海宁市第四高级中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海宁市第四高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 若动点),(),(2211y x B y x A 、分别在直线: 011=-+y x 和2l :01=-+y x 上移动,则AB 中点M 所在直线方程为( )
A .06=--y x
B .06=++y x
C .06=+-y x
D .06=-+y x
2. 已知某运动物体的位移随时间变化的函数关系为,设物体第n 秒内的位移为a n ,则
数列{a n }是( ) A .公差为a 的等差数列 B .公差为﹣a 的等差数列
C .公比为a 的等比数列
D .公比为的等比数列
3. 已知f (x )=ax 3+bx+1(ab ≠0),若f (2016)=k ,则f (﹣2016)=( ) A .k
B .﹣k
C .1﹣k
D .2﹣k
4. 点P 是棱长为1的正方体ABCD ﹣A 1B 1C 1D 1的底面A 1B 1C 1D 1上一点,则的取值范围是( )
A .[﹣1,﹣]
B .[﹣,﹣]
C .[﹣1,0]
D .[﹣,0]
5. 若函数f (x )=﹣2x 3+ax 2+1存在唯一的零点,则实数a 的取值范围为( ) A .[0,+∞) B .[0,3] C .(﹣3,0]
D .(﹣3,+∞)
6. 已知α∈(0,π),且sin α+cos α=,则tan α=( )
A .
B .
C .
D .
7. 设x ,y ∈R ,且x+y=4,则5x +5y 的最小值是( )
A .9
B .25
C .162
D .50
8. 如图,四面体D ﹣ABC 的体积为,且满足∠ACB=60°,BC=1,AD+=2,则四面体D ﹣ABC 中最长
棱的长度为( )
A
.B.2 C
.D.3
9.点A
是椭圆上一点,F1、F2分别是椭圆的左、右焦点,I是△AF1F2
的内心.若
,则该椭圆的离心率为()
A
.B
.C
.D

10.以下四个命题中,真命题的是()
A.(0,)

∃∈,sin tan
x x
=
B.“对任意的x R
∈,210
x x
++>”的否定是“存在
x R
∈,2
00
10
x x
++<
C.R
θ
∀∈,函数()sin(2)
f x xθ
=+都不是偶函数
D.ABC
∆中,“sin sin cos cos
A B A B
+=+”是“
2
C
π
=”的充要条件
【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.
11.已知函数f(x)=a x﹣1+log a x在区间[1,2]上的最大值和最小值之和为a,则实数a为()
A
.B
.C.2 D.4
12
.函数的最小正周期不大于2,则正整数k的最小值应该是()
A.10 B.11 C.12 D.13
二、填空题
13.若x、y满足约束条件
⎩⎪

⎪⎧x-2y+1≤0
2x-y+2≥0
x+y-2≤0
,z=3x+y+m的最小值为1,则m=________.
14.已知数列{a n}满足a1=1,a2=2,a n+2=(1+cos
2)a n+sin
2,则该数列的前16项和为.
15.设为单位向量,①若为平面内的某个向量,则=||•;②若与平行,则=||•;③若
与平行且||=1,则=.上述命题中,假命题个数是.
16.如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E、F分别是棱AA′,CC′的中点,过直线EF的平面分别与棱BB′、DD′交于M、N,设BM=x,x∈[0,1],给出以下四个命题:
①平面MENF⊥平面BDD′B′;
②当且仅当x=时,四边形MENF的面积最小;
③四边形MENF周长l=f(x),x∈0,1]是单调函数;
④四棱锥C′﹣MENF的体积v=h(x)为常函数;
以上命题中真命题的序号为.
17.已知实数x,y满足约束条,则z=的最小值为.
18.设函数f(x)=的最大值为M,最小值为m,则M+m=.
三、解答题
19.已知抛物线C:x2=2y的焦点为F.
(Ⅰ)设抛物线上任一点P(m,n).求证:以P为切点与抛物线相切的方程是mx=y+n;
(Ⅱ)若过动点M(x0,0)(x0≠0)的直线l与抛物线C相切,试判断直线MF与直线l的位置关系,并予以证明.
20.已知p:,q:x2﹣(a2+1)x+a2<0,若p是q的必要不充分条件,求实数a的取值范围.21.已知f(x)=(1+x)m+(1+2x)n(m,n∈N*)的展开式中x的系数为11.
(1)求x2的系数取最小值时n的值.
(2)当x2的系数取得最小值时,求f(x)展开式中x的奇次幂项的系数之和.
22.已知函数f(x)=ax3+2x﹣a,
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若a=n且n∈N*,设x n是函数f n(x)=nx3+2x﹣n的零点.
(i)证明:n≥2时存在唯一x n且;
(i i)若b n=(1﹣x n)(1﹣x n+1),记S n=b1+b2+…+b n,证明:S n<1.
23.已知直角梯形ABCD中,AB∥CD,,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的中点,现将△ADE沿AE折叠,使得DE⊥EC.
(1)求证:FG∥面BCD;
(2)设四棱锥D﹣ABCE的体积为V,其外接球体积为V′,求V:V′的值.
24.已知函数g(x)=f(x)+﹣bx,函数f(x)=x+alnx在x=1处的切线l与直线x+2y=0垂直.
(1)求实数a的值;
(2)若函数g(x)存在单调递减区间,求实数b的取值范围;
(3)设x1、x2(x1<x2)是函数g(x)的两个极值点,若b,求g(x1)﹣g(x2)的最小值.
海宁市第四高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】D
【解析】
考点:直线方程
2.【答案】A
【解析】解:∵,
∴a n=S(n)﹣s(n﹣1)=
=
∴a n﹣a n﹣1==a
∴数列{a n}是以a为公差的等差数列
故选A
【点评】本题主要考察了数列的递推公式求解数列的通项公式,等差数列的定义的应用,属于数列知识的简单应用
3.【答案】D
【解析】解:∵f(x)=ax3+bx+1(ab≠0),f(2016)=k,
∴f(2016)=20163a+2016b+1=k,
∴20163a+2016b=k﹣1,
∴f(﹣2016)=﹣20163a﹣2016b+1=﹣(k﹣1)+1=2﹣k.
故选:D.
【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
4.【答案】D
【解析】解:如图所示:以点D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,以DD1所在的直线为z轴,
建立空间直角坐标系.
则点A(1,0,0),C1(0,1,1),设点P的坐标为(x,y,z),则由题意可得0≤x≤1,0≤y≤1,z=1.
∴=(1﹣x,﹣y,﹣1),=(﹣x,1﹣y,0),
∴=﹣x(1﹣x)﹣y(1﹣y)+0=x2﹣x+y2﹣y=+﹣,
由二次函数的性质可得,当x=y=时,取得最小值为﹣;
故当x=0或1,且y=0或1时,取得最大值为0,
则的取值范围是[﹣,0],
故选D.
【点评】本题主要考查向量在几何中的应用,两个向量的数量积公式,两个向量坐标形式的运算,属于中档题.
5.【答案】D
【解析】解:令f(x)=﹣2x3+ax2+1=0,
易知当x=0时上式不成立;
故a==2x﹣,
令g(x)=2x﹣,则g′(x)=2+=2,
故g(x)在(﹣∞,﹣1)上是增函数,
在(﹣1,0)上是减函数,在(0,+∞)上是增函数;
故作g(x)=2x﹣的图象如下,

g(﹣1)=﹣2﹣1=﹣3,
故结合图象可知,a>﹣3时,
方程a=2x﹣有且只有一个解,
即函数f(x)=﹣2x3+ax2+1存在唯一的零点,
故选:D.
6.【答案】D
【解析】解:将sinα+cosα=①两边平方得:(sinα+cosα)2=1+2sinαcosα=,即2sinαcosα=﹣<0,
∵0<α<π,∴<α<π,
∴sinα﹣cosα>0,
∴(sinα﹣cosα)2=1﹣2sinαcosα=,即sinα﹣cosα=②,
联立①②解得:sinα=,cosα=﹣,
则tanα=﹣.
故选:D.
7.【答案】D
【解析】解:∵5x>0,5y>0,又x+y=4,
∴5x+5y≥2=2=2=50.
故选D.
【点评】本题考查基本不等式,关键在于在应用基本不等式时灵活应用指数运算的性质,属于基础题.8.【答案】B
【解析】解:因为AD•(BC•AC•sin60°)≥V D﹣ABC=,BC=1,
即AD•≥1,
因为2=AD+≥2=2,
当且仅当AD==1时,等号成立,
这时AC=,AD=1,且AD⊥面ABC,所以CD=2,AB=,
得BD=,故最长棱的长为2.
故选B.
【点评】本题考查四面体中最长的棱长,考查棱锥的体积公式的运用,同时考查基本不等式的运用,注意等号成立的条件,属于中档题.
9.【答案】B
【解析】解:设△AF1F2的内切圆半径为r,则
S△IAF1=|AF1|r,S△IAF2=|AF2|r,S△IF1F2=|F1F2|r,
∵,
∴|AF1|r=2×|F1F2|r﹣|AF2|r,
整理,得|AF
|+|AF2|=2|F1F2|.∴a=2,
1
∴椭圆的离心率e===.
故选:B.
10.【答案】D
11.【答案】A
【解析】解:分两类讨论,过程如下:
①当a>1时,函数y=a x﹣1和y=log a x在[1,2]上都是增函数,
∴f(x)=a x﹣1+log a x在[1,2]上递增,
∴f(x)max+f(x)min=f(2)+f(1)=a+log a2+1=a,
∴log a2=﹣1,得a=,舍去;
②当0<a<1时,函数y=a x﹣1和y=log a x在[1,2]上都是减函数,
∴f(x)=a x﹣1+log a x在[1,2]上递减,
∴f(x)max+f(x)min=f(2)+f(1)=a+log a2+1=a,
∴log a2=﹣1,得a=,符合题意;
故选A.
12.【答案】D
【解析】解:∵函数y=cos(x+)的最小正周期不大于2,
∴T=≤2,即|k|≥4π,
则正整数k的最小值为13.
故选D
【点评】此题考查了三角函数的周期性及其求法,熟练掌握周期公式是解本题的关键.
二、填空题
13.【答案】
【解析】解析:可行域如图,当直线y=-3x+z+m与直线y=-3x平行,且在y轴上的截距最小时,z才能取最小值,此时l经过直线2x-y+2=0与x-2y+1=0的交点A(-1,0),z min=3×(-1)+0+m=-3+m=1,
∴m=4.
答案:4
14.【答案】546.
【解析】解:当n=2k﹣1(k∈N*)时,a2k+1=a2k﹣1+1,数列{a2k﹣1}为等差数列,a2k﹣1=a1+k﹣1=k;
当n=2k(k∈N*)时,a2k+2=2a2k,数列{a2k}为等比数列,.
∴该数列的前16项和S16=(a1+a3+…+a15)+(a2+a4+…+a16)
=(1+2+...+8)+(2+22+ (28)
=+
=36+29﹣2
=546.
故答案为:546.
【点评】本题考查了等差数列与等比数列的通项公式及前n项和公式、“分类讨论方法”,考查了推理能力与计算能力,属于中档题.
15.【答案】3.
【解析】解:对于①,向量是既有大小又有方向的量,=||•的模相同,但方向不一定相同,∴①是假命题;
对于②,若与平行时,与方向有两种情况,一是同向,二是反向,反向时=﹣||•,∴②是假命题;
对于③,若与平行且||=1时,与方向有两种情况,一是同向,二是反向,反向时=﹣,∴③是假命题;
综上,上述命题中,假命题的个数是3.
故答案为:3.
【点评】本题考查了平面向量的概念以及应用的问题,解题时应把握向量的基本概念是什么,是基础题目.16.【答案】①②④.
【解析】解:①连结BD,B′D′,则由正方体的性质可知,EF⊥平面BDD′B′,所以平面MENF⊥平面BDD′B′,所以①正确.
②连结MN,因为EF⊥平面BDD′B′,所以EF⊥MN,四边形MENF的对角线EF是固定的,所以要使面积
最小,则只需MN的长度最小即可,此时当M为棱的中点时,即x=时,此时MN长度最小,对应四边形MENF的面积最小.所以②正确.
③因为EF⊥MN,所以四边形MENF是菱形.当x∈[0,]时,EM的长度由大变小.当x∈[,1]时,EM的长度由小变大.所以函数L=f(x)不单调.所以③错误.
④连结C′E,C′M,C′N,则四棱锥则分割为两个小三棱锥,它们以C′EF为底,以M,N分别为顶点的两个小棱锥.因为三角形C′EF的面积是个常数.M,N到平面C'EF的距离是个常数,所以四棱锥C'﹣MENF的体积V=h(x)为常函数,所以④正确.
故答案为:①②④.
【点评】本题考查空间立体几何中的面面垂直关系以及空间几何体的体积公式,本题巧妙的把立体几何问题和函数进行的有机的结合,综合性较强,设计巧妙,对学生的解题能力要求较高.
17.【答案】.
【解析】解:作出不等式组对应的平面区域如图:(阴影部分).
由z==32x+y,
设t=2x+y,
则y=﹣2x+t,
平移直线y=﹣2x+t,
由图象可知当直线y=﹣2x+t经过点B时,直线y=﹣2x+t的截距最小,
此时t最小.
由,解得,即B(﹣3,3),
代入t=2x+y得t=2×(﹣3)+3=﹣3.
∴t最小为﹣3,z有最小值为z==3﹣3=.
故答案为:.
【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
18.【答案】2.
【解析】解:函数可化为f(x)==,
令,则为奇函数,
∴的最大值与最小值的和为0.
∴函数f(x)=的最大值与最小值的和为1+1+0=2.
即M+m=2.
故答案为:2.
三、解答题
19.【答案】
【解析】证明:(Ⅰ)由抛物线C:x2=2y得,y=x2,则y′=x,
∴在点P(m,n)切线的斜率k=m,
∴切线方程是y﹣n=m(x﹣m),即y﹣n=mx﹣m2,
又点P(m,n)是抛物线上一点,
∴m2=2n,
∴切线方程是mx﹣2n=y﹣n,即mx=y+n …
(Ⅱ)直线MF与直线l位置关系是垂直.
由(Ⅰ)得,设切点为P(m,n),则切线l方程为mx=y+n,
∴切线l的斜率k=m,点M(,0),
又点F(0,),
此时,k MF====…
∴k•k MF=m×()=﹣1,
∴直线MF⊥直线l …
【点评】本题考查直线与抛物线的位置关系,导数的几何意义,直线垂直的条件等,属于中档题.20.【答案】
【解析】解:由p:⇒﹣1≤x<2,
方程x2﹣(a2+1)x+a2=0的两个根为x=1或x=a2,
若|a|>1,则q:1<x<a2,此时应满足a2
≤2,解得1<|a|≤,
当|a|=1,q:x∈∅,满足条件,
当|a|<1,则q:a2<x<1,此时应满足|a|<1,
综上﹣.
【点评】本题主要考查复合命题的应用,以及充分条件和必要条件的应用,结合一元二次不等式的解法是解决本题的关键.
21.【答案】
【解析】
【专题】计算题.
【分析】(1)利用二项展开式的通项公式求出展开式的x的系数,列出方程得到m,n的关系;利用二项展开式的通项公式求出x2的系数,
将m,n的关系代入得到关于m的二次函数,配方求出最小值
(2)通过对x分别赋值1,﹣1,两式子相加求出展开式中x的奇次幂项的系数之和.
【解答】解:(1)由已知C m1+2C n1=11,∴m+2n=11,
x2的系数为C m2+22C n2=+2n(n﹣1)=+(11﹣m)(﹣1)=(m﹣)2+.
∵m∈N*,∴m=5时,x2的系数取得最小值22,
此时n=3.
(2)由(1)知,当x2的系数取得最小值时,m=5,n=3,∴f(x)=(1+x)5+(1+2x)3.
设这时f(x)的展开式为
f(x)=a0+a1x+a2x2++a5x5,
令x=1,a0+a1+a2+a3+a4+a5=25+33,
令x=﹣1,a0﹣a1+a2﹣a3+a4﹣a5=﹣1,
两式相减得2(a1+a3+a5)=60,
故展开式中x的奇次幂项的系数之和为30.
【点评】本题考查利用二项展开式的通项公式求二项展开式的特殊项问题;利用赋值法求二项展开式的系数和问题.
22.【答案】
【解析】解:(Ⅰ)f'(x)=3ax2+2,
若a≥0,则f'(x)>0,函数f(x)在R上单调递增;
若a<0,令f'(x)>0,∴或,
函数f(x)的单调递增区间为和;
(Ⅱ)(i)由(Ⅰ)得,f n(x)=nx3+2x﹣n在R上单调递增,
又f n(1)=n+2﹣n=2>0,
f n()==
==﹣
当n≥2时,g(n)=n2﹣n﹣1>0,,
n≥2时存在唯一x n且
(i i)当n≥2时,,∴(零点的区间判定)
∴,(数列裂项求和)
∴,
又f1(x)=x3+2x﹣1,,(函数法定界)
,又,
∴,
∴,(不等式放缩技巧)
命题得证.
【点评】本题主要考查了导数的求单调区间的方法和利用数列的裂项求和和不等式的放缩求和技巧解题,属于难题.
23.【答案】
【解析】解:
(1)证明:取AB中点H,连接GH,FH,
∴GH∥BD,FH∥BC,
∴GH∥面BCD,FH∥面BCD
∴面FHG∥面BCD,
∴GF∥面BCD
(2)V=
又外接球半径R=
∴V′=π
∴V:V′=
【点评】本题考查的知识点是直线与平面平等的判定及棱锥和球的体积,其中根据E点三条棱互相垂直,故棱锥的外接球半径与以AE,CD,DE为棱长的长方体的外接球半径相等,求出外接球半径是解答本题的关键点.
24.【答案】
【解析】解:(1)∵f(x)=x+alnx,
∴f′(x)=1+,
∵f(x)在x=1处的切线l与直线x+2y=0垂直,
∴k=f′(x)|x=1=1+a=2,
解得a=1.
(2)∵g(x)=lnx+x2﹣(b﹣1)x,
∴g′(x)=+x﹣(b﹣1)=,x>0,
由题意知g′(x)<0在(0,+∞)上有解,
即x++1﹣b<0有解,
∵定义域x>0,
∴x+≥2,
x+<b﹣1有解,
只需要x+的最小值小于b﹣1,
∴2<b﹣1,
解得实数b的取值范围是{b|b>3}.
(3)∵g(x)=lnx+x2﹣(b﹣1)x,
∴g′(x)=+x﹣(b﹣1)=,x>0,
由题意知g′(x)<0在(0,+∞)上有解,
x1+x2=b﹣1,x1x2=1,
∵x>0,设μ(x)=x2﹣(b﹣1)x+1,
则μ(0)=[ln(x1+x12﹣(b﹣1)x1]﹣[lnx2+x22﹣(b﹣1)x2]
=ln+(x12﹣x22)﹣(b﹣1)(x1﹣x2)
=ln+(x12﹣x22)﹣(x1+x2)(x1﹣x2)
=ln﹣(﹣),
∵0<x1<x2,
∴设t=,0<t<1,
令h(t)=lnt﹣(t﹣),0<t<1,
则h′(t)=﹣(1+)=<0,
∴h(t)在(0,1)上单调递减,
又∵b≥,∴(b﹣1)2≥,
由x1+x2=b﹣1,x1x2=1,
可得t+≥,
∵0<t<1,∴由4t2﹣17t+4=(4t﹣1)(t﹣4)≥0得0<t≤,
∴h(t)≥h()=ln﹣(﹣4)=﹣2ln2,
故g(x1)﹣g(x2)的最小值为﹣2ln2.
【点评】本题考查导数的运用:求切线的斜率和单调区间、极值,考查函数的最小值的求法,解题时要认真审题,注意函数的单调性的合理运用.。

相关文档
最新文档