式方程增根问题:增根问题可按如下步骤进行:①让最简公分母0,确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.【例1】若关于x的分式方程+=2m有增根,则m的值为______.【答案】1【解析】方程两边都乘x﹣2,得x﹣2m=2m(x﹣2)∵原方程有增根,∴最简公分母x﹣2=0,解得x=2,当x=2时,m=1故m的值是1,故答案为1招数二、分式方程无解问题:分式方程无解分为以下两种情况:①原方程解不出数来,也就是整式方程无解;②整式方程能解出来,但是解出来的数使得原分式方程的分母为零,也就是所谓的增根,所以切记一定要讨论。
【例2】取5张看上去无差别的卡片,分别在正面写上数字1,2,3,4,5,现把它们洗匀正面朝下,随机摆放在桌面上.从中任意抽出1张,记卡片上的数字为m,则数字m使分式方程﹣1=无解的概率为________.【答案】.【解答】解:由分式方程,得m=x(x+2)﹣(x﹣1)(x+2)x=1或﹣2时,分式方程无解,x=1时,m=2,x=﹣2时,m=0,所以在1,2,3,4,5取一个数字m使分式方程无解的概率为.招数三、已知分式方程解的范围求参数范围问题:明确告诉了解的范围,首先还是要按正常步骤解出方程,解中肯定带有参数,再根据解的范围求参数的范围,注意:最后一定要讨论增根的问题.【例3】已知关于x的分式方程=1的解是非正数,则m的取值范围是()A.m≤3B.m<3 C.m>﹣3 D.m≥﹣3【答案】A【解析】方程两边同乘以x﹣3,得2x﹣m=x﹣3,移项及合并同类项,得x=m﹣3,∵分式方程=1的解是非正数,x﹣3≠0,∴,解得,m≤3,故选:A.【例4】若关于x的分式方程=1的解是负数,求m的取值范围.【答案】m<2且m≠0.【解析】解:由=1,得(x+1)2-m=x2-1,解得x=-1+.由已知可得-1+<0,-1+≠1且-1+≠-1,解得m<2且m≠0.招数四、与其它方程或不等式结合求参数问题:【例5】关于x的两个方程260x x--=与213x m x=+-有一个解相同,则m= .【答案】﹣8.【解析】【例6】若数a使关于x的不等式组有且仅有三个整数解,且使关于y的分式方程﹣=﹣3的解为正数,则所有满足条件的整数a的值之和是()A.﹣3 B.﹣2 C.﹣1 D.1【答案】A【解析】由关于x的不等式组得∵有且仅有三个整数解,∴<x≤3,x=1,2,或3.∴,∴﹣<a<3;由关于y的分式方程﹣=﹣3得1﹣2y+a=﹣3(y﹣1),∴y=2﹣a,∵解为正数,且y=1为增根,∴a<2,且a≠1,∴﹣<a<2,且a≠1,∴所有满足条件的整数a的值为:﹣2,﹣1,0,其和为﹣3.故选:A .方法、规律归纳:1.按照基本步骤解分式方程时,关键是确定各分式的最简公分母,若分母为多项式时,应首先进行因式分解,将分式方程转化为整式方程,给分式方程乘最简公分母时,应对分式方程的每一项都乘以最简公分母,不能漏乘常数项;2.检验分式方程的根是否为增根,即分式方程的增根是去分母后整式方程的某个根,如果它使分式方程的最简公分母为0.则为增根. 增根问题可按如下步骤进行:①让最简公分母0,确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.3. 分式方程的增根和无解并非同一个概念,分式方程无解,可能是解为增根,也可能是去分母后的整式方程无解;分式方程的增根是去分母后整式方程的根,也是使分式方程的分母为0的根.实战演练:1.若关于x 的分式方程﹣1=有增根,则m 的值为______.【答案】3【解析】方程两边都乘(x ﹣2),得3x ﹣x+2=m+3∵原方程有增根,∴最简公分母(x ﹣2)=0,解得x =2,当x =2时,m =3.故答案为3.2.若关于x 的分式方程1322m x x x -=---有增根,则实数m 的值是 . 【答案】1.【解析】试题分析:去分母,得:13(2),m x x =---由分式方程有增根,得到20,x -= 即 2.x =把2x =代入整式方程可得: 1.m =故答案为:1.3. 若关于x 的分式方程=2a 无解,则a 的值为_____.【答案】1或【解析】解:去分母得:x-3a=2a(x-3),整理得:(1-2a)x=-3a,当1-2a=0时,方程无解,故a=;当1-2a≠0时,x==3时,分式方程无解,则a=1,故关于x的分式方程=2a无解,则a的值为:1或.故答案为:1或.4.已知关于x的分式方程﹣2=的解为正数,则k的取值范围为()A.﹣2<k<0 B.k>﹣2且k≠﹣1 C.k>﹣2 D.k<2且k≠1【答案】B【解析】∵=2,∴=2,∴x=2+k,∵该分式方程有解,∴2+k≠1,∴k≠﹣1,∵x>0,∴2+k>0,∴k>﹣2,∴k>﹣2且k≠﹣1,故选:B.5.已知关于x的方程无解,则a的值为_____________.【答案】-4或6或1【解析】由原方程得:2(x+2)+ax=3(x-2),整理得:(a-1)x=-10,(i)当a-1=0,即a=1时,原方程无解;(ii)当a-1≠0,原方程有增根x=±2,当x=2时,2(a-1)=-10,即a=-4;当x=-2时,-2(a-1)=-10,即a=6,即当a=1,-4或6时原方程无解.故答案为-4或6或16.关于x的方程﹣1=的解为正数,则k的取值范围是()A.k>﹣4 B.k<4 C.k>﹣4且k≠4D.k<4且k≠﹣4 【答案】C.【解析】分式方程去分母得:k﹣(2x﹣4)=2x,解得:x=,根据题意得:>0,且≠2,解得:k>﹣4,且k≠4.故选:C.7 . 若关于x的方程2230x x+-=与213x x a=+-有一个解相同,则a的值为()A.1 B.1或﹣3 C.﹣1 D.﹣1或3 【答案】C.【解析】解方程2230x x+-=,得:x1=1,x2=﹣3,∵x=﹣3是方程213x x a=+-的增根,∴当x=1时,代入方程213x x a=+-,得:21131a=+-,解得a=﹣1.故选C.8.若关于x的一元一次不等式组的解集是x≤a,且关于y的分式方程﹣=1有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.6【答案】B【解析】由不等式组得:∵解集是x≤a,∴a<5;由关于y的分式方程﹣=1得2y﹣a+y﹣4=y﹣1∴y=,∵有非负整数解,∴≥0,∴a≥﹣3,且a=﹣3,a=﹣1(舍,此时分式方程为增根),a=1,a=3它们的和为-3+1+3=1.故选:B.9.已知关于x的不等式组有且只有四个整数解,又关于x的分式方程﹣2=有正数解,则满足条件的整数k的和为()A.5 B.6 C.7 D.8【答案】D【解析】解不等式-(4x+)<0,得:x>,解不等式﹣(x+2)+2≥0,得:x≤2,则不等式组的解集为<x≤2,∵不等式组有且只有四个整数解,∴﹣2≤<﹣1,解得:﹣3≤k<5;解分式方程-2=得:x=,∵分式方程有正数解,∴>0,且≠1,解得:k>﹣3且k≠﹣1,所以满足条件的整数k的值为﹣2、0、1、2、3、4,则满足条件的整数k的和为﹣2+0+1+2+3+4=8,故选:D.10.阅读下列材料:在学习“分式方程及其解法”过程中,老师提出一个问题:若关于x的分式方程的解为正数,求a的取值范围?经过小组交流讨论后,同学们逐渐形成了两种意见:小明说:解这个关于x的分式方程,得到方程的解为x=a﹣2.由题意可得a﹣2>0,所以a>2,问题解决.小强说:你考虑的不全面.还必须保证a≠3才行.老师说:小强所说完全正确.请回答:小明考虑问题不全面,主要体现在哪里?请你简要说明:.完成下列问题:(1)已知关于x的方程=1的解为负数,求m的取值范围;(2)若关于x的分式方程=﹣1无解.直接写出n的取值范围.【答案】(1):m<且m≠﹣;(2)n=1或n=.【解析】请回答:小明没有考虑分式的分母不为0(或分式必须有意义)这个条件;(1)解关于x的分式方程得,x=,∵方程有解,且解为负数,∴,解得:m<且m≠-;(2)分式方程去分母得:3-2x+nx-2=-x+3,即(n-1)x=2,由分式方程无解,得到x-3=0,即x=3,代入整式方程得:n=;当n-1=0时,整式方程无解,此时n=1,综上,n=1或n=.。
分式方程中参数问题的四种考法(解析版)(人教版)
1】.关于
x
的方程
3x x3
2
3
m
x
的解不小于1,则
m
的取值范围为
.
【答案】 m 7 且 m ¹ - 9
【分析】先解分式方程可得 x 6 m ,由题意得 6 m 1,再由 x 3,得 6 m 3 ,求
出 m 的取值范围即可.
【详解】解:
3x x3
2
3
m
x
,
3x 2 x 3 m ,
专题 09 分式方程中参数问题的四种考法
类型一、整数解问题求参数
x m 1
例.若关于
x
的不Hale Waihona Puke 式组x21
x 4
1
有解且至多有
5
个整数解,且关于
y
的方程
y
1
1
3
my 1 y
的解为整数,则符合条件的整数
m
的个数为(
)
A.0
B.1
C.2
D.3
【答案】C
x m 1
【分析】先解出不等式组的解集,然后根据不等式组
解不等式 y 3 2 y a 得: y<2a 3,
∴10 y 2a 3
∵不等式组至多有 3 个整数解,
∴ 2a 3 13 ,
∴a 8.
方程
x
1
3
x 3
a x
1
,
1 x a x 3 ,解得: x a 4 2
∵分式方程有非负整数解,
∴ x 0 (x 为非负整数)且 x 3,
情况二:当整式方程有解,是分式方程的增根,即 x=2 或 x=6, ①当 x=2 时,代入 (m 1)x 6 0 ,得: 2m 8 0
陕西专用2019版中考数学一练通第二部分重点题型突破专项二解答题专项二分式运算解分式方程课件2020031313
例2
(2018·某铁一中模拟)先化简,再求值:
x
1
y
y
1
x
y2 xy y2
,
当x=-2,y=1时求分式的值。
【解】
原式=
(x
2y y)( y
x)
y(x y2
y)
x
2
y
。
当x 2, y 1时, 2 2 2。 x y 2 1
解答题专项
类型3 解分式方程
例3
(2015·陕西中考)解分式方程:xx
例1 (2018·某高新一中模拟)化简:
x
1
2x 2 x 1
x2 x
x。 1
【解】
原式=
( x
1)(x+1) x 1
2x 2 x 1
(x x-1) x 1
= x2 1 2x 2 x 1 x 1 x(x 1)
= (x 1)2 x 1 x 1 x(x 1)
x 1。 x
解答题专项
类型2 分式的化简求值
2 3
x
3
3
1。
【解】去分母、去括号,得x2-5x+6-3x-9=x2-9,
解得x=
3 4
。
经检验,x=
3 4
是分式方程的解。
故原分式方程的解是x= 3 。
4
专项二 解答题专项
二、 分式运算、解分式方程 (针对陕西中考第16题)
解答题专项
Байду номын сангаас
中考解读:分式运算及解分式方程在陕西中考中主要以解答题的形式出现,分值
为5分,考查学生的运算能力和细心程度,注意要确保分式有意义。主要考查的
类型:(1)分式的化简;(2)分式的化简求值;(3)解分式方程。
如何求分式方程中参数的值
数学篇学思导引在学习分式方程时,我们会遇到分子含有参数,要求分式方程中参数的值的问题.解答这类问题的基本思路是把分式方程转化为整式方程.但在解答过程中,若对含参数分式方程的解的情况分析不当,极易导致错误.对此,笔者针对如下几种情况,探讨了如何求分式方程中参数的值.一、已知分式方程有增根,求参数的值分式方程出现增根的原因是在去分母的过程中,方程两边同时乘以了一个可能使最简公分母为0的整式,致使未知数的取值范围发生了变化.因此,在求分式方程中参数的值时,若已知分式方程有增根,同学们要注意如下两点:一是准确去分母,把分式方程转化为整式方程;二是令最简公分母为零,求出其增根,再把增根代入所得的整式方程中,求出参数的值.例1若关于x 的方程1x -3+m x -4=4m +2x 2-7x +12有增根,则m 的值为_______.解:原方程两边同乘以(x -3)(x -4),去分母整理可得:(1+m )x =7m +6①.因为关于x 的分式方程有增根,所以(x -3)(x -4)=0,解得x =3或x =4.当x =3时,方程①为:3(1+m )4=7m +6,即4m =-3,解得m =-34.当x =4时,方程①为:4(1+m )=7m +6,即3m =-2,解得m =23.评注:分式方程的增根,既是分式方程去分母后所得整式方程的根,也是使分式方程最简公分母为零的未知数的值.所以,令分式方程最简公分母为零,是破解分式方程有增根问题的重要突破口.二、已知分式方程无解,求参数的值有解,故而原分式方程无解;二是原分式方程去分母整理后所得到的整式方程有解,但该解为原分式方程的增根,从而导致原分式方程无解.所以,在求分式方程参数的值时,若已知分式方程无解,同学们要注意对整式方程无解、整式方程有解但该解为原分式方程的增根这两种情况进行分类讨论.例2当p 为何值时,关于x 的分式方程x x -2+p x +2=x x +2无解?解:原方程两边同乘以(x -2)(x +2),可得(x +2)x +p (x -2)=x (x -2),整理可得(p +4)x =2p .(1)当p +4=0,即p =-4时,整式分方程无解,原分式方程也无解.(2)当p +4≠0时,整式方程有解,该解为x =2p p +4.因为原分式方程无解,所以x -2=0或x +2=0,即2p p +4+2=0或2p p +4-2=0.当2p p +4+2=0时,p =-2;当2p p +4-2=0时,p 不存在,应舍去.所以当p =-4或p =-2时,原分式方程无解.评注:在解答分式方程无解问题时,若分式方程去分母后所得的整式方程可以化为ax =b (b ≠0)的形式时,要注意分a =0和a ≠0两种情况进行讨论.当a =0时,整式方程无解,此时原分式方程也无解;当a ≠0时,整式方程有解x =b a,此解为原分式方程的增根,此时原分式方程无解.如何求分式方程中参数的值广东省珠海市斗门区斗门镇初级中学叶春甜数学篇学思导引数、负数、非正数、非负数等.在求分式方程中参数的值时,若已知分式方程有解,同学们要注意如下两点:一是认真审读题目,弄清题设中解的情况,即明确该解是正数,还是负数等;二是参数的取值要使分式有意义,即分式方程的分母不能为零.例3若关于x 的分式方程x +a x -5+6a 5-x=4的解为正数,则a 的值满足().A.a <4B.a >-4C.a <4且a ≠1D.a >-4且a ≠-1分析:本题分式方程有根,求解时既要考虑根为正数的情形,又要考虑分式方程的分母不能为零.解:原方程同时乘以(x -5),可得(x +a )-6a =4(x -5),整理可得3x =20-5a ,解得x =20-5a 3.因为分式方程的解为正数,所以20-5a 3>0,即20-5a >0,解得a <4.又因为x -5≠0,所以x ≠5,即20-5a 3≠5,解得a ≠1.所以当a <4,且a ≠1时,原分式方程的解为正数,故正确答案为C 项.评注:求分式方程参数的取值范围,一般先去分母,化分式方程为整式方程;然后用含参数的代数式把分式方程的解表示出来,再由分式方程中解的条件(正数、负数等),将其转化为不等式问题.在这一过程中,同学们特别要注意分式方程有解的隐含条件:分母不能为零.总之,分式方程中参数的值或取值范围与分式方程的增根、无解、有解息息相关.在平时做题时,同学们要仔细审题,把握已知条件,尤其是隐含条件,并注意结合具体情况展开分类讨论,及时检验和修正,从而规避漏解、多解以及错解,提高解题的准确性.我们知道,在同一平面内不相交的两条直线叫做平行线.那么,如何证明两条直线平行呢?有关两条直线平行的证明方法有许多,笔者归纳了如下三种常用的证明方法,以期对同学们证题有所帮助.一、利用“平行线判定定理”平行线的判定定理是指两条直线被第三条直线所截,如果同位角、内错角相等,或同旁内角互补,那么这两条直线平行,简称为“同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.”它是判定两直线平行的基本定理,也是证明两条直线平行最为常用的一种方法.例1如图1所示,在△MNP 中,∠MNP =90°,NQ 是MP 边上的中线,将△MNQ 沿MN 边所在的直线折叠,使得点Q恰好落在点R 处,从而得到四边形MPNR .求证:RN ∥MP .分析:要想证明RN ∥MP ,关键是确定第三条直线.观察图形,很容易看出,这两条直线是被MN 所截的,由题意易知NQ =MQ ,∠QMN =∠QNM ,∠RNM =∠QNM ,这样易推出∠QMN =∠RNM ,再由“内错角相等,两直线平行”进而得到RN ∥MP .证明:因为NQ 是MP 边上的中线,且∠MNP =90°,所以NQ =MQ ,∠QMN =∠QNM .例谈证明两条直线平行的常用方法江阴市夏港中学姚菁菁图127。
2019中考数学压轴题专题02 方程、不等式中的含参问题(解析版)
玩转压轴题,争取满分之备战中考数学选填题高端精品专题二方程、不等式中的含参问题【考法综述】1.一次方程组的含参问题一是方程组与不等式的联系时,产生的未知数的正数解或解的范围,解决这类问题是把所给的参数作为常数,利用二元一次方程组的解法代入消元法、加减消元法,先求出二元一次方程组的解,再结合所给的条件转化为对应的不等式问题;二是利用整体思想,求代数式的值,结合所给的已知条件和所求问题,找到两者之间的联系,利用整体思想和转化思想加以解决.2.一元二次方程的参数问题主要是含有参数的一元二次方程的解、一元二次方程的解的情况、一元二次方程的公共解,针对一元二次方程的参数,常利用韦达定理、根的判别式来解决,同时注意二次项系数不能为零.若关于x的一元二次方程ax2+bx+c=0(a≠0)有两个根分别为x1、x2,则x1+x2=-b/a,x1x2=c/a.注意运用根与系数关系的前提条件是△≥0. 已知一元二次方程,求关于方程两根的代数式的值时,先把所求代数式变形为含有x1+x2、x1x2的式子,再运用根与系数的关系求解.3.分式方程的参数问题主要是分式方程无解、有正数解或负数解、整数解的问题,解决此类问题的关键是化分式方程为整式方程.在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.[来源:学*科*网]4.不等式、不等式组的参数问题主要涉及不等式(组)有解问题、无解问题、解的范围问题,解决此类问题,要掌握不等式组的解法口诀以及在数轴上熟练表示出解集的范围.已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值. 学+科网【典例剖析】考点一、一次方程组的含参问题例1方程组的解x,y满足x>y,则m的取值范围是()A.m>B.m>C.m>D.m>[来源:Z_xx_]【答案】﹣.【解析】试题分析:解此题时可以运用代入消元法,解出二元一次方程组中x,y关于m的式子,然后根据x>y解出m的取值范围.试题解析:由①得x=,代入②得,8×﹣3y=m,y=.∵x>y,即>,解得m>.故选D.【点评】此题考查的是二元一次方程组和不等式的性质,先解出x,y关于m的式子,再根据x>y,求出m 的范围即可.&变式训练&变式1.1已知x+2y﹣3z=0,2x+3y+5z=0,则=.【点评】此题需将三元一次方程组中的一个未知数当做已知数来处理,转化为二元一次方程组来解.变式1.2已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b﹣3c=1,若m=3a+b﹣7c,则m的最小值为.【解析】试题分析:解方程组,用含m的式子表示出a,b,c的值,根据a≥0,b≥0,c≥0,求得m的取值范围而求得m的最小值.试题解析:由题意可得,解得a=﹣3,b=7﹣,c=,由于a,b,c是三个非负实数,∴a≥0,b≥0,c≥0,∴﹣≥m≥﹣.所以m最小值=﹣.故本题答案为:﹣.变式1.3 已知等式(2A﹣7B)x+(3A﹣8B)=8x+10对一切实数x都成立,则A=,B=.【答案】,﹣.【解析】【点评】本题考查了二元一次方程组的解法.解决本题的关键在于转化为关于A、B的二元一次方程组;体现了转化思想的应用.学科+网考点二、一元二次方程的含参问题例2关于x的方程x2+mx﹣9=0和x2﹣3x+m2+6m=0有公共根,则m的值为.【答案】﹣3,0,﹣4.5.【解析】试题分析:设这个公共根为α,那么根据两根之和的表达式,可知方程x2+mx﹣9=0的两根为α、﹣m﹣α;方程x2﹣3x+m2+6m=0的两根为α、3﹣α.再根据两根之积的表达式,可知α(﹣m﹣α)=﹣9,α(3﹣α)=m2+6m,然后对两式整理,用α表示m,再代入其中一个方程消掉α,求解即可得到m的值.试题解析:设这个公共根为α.则方程x2+mx﹣9=0的两根为α、﹣m﹣α;方程x2﹣3x+m2+6m=0的两根为α、3﹣α,由根与系数的关系有:α(﹣m﹣α)=﹣9,α(3﹣α)=m2+6m,整理得,α2+mα=9①,α2﹣3α+m2+6m=0②,②﹣①得,m2+6m﹣3α﹣mα=﹣9,即(m+3)2﹣α(m+3)=0,(m+3)(m+3﹣α)=0,所以m+3=0或m+3﹣α=0,解得m=﹣3或α=m+3,把α=m+3代入①得,(m+3)2+m(m+3)=9,m2+6m+9+m2+3m=9,m(2m+9)=0,所以m=0或2m+9=0,解得m=0或m=﹣4.5,综上所述,m的值为﹣3,0,﹣4.5.故答案为:﹣3,0,﹣4.5.【点评】本题主要考查了公共根的定义,一元二次方程根与系数的关系及由两个二元二次方程组成的方程组的解法.高次方程组的解法在初中教材中不要求掌握,属于竞赛题型,本题有一定难度.&变式训练&变式2.1已知a是一元二次方程x2﹣2008x+1=0的一个根,则代数式的值是.【答案】2007【解析】试题分析:将一个根a代入x2﹣2008x+1=0,可得:a2﹣2008a+1=0,故有a2﹣2007a=a﹣1,和a2+1=2008a;代入要求的代数式,整理化简即可.试题解析:由题意,把根a代入x2﹣2008x+1=0,可得:a2﹣2008a+1=0,∴a2﹣2007a﹣a+1=0,a2+1=2008a;∴a2﹣2007a=a﹣1,∴=a﹣1+=a+﹣1=﹣1=﹣1=2008﹣1,=2007.【点评】本题规律为已知一元二次方程的一个解,则这个解一定满足方程,将其代入方程去推理、判断;将代数式与已知条件联系起来,从两头朝中间寻找关系.变式2.2已知关于x的方程(k2﹣1)x2+(2k﹣1)x+1=0有两个不相等的实数根,那么实数k的取值范围为.【答案】k<且k≠±1【点评】总结:1、一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.2、一元二次方程的二次项系数不为0.变式2.3已知α、β是方程x2﹣2x﹣4=0的两个实数根,则α3+8β+6的值为()A.﹣1 B.2 C.22 D.30【答案】D【解析】试题分析:根据求根公式x=求的α、β的值,然后将其代入所求,并求值.试题解析:方法一:方程x2﹣2x﹣4=0解是x=,即x=1±,∵α、β是方程x2﹣2x﹣4=0的两个实数根,∴①当α=1+,β=1﹣时,α3+8β+6,=(1+)3+8(1﹣)+6,=16+8+8﹣8+6,=30;②当α=1﹣,β=1+时,α3+8β+6,=(1﹣)3+8(1+)+6,=16﹣8+8+8+6,=30.方法二:∵α、β是方程x2﹣2x﹣4=0的两个实数根,∴α+β=2,α2﹣2α﹣4=0,∴α2=2α+4∴α3+8β+6=α•α2+8β+6=α•(2α+4)+8β+6=2α2+4α+8β+6=2(2α+4)+4α+8β+6=8α+8β+14=8(α+β)+14=30,故选D.变式2.4 对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若b=2,则方程ax2+bx+c=0一定有两个相等的实数根;②若方程ax2+bx+c=0有两个不等的实数根,则方程x2﹣bx+ac=0也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则b2﹣4ac=(2ax0+b)2,其中正确的()A.只有①②③B.只有①②④C.①②③④ D.只有③④【答案】B【解析】试题分析:判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.④难度较大,用到了求根公式表示x0.试题解析:①若b=2,方程两边平方得b2=4ac,即b2﹣4ac=0,所以方程ax2+bx+c=0一定有两个相等的实数根;②若方程ax2+bx+c=0有两个不等的实数根,则b2﹣4ac>0方程x2﹣bx+ac=0中根的判别式也是b2﹣4ac=0,所以也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac2+bc+c=0成立,当c≠0时ac+b+1=0成立;当c=0时ac+b+1=0不成立;④若x0是一元二次方程ax2+bx+c=0的根,可得x0=,把x0的值代入(2ax0+b)2,可得b2﹣4ac=(2ax0+b)2,综上所述其中正确的①②④.故选B【点评】此题主要考查了根的判别式及其应用.尤其是④难度较大,用到了求根公式表示x0,整体代入求b2﹣4ac=(2ax0+b)2.考点三、分式方程的含参问题例3.已知方程的两根分别为a,,则方程=a+的根是()A.a,B.,a﹣1 C.,a﹣1 D.a,【答案】D【解析】试题分析:首先观察已知方程的特点,然后把方程=a+变形成具有已知方程的特点的形式,从而得出所求方程的根.【点评】观察出已知方程的特点是解答本题的前提,把方程=a+变形成具有已知方程的特点的形式是解答本题的关键.&变式训练&变式3.1若关于x的方程=3的解是非负数,则b的取值范围是.【答案】b≤3且b≠2【解析】试题分析:先解关于x的分式方程,求得x的值,然后再依据“解是非负数”建立不等式求b的取值范围.试题解析:去分母得,2x﹣b=3x﹣3∴x=3﹣b∵x≥0∴3﹣b≥0解得,b≤3又∵x﹣1≠0∴x≠1即3﹣b≠1,b≠2则b的取值范围是b≤3且b≠2.【点评】由于我们的目的是求b的取值范围,根据方程的解列出关于b的不等式,另外,解答本题时,易漏掉分母不等于0这个隐含的条件,这应引起足够重视.变式3.2 观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x 的方程(n为正整数)的根,你的答案是:.【答案】x=n+3或x=n+4.【解析】试题分析:首先求得分式方程①②③的解,即可得规律:方程x+=a+b的根为:x=a或x=b,然后将x+=2n+4化为(x﹣3)+=n+(n+1),利用规律求解即可求得答案.试题解析:∵由①得,方程的根为:x=1或x=2,由②得,方程的根为:x=2或x=3,由③得,方程的根为:x=3或x=4,∴方程x+=a+b的根为:x=a或x=b,∴x+=2n+4可化为(x﹣3)+=n+(n+1),∴此方程的根为:x﹣3=n或x﹣3=n+1,即x=n+3或x=n+4.故答案为:x=n+3或x=n+4.【点评】此题考查了分式方程的解的知识.此题属于规律性题目,注意找到规律:方程x+=a+b的根为:x=a或x=b是解此题的关键.变式3.3已知关于x的方程只有整数解,则整数a的值为.【答案】﹣2,0或4【解析】试题分析:首先解此分式方程,即可求得x==﹣2﹣,由方程只有整数解,可得1﹣a=3或1或﹣3或﹣1,然后分别分析求解即可求得答案,注意分式方程需检验.试题解析:方程两边同乘以(x﹣1)(x+2),得:2(x+2)﹣(a+1)(x﹣1)=3a,解得:x==﹣2﹣,∵方程只有整数解,∴1﹣a=3或1或﹣3或﹣1,当1﹣a=3,即a=﹣2时,x=﹣2﹣1=﹣3,检验,将x=﹣3代入(x﹣1)(x+2)=4≠0,故x=﹣3是原分式方程的解;当1﹣a=1,即a=0时,x=﹣2﹣3=﹣5,检验,将x=﹣5代入(x﹣1)(x+2)=18≠0,故x=﹣7是原分式方程的解;当1﹣a=﹣3,即a=4时,x=﹣2+1=﹣1,检验,将x=﹣1代入(x﹣1)(x+2)=﹣2≠0,故x=﹣1是原分式方程的解;当1﹣a=﹣1,即a=2时,x=1,检验,将x=1代入(x﹣1)(x+2)=0,故x=1不是原分式方程的解;∴整数a的值为:﹣2,0或4.学*科网故答案为:﹣2,0或4.【点评】此题考查了分式方程的解知识.此题难度较大,注意分类讨论思想的应用是解此题的关键.考点四、不等式(组)的含参问题例4.[x]表示不超过x的最大整数.如,[π]=3,[2]=2,[﹣2.1]=﹣3.则下列结论:①[﹣x]=﹣[x];②若[x]=n,则x的取值范围是n≤x<n+1;③当﹣1<x<1时,[1+x]+[1﹣x]的值为1或2;[来源学科网ZXXK]④x=﹣2.75是方程4x﹣2[x]+5=0的唯一一个解.其中正确的结论有(写出所有正确结论的序号).【答案】②③.【解析】试题分析:①举出反例即可求解;②根据[x]表示不超过x的最大整数的定义即可求解;③分两种情况:﹣1<x<0;x=0;0<x<1;进行讨论即可求解;④首先确定x﹣[x]的范围为0~1,依此可得﹣5≤2x<﹣7,即﹣2.5≤x<﹣3.5,再找到满足条件的x值即为所求.④x﹣[x]的范围为0~1,4x﹣2[x]+5=0,﹣5≤2x<﹣7,即﹣2.5≤x<﹣3.5,x=﹣2.75或x=﹣3.25都是方程4x﹣2[x]+5=0,故原来的说法错误.故答案为:②③.【点评】本题考查了不等式的应用,正确理解[x]表示不超过x的最大整数是关键.&变式训练&变式4.1如果关于x的不等式(a+b)x+2a﹣b>0的解集是x<,那么关于x的不等式(b﹣a)x+a+2b≤0的解集是.【答案】x≥﹣.【解析】试题分析:先根据关于x的不等式(a+b)x+2a﹣b>0的解集是x<,得出b=﹣3a以及a的取值范围,进而得到b﹣a=﹣4a<0,再根据b=﹣3a,即可得到关于x的不等式(b﹣a)x+a+2b≤0的解集.试题解析:∵关于x的不等式(a+b)x+2a﹣b>0的解集是x<,∴x<,∴=,且a+b<0,即b=﹣3a,a+b<0,∴a﹣3a<0,即a>0,∴b﹣a=﹣4a<0,∴关于x的不等式(b﹣a)x+a+2b≤0的解集是x≥,∵==﹣,∴关于x的不等式(b﹣a)x+a+2b≤0的解集是x≥﹣,故答案为:x≥﹣.【点评】本题主要考查了解一元一次不等式的应用,解题时注意:根据不等式的基本性质,在去分母和化系数为1时可能需要改变不等号方向.变式4.2若不等式组无解,则m的取值范围是.【答案】m<【解析】试题分析:先求出各个不等式的解集,因为不等式组无解,所以必须是大大小小找不到的情况,由此即可求出答案.试题解析:解不等式组可得,因为不等式组无解,所以m<.【点评】本题主要考查了已知一元一次不等式组的解集,求不等式组中的字母的值,同样也是利用口诀求解.变式 4.3 按下面程序计算,若开始输入x的值为正数,最后输出的结果为656,则满足条件所有x的值是.【答案】131或26或5或【解析】试题分析:利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【点评】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.变式4.4若关于x的不等式组解集为x<2,则a的取值范围是.【答案】a≥2【解析】试题分析:求出不等式组的解集,与已知解集x<2比较,可以求出a的取值范围.试题解析:由>+1,得2x+8>3x+6,解得x<2,由x﹣a<0,得x<a,又因关于x的不等式组解集为x<2,所以a≥2.【点评】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,求出解集与已知解集比较,进而求得另一个未知数.【实战演练】1. (2017重庆A 卷第12题)若数a 使关于x 的分式方程2411y ax x++=--的解为正数,且使关于y的不等式组12()y 232y a y⎧+->-≤⎪⎨⎪⎩的解集为y <﹣2,则符合条件的所有整数a 的和为( ) A .10 B .12 C .14 D .16 【答案】B. 【解析】试题解析:分式方程2411y a x x ++=--的解为x=6-4a,∵关于x 的分式方程+=4的解为正数,∴6-4a>0, ∴a <6.y 123)02(2①y ②ya ⎧+>≤--⎪⎨⎪⎩, 解不等式①得:y <﹣2; 解不等式②得:y ≤a .∵关于y 的不等式组12()y 232y a y⎧+->-≤⎪⎨⎪⎩的解集为y <﹣2, ∴a ≥﹣2.∴﹣2≤a <6. ∵a 为整数,∴a=﹣2、﹣1、0、1、2、3、4、5, (﹣2)+(﹣1)+0+1+2+3+4+5=12. 故选B .学*科网考点:1.分式方程的解;2.解一元一次不等式组.2. (2017甘肃兰州第6题)如果一元二次方程2230x x m 有两个相等的实数根,那么是实数m 的取值A.98mB.89mC.98mD.89m【答案】98m考点:根的判别式.3. (2017山东烟台第10题)若21,x x 是方程01222=--+-m m mx x 的两个根,且21211x x x x -=+,则m 的值为( )A .1-或2B .1或2- C. 2- D .1 【答案】D . 【解析】试题解析:∵x 1,x 2是方程x 2﹣2mx+m 2﹣m ﹣1=0的两个根, ∴x 1+x 2=2m ,x 1•x 2=m 2﹣m ﹣1. ∵x 1+x 2=1﹣x 1x 2,∴2m=1﹣(m 2﹣m ﹣1),即m 2+m ﹣2=(m+2)(m ﹣1)=0, 解得:m 1=﹣2,m 2=1.∵方程x 2﹣2mx+m 2﹣m ﹣1=0有实数根, ∴△=(﹣2m )2﹣4(m 2﹣m ﹣1)=4m+4≥0, 解得:m ≥﹣1. ∴m=1. 故选D .考点:根与系数的关系.4.(2017江苏宿迁第5题)已知45m <<,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有A .1个B .2个 C.3个 D .4个5.(2017浙江金华第9题)若关于x 的一元一次不等式组()2132,x x x m->-⎧⎪⎨<⎪⎩的解是5x <,则m 的取值范围是( )A .5m ≥B .5m > C.5m ≤ D .5m < 【答案】A. 【解析】试题分析:解第一个不等式得:x <5;解第二个不等式得:x <m ;因为不等式组的解是x <5,根据不等式组解集的判定方法即可得m ≥5,故选A.6. (2017甘肃庆阳第15题)若关于x 的一元二次方程(k-1)x 2+4x+1=0有实数根,则k 的取值范围是 【答案】k ≤5且k ≠1.考点:根的判别式.7. (2017山东烟台第15题)运行程序如图所示,从“输入实数x ”到“结果是否18<”为一次程序操作,若输入x 后程序操作仅进行了一次就停止,则x 的取值范围是 . 【答案】x <8. 【解析】试题解析:依题意得:3x ﹣6<18, 解得x <8.考点:一元一次不等式的应用.8.(2017四川泸州第15题)若关于x的分式方程x2322m mx x++=--的解为正实数,则实数m的取值范围是.【答案】m<6且m≠2. 【解析】试题解析:x2322m mx x++=--,方程两边同乘(x-2)得,x+m-2m=3x-6,解得,x=6-2m,由题意得,6-2m>0,解得,m<6,∵6-2m≠2,∴m≠2,考点:1.分式方程的解;2.解一元一次不等式9.(2017四川宜宾第13题)若关于x、y的二元一次方程组2m133x yx y⎧-=+⎨+=⎩的解满足x+y>0,则m的取值范围是.【答案】m>﹣2.考点:1.解一元一次不等式;2.二元一次方程组的解. 10.(2017四川泸州第15题)关于x 的分式方程2322x m mx x++=--的解为正实数,则实数m 的取值范围是 . 【答案】m<6且m ≠2. 【解析】试题分析:方程两边同乘以x-2可得,x+m-2m=3(x-2),解得x=62m --,因方程的解为正实数,且x-2≠0,所以62m -->0且m ≠2,即m<6且m ≠2. 11.(2017江苏宿迁第14题)若关于x 的分式方程1322m xx x-=---有增根,则实数m 的值是 . 【答案】1. 【解析】试题分析:方程两边同乘以x-2,可得m=x-1-3(x-2),解得m=-2x+5,因分式方程1322m xx x-=---有增根,可得x=2,所以m=1.12.(2017山东菏泽第10题)关于x 的一元二次方程06)1(22=-++-k k x x k 的一个根式0,则k 的值是_______. 【答案】0. 【解析】试题分析:把x=0代入06)1(22=-++-k k x x k ,得02=-k k ,解得k=1(舍去),或k=0;。
2019河北中考数学《2.3分式方程及应用》教材知识梳理
第三节 分式方程及应用解分式方程(1次)1.(2019河北19题8分)解方程:1x -1=2x +1.解:方程两边都乘以(x -1)(x +1),得x +1=2(x -1),解得x =3.经检验,当x =3时,(x -1)(x +1)=8≠0.∴x=3是原分式方程的解.分式方程的实际应用(3次)2.(2019河北12题2分)在求3x 的倒数的值时,嘉淇同学将3x 看成了8x ,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( B )A.13x =18x -5B.13x =18x +5 C.13x =8x -5 D.13x=8x +5 3.(2019河北7题3分)甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路x m .依题意,下面所列方程正确的是( A )A.120x =100x -10B.120x =100x +10C.120x -10=100xD.120x +10=100x4.[2019河北22(1)题4分]甲、乙两人准备整理一批新到的实验器材.若甲单独整理需要40 min 完工;若甲、乙共同整理20 min 后,乙需再单独整理20 min 才能完工.(1)问乙单独整理多少分钟完工?(2)若乙因工作需要,他的整理时间不超过30 min ,则甲至少整理多少分钟才能完工?解:(1)设乙单独整理x min 完工,根据题意得:2040+20+20x=1,解得x =80.经检验,x =80是原分式方程的解.∴乙单独整理80 min 完工;(2)25 min.5.(2019原创)对于非零实数a 、b ,规定a ⊗b =1b -1a,若2⊗(2x -1)=1,则x 的值为( A )A.56B.54C.32 D .-166.(2019石家庄新华区模拟)若关于x 的分式方程m +2x -1=1的解为正数,则m 的取值范围是( D )A .m>3B .m ≠-2C .m>-3且m≠1D .m>-3且m≠-27.(2019河北中考说明)已知⎩⎪⎨⎪⎧x =2,y =1是二元一次方程组⎩⎪⎨⎪⎧mx +ny =8,nx -my =1的解,求方程m 2x -4-x x -2=1n 的解.解:将x =2,y =1代入方程组得:⎩⎪⎨⎪⎧2m +n =8,2n -m =1,解得⎩⎪⎨⎪⎧m =3,n =2,将m =3,n =2代入所求方程得:32x -4-x x -2=12,去分母得:3-2x =x -2,解得x =53,经检验,当x =53时,2x -4=-23≠0,所以x =53是原分式方程的解.8.(2019邯郸二十五中模拟)端午节前夕,小东的父母准备购买若干个粽子和咸鸭蛋(每个粽子的价格相同,每个咸鸭蛋的价格相同).已知粽子的价格比咸鸭蛋的价格贵1.8元,花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同.粽子与咸鸭蛋的价格各是多少?解:设咸鸭蛋的价格是x 元,则粽子的价格是(x +1.8)元,依题意,得30x +1.8=12x.解得x =1.2,经检验,x =1.2是原方程的解. ∴x +1.8=3.答:粽子与咸鸭蛋的价格分别是3元和1.2元.9.(2019唐山丰润区二模)某商家预测一种应季衬衫能畅销市场,就用13 200元购进了一批这种衬衫,面市后果然供不应求,商家又用28 800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完利润率不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?解:(1)设该商家购进的第一批衬衫是x 件,由题意可得:13 200x =28 8002x-10,解得x =120,经检验,x =120是原方程的根. 答:该商家购进的第一批衬衫是120件; (2)设每件衬衫的标价是y 元,由题意可得:(120+2×120-50)y +50×0.8y-13 200-28 80013 200+28 800≥25%,∴y ≥150.答:每件衬衫的标价至少是150元.中考考点清单)分式方程的概念1.分母中含有__未知数__的方程叫做分式方程.【温馨提示】“分母中含有未知数”是分式方程与整式方程的根本区别,也是判断一个方程是否为分式方程的依据.分式方程的解法2.解法步骤(1)去分母:给方程两边都乘以__最简公分母__,把它化为整式方程; (2)解这个整式方程; (3)__检验__.【温馨提示】找最简公分母的方法:(1)取各分式的分母中各项系数的最小公倍数; (2)各分式的分母中所有字母或因式都要取到; (3)利用字母(或因式)的幂取指数最大的;(4)所得的系数的最小公倍数与各个字母(或因式)的最高次幂的积即为最简公分母.3.检验方法(1)利用方程的解的概念进行检验;(2)将解得的整式方程的根代入__最简公分母__,看计算结果__是否为0__,不为0就是原方程的根;若为0,则为增根,必须舍去;(3)增根:当分母的值为0时,分式方程__无解__,这样的根叫做分式方程的__增根__.【温馨提示】分式方程的增根与无解并非同一个概念,分式方程无解,可能是解为增根,也可能是去分母后的整式方程无解.分式方程的增根是去分母后的整式方程的根,也是使分式方程的分母为0的根.分式方程的应用4.列分式方程解应用题的六个步骤(1)审:弄清题目中涉及的已知量和未知量以及量与量之间的等量关系; (2)设:设未知数,根据等量关系用含未知数的代数式表示其他未知量;(3)列:根据等量关系,列出方程; (4)解:求出所列方程的解;(5)检:双检验.A.检验是否是分式方程的解;B.检验是否符合实际问题; (6)答:写出答案. 5.常见关系分式方程的应用题主要涉及工作量问题,行程问题等,每个问题中涉及三个量的关系.如:工作时间=__工作量工作效率__,时间=__路程速度__.【方法点拨】列分式方程解应用题时,要验根作答,不但要检验是否为方程的增根,还要检验是否符合题意,即“双重验根”.,中考重难点突破)分式方程的解法【例1】(2019深圳中考)解方程:x 2x -3+53x -2=4.【学生解答】去分母,得x(3x -2)+5(2x -3)=4(2x -3)(3x -2),化简,得:7x 2-20x +13=0,解得x 1=1,x 2=137.【点拨】分式方程――→去分母转化整式方程→验根,去分母时防漏乘.1.(2019济宁中考)解分式方程2x -1+x +21-x=3时,去分母后变形正确的为( D )A .2+(x +2)=3(x -1)B .2-x +2=3(x -1)C .2-(x +2)=3D .2-(x +2)=3(x -1)2.(2019无锡中考)分式方程4x =3x -1的解是__x =4__.含参数的分式方程【例2】(2019巴中中考)若分式方程x x -1-m1-x=2有增根,则这个增根是________.【解析】本题主要考查了增根的概念:使最简公分母为0的根叫做分式方程的增根,由分母x -1=0,得x =1,这就是方程的增根.【学生解答】x =1【方法总结】(1)增根的求法:令最简公分母为0得到关于未知数的一元一次方程,解方程求得的解即为增根;(2)求有增根的分式方程中参数的值,应先求出可能的增根,再将其代入化简后的整式方程,求解关于参数的方程即可.3.(2019黑龙江中考)关于x 的分式方程m x 2-4-1x +2=0无解,则m =__0或-4__.分式方程的应用【例3】(2019邯郸二中模拟)自2019年12月启动“绿茵行动,青春聚力”邯郸自青林植树活动以来,某单位筹集7 000元购买了桂花树和樱花树共30棵,其中购买桂花树花费3 000元.已知桂花树比樱花树的单价高50%,求樱花树的单价及棵数.【学生解答】设樱花树的单价为x 元,根据题意,得 3 000(1+50%)x +7 000-3 000x =30,解得x =200,经检验,x =200是所列分式方程的根且符合题意,则7 000-3 000x =4 000200=20(棵).答:樱花树的单价是200元,棵数为20棵.【点拨】审题确定等量关系→设未知数→列方程→解方程根,判断根是否合理→确定根并作答.4.(2019河北石家庄四十三中一模)甲种污水处理器处理25 t 的污水与乙种污水处理器处理35 t 的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20 t 的污水,求两种污水处理器的污水处理效率.设甲种污水处理器的污水处理效率为x t/h ,依题意列方程正确的是( B )A.25x =35x -20B.25x =35x +20C.25x -20=35xD.25x +20=35x5.(2019河北沧州八中二模)某农场开挖一条长480 m 的渠道,开工后,每天比原计划多挖20 m ,结果提前4天完成任务,如果设原计划每天挖x m ,那么根据题意可列方程为__480x +20+4=480x__.6.(2019苏州中考)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,甲、乙每小时各做多少面彩旗?解:设乙每小时做x 面彩旗,则甲每小时做(x +5)面彩旗,依题意有60x +5=50x,解得x =25.经检验,x =25是原方程的解.x +5=25+5=30.故甲每小时做30面彩旗,乙每小时做25面彩旗.中考备考方略)1.(2019宜昌中考)分式方程2x -1x -2=1的解为( A )A .x =-1B .x =12C .x =1D .x =22.(2019邯郸二十五中模拟)分式方程1x -1=3x 2-1的解是( C )A .x =-1B .x =1C .x =2D .无解3.(2019白银中考)若x =-1是方程a x -1-3x=0的根,则a 的值为( A )A .6B .-6C .3D .-34.(2019凉山中考)关于x 的方程3x -2x +1=2+mx +1无解,则m 的值为( A )A .-5B .-8C .-2D .55.(2019临夏中考)某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同,设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( A )A.800x +50=600xB.800x -50=600xC.800x =600x +50D.800x =600x -506.(2019唐山路北区二模)甲乙两地相距420 km ,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的 1.5倍,进而从甲地到乙地的时间缩短了 2 h .设原来的平均速度为x km/h ,可列方程为( B )A.420x +4201.5x =2B.420x -4201.5x=2C.x 420+1.5x 420=2 D.x 420-1.5x 420=2 7.(2019湖州中考)方程2x -1x -3=1的根是x =__-2__.8.(2019泸州中考)分式方程4x -3-1x =0的根是__x =-1__.9.(2019东营中考)若分式方程x -ax +1=a 无解,则a 的值为__±1__.10.(2019石家庄四十二中模拟)有两块面积相同的蔬菜试验田,第一块使用原品种,第二块使用新品种,分别收获蔬菜1 500 kg 和2 100 kg.已知第二块试验田每亩的产量比第一块多200 kg.若设第一块试验田每亩的产量为x kg ,则根据题意列出的方程是__1 500x =2 100x +200__.11.(2019厦门中考)某工厂一台机器的工作效率相当于一个工人工作效率的12倍,用这台机器生产60个零件比8个工人生产这些零件少用2小时,则这台机器每小时生产__15__个零件.12.解方程:(1)(2019连云港中考)2x -11+x=0;解:去分母,得2+2x -x =0, 解得x =-2,经检验,x =-2是分式方程的解.(2)(2019乐山中考)1x -2-3=x -12-x.解:方程两边同乘x -2,得1-3(x -2)=-(x -1),即1-3x +6=-x +1, 整理得,-2x =-6, 解得x =3,经检验,当x =3时,x -2≠0, 则原方程的解为x =3.13.(2019河北考试说明)沧州建城2 500年之际,为了继续美化城市,计划在路旁栽树1 200棵,由于志愿者的参加,实际每天栽树的棵数比原计划多20%,结果提前2天完成,求原计划每天栽树多少棵?解:设原计划每天栽树x 棵,则实际每天栽树的棵数为(1+20%)x ,由题意得,1 200x-1 200(1+20%)x=2,解得x =100,经检验,x =100是原分式方程的解,且符合题意.答:原计划每天栽树100棵.14.(2019威海中考)某校进行期末体育达标测试,甲、乙两班的学生数相同,甲班有48人达标,乙班有45人达标,甲班的达标率比乙班高6%,求乙班的达标率.解:设乙班的达标率是x ,则甲班的达标率为(x +6%),依题意得:48x +6%=45x,解得x =0.9,经检验,x =0.9是所列方程的根,并符合题意. 答:乙班的达标率为90%.15.(2019重庆中考)从-3,-1,12,1,3这五个数中,随机抽取一个数,记为a ,若数a 使关于x 的不等式组⎩⎪⎨⎪⎧13(2x +7)≥3,x -a<0无解,且使关于x 的分式方程x x -3-a -23-x=-1有整数解,那么这5个数中所有满足条件的a 的值之和是( B )A .-3B .-2C .-32 D.1216.(2019德阳中考)已知方程3-a a -4-a =14-a ,且关于x 的不等式组⎩⎪⎨⎪⎧x>a ,x≤b 只有4个整数解,那么b 的取值范围是( D )A .-1<b≤3B .2<b ≤3C .8≤b<9D .3≤b<417.(2019青岛中考)A ,B 两地相距180 km ,新修的高速公路开通后,在A ,B 两地间行驶的长途客车平均车速提高了50%,从而A 地到B 地的时间缩短了1 h .若设原来的平均车速为x km/h ,则根据题意可列方程为( A )A.180x -180(1+50%)x =1B.180(1+50%)x -180x =1C.180x -180(1-50%)x =1D.180(1-50%)x -180x=1 18.(2019原创)若关于x 的方程ax x -2-1=4x -2无解,则a 的值是__1或2__.19.(2019鄂州中考)解方程:x +1x 2-x -13x =x +53x -3.解:x =-4.20.(2019聊城中考)为加快城市群的建设与发展,在A ,B 两城市间新建一条城际铁路,建成后,铁路运行里程由现在的120 km 缩短至114 km ,城际铁路的设计平均时速要比现行的平均时速快110km ,运行时间仅是现行时间的25,求建成后的城际铁路在A ,B 两地的运行时间.解:设城际铁路现行速度是x km/h.由题意得:120x ×25=114x +110.解得x =80.经检验,x =80是原方程的根,且符合题意. 则120x ×25=12080×25=0.6(h). 答:建成后的城际铁路在A ,B 两地的运行时间是0.6 h.21.(2019常德中考)某服装店用4 500元购进一批衬衫,很快售完,服装店老板又用2 100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1 950元,则第二批衬衫每件至少要售多少元?解;(1)设第一批衬衫每件进价是x 元,则第二批每件进价是(x -10)元,根据题意可得:4 500x ×12=2 100x -10,解得x =150, 经检验,x =150是原方程的解.∴第一批衬衫每件进价是150元,第二批每件进价是140元,4 500150=30(件),2 100140=15(件).答:第一批衬衫进了30件,第二批进了15件;(2)设第二批衬衫每件售价y 元,根据题意可得:30×(200-150)+15(y -140)≥1 950, 解得y≥170.答:第二批衬衫每件至少要售170元.2019-2020学年数学中考模拟试卷一、选择题1.﹣3的绝对值是( ) A .﹣3B .3C .-13D .132.函数y=|x-3|·(x+1)的图象为( )A. B. C. D.3.如图,AB 是⊙O 的直径,C ,D 两点在⊙O 上,若∠BCD=40°,则∠ABD 的度数为( )A.40°B.50°C.80°D.90°4.将抛物线y =2x 2﹣1沿直线y =2x 方向向右上方平移25个单位,得到新抛物线的解析式为( ) A.y =2(x+2)2+3 B.22(25)1y x =-- C.22251y x =+-D.y =2(x ﹣2)2+35.数据1、10、6、4、7、4的中位数是( ). A.9B.6C.5D.46.-4的倒数是( ). A .4B .-4C .14D .-147.如图,点D 在半圆O 上,半径OB =261,AD =10,点C 在弧BD 上移动,连接AC ,H 是AC 上一点,∠DHC =90°,连接BH ,点C 在移动的过程中,BH 的最小值是( )A .5B .6C .7D .88.已知抛物线2(0)y ax bx c a =++≠的对称轴为1x =-,与x 轴的一个交点在(3,0)-和(2,0)-之间,其部分图像如图所示,则下列结论:①点17(,)2y -,23(,)2y -,35(,)4y 是该抛物线上的点,则123y y y <<;②320b c +<;③()t at b a b +≤-(t 为任意实数).其中正确结论的个数是( )A .0B .1C .2D .39.下列四个点中,有三个点在同一条直线上,不在这条直线上的点是( ) A .(﹣3,﹣1)B .(1,1)C .(3,2)D .(4,3)10.一幅美丽的图案是由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三角形、正四边形、正六边形,那么另外一个为( ) A .正三角形 B .正四边形 C .正五边形D .正六边形11.下列运算正确的是( ) A .x ﹣2x =﹣1 B .2x ﹣y =xyC .x 2+x 2=x 4D .(﹣2a 2b )3=﹣8a 6b 312.改革开放40年,中国教育呈现历史性变化.其中,全国高校年毕业生人数从16.5万增长到820万,40年间增加了近50倍.把数据“820万”用科学记数法可表示为( ) A .48210⨯ B .58210⨯C .58.210⨯D .68.210⨯二、填空题 13.若分式22xx +的值为正,则实数x 的取值范围是__________________. 14.已知:Rt △ABC 中,∠B=90°,AB=4,BC=3,点M 、N 分别在边AB 、AC 上,将△AMN 沿直线MN 折叠,点A 落在点P 处,且点P 在射线CB 上,当△PNC 为直角三角形时,PN 的长为_____.15.如图,在Rt △ABC 中,∠A=90°,AB=AC ,BC=2+1,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠∠B ,使点B 的对应点B′始终落在边AC 上,若△MB′C 为直角三角形,则BM 的长为_____.16.已知反比例函数的图象经过点(m ,6)和(﹣2,3),则m 的值为________. 17.已知函数y =2x+1,当x >3时,y 的取值范围是_____. 18.计算:(54)(54)+- 的结果是_____. 三、解答题19.如图,已知在Rt ABC ∆中,90ABC ∠=︒,在AB 上取点D ,使得AD CD =,若//CD BE . (1)求证:AB BE =;(2)若CD 平分ACB ∠,求ABE ∠的度数.20.如图是某景区每日利润y 1(元)与当天游客人数x (人)的函数图像.为了吸引游客,该景区决定改革,改革后每张票价减少20元,运营成本减少800元.设改革后该景区每日利润为y 2(元).(注:每日利润=票价收入-运营成本)(1)解释点A 的实际意义:______. (2)分别求出y 1、y 2关于x 的函数表达式;(3)当游客人数为多少人时,改革前的日利润与改革后的日利润相等?21.端午节是我国的传统节日,益民食品厂为了解市民对去年销量较好的花生粽子、水果粽子、豆沙粽子、红枣粽子(分别用A 、B 、C 、D 表示)这四种不同口味的粽子的喜爱情况,对某居民区的市民进行了抽样调查,并根据调查结果绘制了如下两幅不完整的统计图. (1)本次参加抽样调查的居民有多少人?(2)将两幅统计图补充完整;(3)小明喜欢吃花生粽子和红枣粽子,妈妈为他准备了四种粽子各一个,请用“列表法”或“画树形图”的方法,求出小明同时选中花生粽子和红枣粽子的概率.22.如图,BD是▱ABCD的对角线,AE⊥BD,CF⊥BD,垂足分别为E,F,AM与CN分别是∠BAE与∠DCF 的平分线,AM交BE于点M,CN交DF于点N,连接AN,CM.求证:四边形AMCN是平行四边形.23.央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图1补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.24.为丰富学生的课余生活,陶冶学生的情趣和爱好,某小学开展了学生社团活动。
初中数学中考复习专题妙用分式方程增根求参数值含
初中数学中考复习专题妙用分式方程增根求参数值含1 / 1妙用分式方程的增根求参数值解分式方程时,常经过适合变形化去分母,转变为整式方程来解,若整式方程的根使分 式方程中的起码一个分母为零,则是增根,应舍去,由此定义可知:增根有两个性质:(1)增根是去分母后所得整式方程的根;( 2)增根是使原分式方程分母为零的未知数的值,灵巧运用这两个性质,可简捷地确立分式方程中的参数(字母)值,请看下边例示:一、分式方程有增根,求参数值x24 x a 例1a 为什么值时,对于x 的方程x 3=0 有增根?剖析:先将原分式方程转变为整式方程,而后运用增根的两个性质将增根代入整式方程可求 a 的值 解:原方程两边同乘以(x-3)去分母整理,得x 2-4x+a=0 (※)因为分式方程有增根,增根为x=3 ,把 x=3 代入(※)得, 9-12+a=0a=3x24 x a 因此 a=3 时,x 3=0 有增根。
评论:运用增根的性质将所求问题转变为求值问题,简捷地确立出分式方程中的参数(字母)值1m2m 2例2m 为什么值时,对于x 的方程 x 1 + x 2 =x 23x2 有增根。
剖析:原分式方程有增根,应是使分母为0 的 x 值。
将这样的 x 值代入去分母的整式方程可求出 m 的值。
解:原方程两边同乘以( x-1)( x-2 )去分母整理,得 ( 1+m ) x=3m+4 (※)3因为分式方程有增根, 据性质( 2)知:增根为 x=1 或 x=2。
把 x=1 代入(※),解得 m=- 2 ; 把 x=2 代入(※)得 m=-23因此 m=- 2 或 -2 时,原分式方程有增根k 2评论:分式方程有增根,不必定分式方程无解(无实),如方程x1+1=( x 1)( x 2 )有增28根,可求得 k=- 3 ,但分式方程这时有一实根x= 3 。
二、分式方程是无实数解,求参数值例 3 若对于 x 的方程 x 2mx 5 = x 5 +2 无实数根,求 m 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用举例:
招数一、分式方程增根问题:增根问题可按如下步骤进行:①让最简公分母 0,确定增根;②化分式方程为 整式方程;③把增根代入整式方程即可求得相关字母的值.
【例 1】当 【答案】2
____________时,解分式方程
考纲要求:
1. 了解分式方程的概念 2.会解可化为一元一次方程的分式方程(方程中的分式不超过两个),会对分式方程的解进行检验. 3.会用分式方程解决简单的事件问题.
基础知识回顾:
1. 分式方程的定义: 分母中 含有未知数的方程叫做分式方程.
2. 解分式方程的一般步骤:
1 去分母化分式方程为整式方程. 2 解 这个整式方程,求出整式方程的根. 3 检验,得出结论.一般代入原方程的最简公分母进行检验.
8. 阅读下列材料:
在学习“分式方程及其解法”过程中,老师提出一个问题:若关于 x 的分式方程
的解为正数,
求 a 的取值范围?
经过小组交流讨论后,同学们逐渐形成了两种意见:
小明说:解这个关于 x 的分式方程,得到方程的解为 x=a﹣2.由题意可得 a﹣2>0,所以 a>2,问题解决.
小强说:你考虑的不全面.还必须保证 a≠3 才行.
由分式方程无解,得到 x-3=0,即 x=3,
代入整式方程得:n= ;
当 n-1=0 时,整式方程无解,此时 n=1,
综上,n=1 或 n= .
9. 如果关于 x 的分式方程
-2= 有正整数解,且关于 x 的不等 式组
的所有整数 a 的和是( )
A.
B.
C.
D.
【答案】D
【解析】
无解,那么符合条件
分式方程去分母得:2+ax﹣2x+6=﹣4,整理得:(a﹣2)x=﹣12(a﹣2≠0),解得:x=﹣ ,由分式方
整式方程可得: m 1. 故答案为:1.
考点:分式方程的增根.
3. 若关于 x 的分式方程 【答案】1 或 【解析】
=2a 无解,则 a 的值为_____.
解:去分母得:
x-3a=2a(x-3),
整理得:(1-2a)x=-3a,
当 1-2a=0 时,方程无解,故 a= ;
当 1-2a≠0 时,x= =3 时,分式方程无解,则 a=1,
考点:分式方程的解. 招数三、已知分式方程解的范围求参数范围问题:明确告诉了解的范围,首先还是要按正常步骤解出方程, 解中肯定带有参数,再根据解的范围求参数的范围,注意 :最后一定要讨论增根的问题.
[来源:学,科,网]
【例 3】关于 x 的方程
=1 的解是非负数,则 a 的取值范围是( )
A.a≥﹣3 B.a≤﹣3
老师说:小强所说完全正确.
请回答:小明考虑问题不全面,主要体现在哪里?请你简要说明:
.
完成下列问题:
(1)已知关于 x 的方程
=1 的解为负数,求 m 的取值范围;
(2)若关于 x 的分式方程
=﹣1 无解.直接写出 n 的取值范围.
【答案】(1):m< 且 m≠﹣ ;(2)n=1 或 n= .
(2)分式方程去 分母得:3-2x+nx-2=-x+3,即(n-1)x=2,
为非负数,可得关于 a 的不等式组,解不等式组求得 a 的取值范围,即可最终确定出 a 的范围,将范围内的
整数相加即可得.
【详解】解不等式
,得
,
由于不等式组只有四个整 数解,即
∴
,
∴
;
只有 4 个整数解,
解分式方程
,得
,
考点:1.解分式方程;2.解一元一次不等式组;3.含待定字 母的不等式(组). 方法、规律归纳: 1.按照基本步骤解分式方程时,关键是确定各分式的最简公分母,若分母为多项式时,应首先进行因式分 解,将分式方程转化为整式方程,给分式方程乘最简公分母时,应对分式方程的每一项都乘以最简公分母 ,不能漏乘常数项; 2.检验分式方程的根是否为增根,即分式方程的增根是去分母后整式方程的某个根,如果它使 分式方程的 最简公分母为 0.则为增根. 增根问题可按如下步骤进行:①让最简公分母 0,确定增根;②化分式方程为 整式方程;③把增根代入整式方程即可求得相关字母的值. 3. 分式方程的增根和无解并非同一个概念,分式方程无解,可能是解为增根,也可能是去分母后的整式方 程无解;分式方程的增根是去分母后整式方程的根,也是使分式方程的分母为 0 的根.
程有正整数解,得到:a=1,0,﹣1,﹣4,﹣10,不等式组整理得:
,解得:a≤x<﹣9,由不等式
组无解,即 a≥﹣9,∴a=1,0,﹣1,﹣4,之和为﹣4.
故选 D.
考点:1.分式方程的解;2.解一元一次不等式组;3.含待定字母的不等式(组);4.综合题.
10.已知关于 x 的不等式组
有且ห้องสมุดไป่ตู้有四个整数解,又关于 x 的分式方程 ﹣2= 有
C.a≥﹣3 且 a
D.a≤﹣3 且 a
【答案】D
【解析】
解:解方程
=1,得:x=﹣a﹣3,
∵方程
=1 的解是非负数,
∴﹣a﹣3≥0 且﹣ a﹣3≠ ,
解得:a≤﹣3 且 a≠﹣ ,
故选:D.
【例 4】若关于 x 的分式方程
=1 的解是负数,求 m 的取值范围.
【答案】m<2 且 m≠0.
【解析】
故答案为-4 或 6 或 1
6.关于 x 的分式方程 x m 2m 3 的解为正实数,则实数 m 的取值范围是
.
x2 2x
【答案】m<6 且 m≠2.
【解析】
7 . 若关于 x 的方程 x2 2x 3 0 与 2 1 有一 个解相同,则 a 的值为( x3 xa
A.1
B.1 或﹣3
C.﹣1
D.﹣1 或 3
) [来源:学科网 ZXXK]
【答案】C.
【解析】
试题分析:解方程 x2 2x 3 0 ,得:x1=1,x2=﹣3,∵x=﹣3 是方程 2 1 的增根 ,∴当 x=1 时, x3 xa
代入方程 2 1 ,得: 2 1 ,解得 a=﹣1.故选 C.
x3 xa
13 1a
考点:1.分式方程的解;2.解一元一次不等式.学*科网
正数解,则满足条件的整数 k 的和为( )
A.5 B.6 C.7 D.8 【答案】D
∵分式方程有正数解,
∴ >0,且
≠1,
解得:k>﹣3 且 k≠﹣1,
所以满足条件的整数 k 的值为﹣2、0、1、2、3、4,
则满足条件的整数 k 的和为﹣2+0+1+2+3+4=8,
故选:D.
考点:1.分式方程的解;2.一元一次不等式组的整数解;3.含待定字母的不等式(组);4.综合题.
【答案】-4 或 6 或 1
【解析】
由原方程得:2(x+2)+ax=3(x-2),
整理得:(a-1)x=-10,
(i )当 a-1=0,即 a=1 时,原方程无解;
(ii)当 a-1≠0,原方程有增根 x=±2,
当 x=2 时,2(a-1)=-10,即 a=-4;
当 x=-2 时,-2(a-1)=-10,即 a= 6,[来源:学|科|网Z|X|X|K] 即当 a=1,-4 或 6 时原方程无解.
会出现增根.
考点:分式方程的增根. 招数二、分式方程无解问题:分式方程无解分为以下两种情况:①原方程解不出数来,也就是整式方程无 解 ;②整式方程能解出来,但是解出来的数使得原分式方程的分母为零,也就是所谓的增根,所以切记一 定要讨论。
【例 2】若关于 x 的方程 【答案】-1 或 5 或
无解,则 m 的值为__.
故关于 x 的分式方程
=2a 无解,则 a 的值为:1 或 .
故答案为:1 或 .
考点:1.分式方程的解;2.分类讨论.
4. 已知关于 x 的分式方程 【答案】k<6 且 k≠3
有一个正数解,则 k 的取值范围为________.
5.已知关于 x 的方程
无解,则 a 的值为_____________.
[来源:学科网]
实战演练:
1 . 若方程
有增根,则增根可能为( )
A.0 B.2 C.0 或 2 D.1
【答案】A
考点:分式方程的增根.
2.若关于 x 的分式方程 m 1 x 3 有增根,则实数 m 的值是
.
x2 2x
【答案】1.
【解析】
试题分析:去分母,得: m x 1 3(x 2), 由分式方程有增根,得到 x 2 0, 即 x 2. 把 x 2 代入
解:由
=1,得(x+1)2-m=x2-1,解得 x=-1+ .
由已知可得-1+ <0,-1+ ≠1 且-1+ ≠-1,
解得 m<2 且 m≠0.
招数四、与其它方程或不等式结合求参数问题:
【例 5】关于 x 的两个方程 x2 x 6 0 与 2 1 有一个解相同,则 m=
.
xm x3
【答案】﹣8.
【解析】
考点:1.分式方程的解;2.解一元二次方程-因式分解法.
【例 6 】若数 使关于 x 的不等式组
有且只有四个整数解,且使关于 y 的方程
的解为非负数,则符合条件的所有整数 的和为( )
A.
B.
C.1 D.2
【答案】C
【解析】【分析】先求出不等式的解集,根据只有四个整数解确定出 a 的取值范围,解分式方程后根据解