数列的概念单元测试题+答案百度文库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、数列的概念选择题
1.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )
(注:()()
22221211236
n n n n ++++++=

A .1624
B .1198
C .1024
D .1560
2.已知数列{}n a 满足12a =,11
1n n
a a +=-,则2018a =( ). A .2
B .
12 C .1-
D .12
-
3.设{}n a 是等差数列,且公差不为零,其前n 项和为n S .则“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件
D .既不充分也不必要条件
4.数列{}n a 满足()1
1121n n n a a n ++=-+-,则数列{}n a 的前48项和为( )
A .1006
B .1176
C .1228
D .2368
5.数列{}n a 中,11a =,12n n a a n +=+,则n a =( ) A .2n n 1-+ B .21n +
C .2(1)1n -+
D .2n
6.数列23451,,,,,3579
的一个通项公式n a 是( ) A .
21n
n + B .
23
n
n + C .
23
n
n - D .
21
n
n - 7.数列{}n a 满足 112a =,111n n
a a +=-,则2018a 等于( )
A .
1
2
B .-1
C .2
D .3
8.已知数列{}n a 的前n 项和为n S ,且满足1221,1n n a a S a +===-,则下列命题错误的是
A .21n n n a a a ++=+
B .13599100a a a a a ++++=
C .2499a a a a ++
+=
D .12398100100S S S S S +++
+=-
9.在数列{}n a 中,11a =,20192019a =,且*n N ∈都有122n n n a a a ++≥+,则下列结论
正确的是( )
A .存在正整数0N ,当0n N >时,都有n a n ≤.
B .存在正整数0N ,当0n N >时,都有n a n ≥.
C .对常数M ,一定存在正整数0N ,当0n N >时,都有n a M ≤.
D .对常数M ,一定存在正整数0N ,当0n N >时,都有n a M ≥.
10.已知数列{}n a 的首项为1,第2项为3,前n 项和为n S ,当整数1n >时,
1
1
12()n
n
n S S S S 恒成立,则15S 等于( )
A .210
B .211
C .224
D .225
11.已知数列{}n a 的前5项为:12a =,232a =,343
a =,454a =,56
5a =,可归纳得
数列{}n a 的通项公式可能为( ) A .1
+=
n n a n
B .2
1
n n a n +=
+ C .3132
n n a n -=-
D .221
n n
a n =
- 12.设数列{},{}n n a b 满足*172
700,,105
n n n n n a b a a b n N ++==+∈若6400=a ,则( ) A .43a a >
B .43<b b
C .33>a b
D .44<a b
13.若数列{a n }满足1112,1n
n n
a a a a ++==-,则2020a 的值为( ) A .2
B .-3
C .12
-
D .
13
14.已知数列2
65n a n n =-+则该数列中最小项的序号是( )
A .3
B .4
C .5
D .6
15.已知定义在R 上的函数()f x 是奇函数,且满足3()(),(1)32
f x f x f -=-=,数列
{}n a 满足11a =,且
21n n
S a n n
=-,(n S 为{}n a 的前n 项和,*)n N ∈,则56()()f a f a +=( )
A .1
B .3
C .-3
D .0
16.大衍数列,来源于《乾坤普》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两翼数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,……则此数列的第40项为( ). A .648
B .722
C .800
D .882
17.数列{}:1,1,2,3,5,8,13,21,34,...,n F 成为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列从第三项开始,每项等于其前两相邻两项之和,记该数{}n F 的前n 项和为n S ,则下列结论正确的是
( )
A .201920212S F =+
B .201920211S F =-
C .201920202S F =+
D .201920201S F =-
18.已知数列{}n a 满足12n n a a n +=+,且133a =,则n
a n
的最小值为( )
A .21
B .10
C .
212 D .
172
19.在数列{}n a 中,已知13a =,26a =,且21n n n a a a ++=-,则2020a =( ) A .-6 B .6 C .-3
D .3
20.已知数列{}n a 中,11a =,122
n
n n a a a +=+,则5a 等于( ) A .
25
B .
13 C .
23
D .
12
二、多选题
21.黄金螺旋线又名等角螺线,是自然界最美的鬼斧神工.在一个黄金矩形(宽长比约等于0.618)里先以宽为边长做正方形,然后在剩下小的矩形里以其宽为边长做正方形,如此循环下去,再在每个正方形里画出一段四分之一圆弧,最后顺次连接,就可得到一条“黄金螺旋线”.达·芬奇的《蒙娜丽莎》,希腊雅典卫城的帕特农神庙等都符合这个曲线.现将每一段黄金螺旋线与其所在的正方形所围成的扇形半径设为a n (n ∈N *),数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3).再将扇形面积设为b n (n ∈N *),则( )
A .4(b 2020-b 2019)=πa 2018·a 2021
B .a 1+a 2+a 3+…+a 2019=a 2021-1
C .a 12+a 22+a 32…+(a 2020)2=2a 2019·a 2021
D .a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=0
22.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫
-=+ ⎪⎝⎭
,*n N ∈.若对于任意的[]1,2t ∈,不等式
()22212n
a t a t a a n
<--++-+恒成立,则实数a 可能为( ) A .-4
B .-2
C .0
D .2
23.若不等式1(1)(1)2n n
a n
+--<+对于任意正整数n 恒成立,则实数a 的可能取值为( ) A .2- B .1- C .1 D .2
24.(多选题)已知数列{}n a 中,前n 项和为n S ,且2
3n n n S a +=,则1
n n a a -的值不可能为
( ) A .2
B .5
C .3
D .4
25.若数列{}n a 满足112,02
121,1
2
n n n n n a a a a a +⎧
≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,则数列{}n a 中的项的值可能为
( ) A .
1
5
B .
25
C .
45
D .
65
26.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}
F n ,则(){}
F n 的通项公式为( )
A .(1)1()2
n n F n -+=
B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==
C .(
)1122n n
F n ⎡⎤⎛⎛+-⎥=- ⎥⎝⎭⎝⎭⎦ D .(
)1122n n F n ⎡⎤⎛⎛⎥=+ ⎥⎝⎭⎝⎭⎦
27.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足111
40(2),4
n n n a S S n a -+=≥=,则下列说法正确的是( ) A .数列{}n a 的前n 项和为1S 4n n
= B .数列{}n a 的通项公式为1
4(1)
n a n n =+
C .数列{}n a 为递增数列
D .数列1
{
}n
S 为递增数列 28.等差数列{}n a 是递增数列,公差为d ,前n 项和为n S ,满足753a a =,下列选项正确的是( ) A .0d <
B .10a <
C .当5n =时n S 最小
D .0n S >时n 的最小值为8
29.记n S 为等差数列{}n a 前n 项和,若81535a a = 且10a >,则下列关于数列的描述正确的是( ) A .2490a a += B .数列{}n S 中最大值的项是25S C .公差0d >
D .数列
{}n
a 也是等差数列
30.已知等差数列{}n a 的公差不为0,其前n 项和为n S ,且12a 、8S 、9S 成等差数列,则下列四个选项中正确的有( ) A .59823a a S +=
B .27S S =
C .5S 最小
D .50a =
31.设{}n a 是等差数列,n S 是其前n 项和,且56678,S S S S S <=>,则下列结论正确的是( ) A .0d < B .70a =
C .95S S >
D .67n S S S 与均为的最大值
32.下列命题正确的是( )
A .给出数列的有限项就可以唯一确定这个数列的通项公式
B .若等差数列{}n a 的公差0d >,则{}n a 是递增数列
C .若a ,b ,c 成等差数列,则111,,a b c
可能成等差数列 D .若数列{}n a 是等差数列,则数列{}12++n n a a 也是等差数列
33.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题中正确的有( )
A .若100S =,则280S S +=;
B .若412S S =,则使0n S >的最大的n 为15
C .若150S >,160S <,则{}n S 中8S 最大
D .若78S S <,则89S S <
34.已知数列{}n a 满足:13a =,当2n ≥时,)
2
11n a =
-,则关于数列
{}n a 说法正确的是( )
A .28a =
B .数列{}n a 为递增数列
C .数列{}n a 为周期数列
D .2
2n a n n =+
35.等差数列{}n a 的前n 项和为n S ,若90a <,100a >,则下列结论正确的是( ) A .109S S >
B .170S <
C .1819S S >
D .190S >
【参考答案】***试卷处理标记,请不要删除
一、数列的概念选择题 1.C 解析:C 【分析】
设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b ,则
n c n =,依次用累加法,可求解.
【详解】
设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b , 设{}n c 的前n 项和为n C ,易得n c n =,
()()()111121n n n n n n n C c c c b b b b b b +----=++
+=++++-
所以11n n b b C +=-,1213b a a -==
22n n n C +=,进而得21332n n n n
b C ++=+=+, 所以()211
33222n n n n b n -=+=-+,
()()()()
2
221111
1212332
2
6
n n n n B n n n n +-=
+++-
++++=
+
同理:()()()111112n n n n n n n B b b b a a a a a a +---=++
+=+++--
11n n a a B +-=
所以11n n a B +=
+,所以191024a =. 故选:C 【点睛】
本题考查构造数列,用累加法求数列的通项公式,属于中档题.
2.B
解析:B 【分析】
利用递推关系可得数列{}n a 是以3为周期的周期数列,从而可得2018a . 【详解】 在数列{}n a 中,
11
1n n
a a +=-,且12a =, 211112
a a ∴=-
=,
32
1
1121a a =-
=-=- , ()413
1
1112a a a =-
=--== ∴数列{}n a 是以3为周期的周期数列,
201867232=⨯+,
201821
2
a a ∴==.
故选:B 【点睛】
本题考查了由数列的递推关系式研究数列的性质,考查了数列的周期性,属于基础题.
3.A
解析:A 【分析】
根据等差数列的前n 项和公式以及充分条件和必要条件的定义进行判断即可. 【详解】
{}n a 是等差数列,且公差d 不为零,其前n 项和为n S ,
充分性:
1n n S S +>,则10n a +>对任意的n *∈N 恒成立,则20a >,
0d ≠,若0d <,则数列{}n a 为单调递减数列,则必存在k *∈N ,使得当n k >时,
10n a +<,则1n n S S +<,不合乎题意;
若0d >,由20a >且数列{}n a 为单调递增数列,则对任意的n *∈N ,10n a +>,合乎题意.
所以,“*n N ∀∈,1n n S S +>”⇒“{}n a 为递增数列”;
必要性:设10n a n =-,当8n ≤时,190n a n +=-<,此时,1n n S S +<,但数列{}n a 是递增数列.
所以,“*n N ∀∈,1n n S S +>”⇐/“{}n a 为递增数列”.
因此,“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的充分而不必要条件. 故选:A. 【点睛】
本题主要考查充分条件和必要条件的判断,结合等差数列的前n 项和公式是解决本题的关键,属于中等题.
4.B
解析:B 【分析】
根据题意,可知()
1
1121n n n a a n ++--=-,分别列出各项,再整理得出132a a +=,
248a a +=,572a a +=,6824a a +=,
,45472a a +=,4648184a a +=,可知,
相邻的奇数项之和为2,相邻的偶数项之和为等差数列,首项为8,公差为16,利用分组
求和法,即可求出{}n a 的前48项和. 【详解】
解:由题可知,()1
1121n n n a a n ++=-+-,
即:()
1
1121n n n a a n ++--=-,则有:
211a a -=,323a a +=,435a a -=,547a a +=,
659a a -=,7611a a +=,8713a a -=,9815a a +=,

474691a a +=,484793a a -=.
所以,132a a +=,248a a +=,572a a +=,6824a a +=,

45472a a +=,4648184a a +=,
可知,相邻的奇数项之和为2,相邻的偶数项之和为等差数列,首项为8,公差为16, 设数列{}n a 的前48项和为48S , 则4812345645464748S a a a a a a a a a a =++++++
++++,
()()1357454724684648a a a a a a a a a a a a =++++
+++++++++
1211
1221281611762
⨯=⨯+⨯+
⨯=, 所以数列{}n a 的前48项和为:1176. 故选:B. 【点睛】
本题考查数列的递推公式的应用,以及利用分组求和法求和,考查归纳思想和计算能力.
5.A
解析:A 【分析】
由题意,根据累加法,即可求出结果. 【详解】
因为12n n a a n +=+,所以12n n a a n +-=,
因此212a a -=,324a a -=,436a a -=,…,()121n n a a n --=-, 以上各式相加得:()()()21246.1221..212
n n n a a n n n ⎡⎤-+-⎣⎦
-=
+++==+--,
又11a =,所以2
1n a n n =-+.
故选:A. 【点睛】
本题主要考查累加法求数列的通项,属于基础题型.
6.D
解析:D 【分析】
根据数列分子分母的规律求得通项公式. 【详解】
由于数列的分母是奇数列,分子是自然数列,故通项公式为21
n n
a n =-. 故选:D 【点睛】
本小题主要考查根据数列的规律求通项公式,属于基础题.
7.B
解析:B 【分析】
先通过列举找到数列的周期,再求2018a . 【详解】
n=1时,234511
121,1(1)2,1,121,22
a a a a =-=-=--==-
==-=- 所以数列的周期是3,所以2018(36722)21a a a ⨯+===-. 故选:B 【点睛】
本题主要考查数列的递推公式和数列的周期,意在考查学生对这些知识的掌握水平和分析推理能力.
8.C
解析:C 【分析】
21n n S a +=-,则111n n S a -+=-,两式相减得到A 正确;由A 选项得到
13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=进而得到B
正确;同理可得到C 错误;由21n n S a +=-得到
12398S S S S +++⋯+=123451002111......1a a a a a a +-+-+-+-++-=100100.S -进
而D 正确. 【详解】
已知21n n S a +=-,则111n n S a -+=-,两式相减得到2121n n n n n n a a a a a a ++++=-⇒=+,故A 正确;根据A 选项得到
13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=,故B 正
确;
24698a a a a +++⋯+=2234569697a a a a a a a a ++++++⋯++=
1234569697a a a a a a a a ++++++⋯++=97991S a =-,故C 不正确;根据2123981n n S a S S S S +=-+++⋯+=
,123451002111......1a a a a a a +-+-+-+-++-= 100100.S -
故D 正确. 故答案为C. 【点睛】
这个题目考查了数列的应用,根据题干中所给的条件进行推广,属于中档题,这类题目不是常规的等差或者等比数列,要善于发现题干中所给的条件,应用选项中正确的结论进行其它条件的推广.
9.A
解析:A 【分析】
运用数列的单调性和不等式的知识可解决此问题. 【详解】
数列{}n a 中,11a =,20192019a =,且*n N ∈都有122n n n a a a ++≥+,
121n n n n a a a a +++∴≥--,
设1n n n d a a +=-,则1n n d d +≥,
∴数列{}n d 是递减数列.
对于A ,由11a =,20192019a =, 则201911220182019a a d d d =+++=,
所以1220182018d d d ++
+=,又1232018d d d d ≥≥≥
≥,
所以1122018201820182018d d d d d ≥++
+≥,
故120181d d ≥≥,2018n ∴≥时,1n d ≤,
02019N ∃=,2019n >时, 20192019202012019111n n a a d d d n -=+++
≤++++=
即存在正整数0N ,当0n N >时,都有n a n ≤,故A 正确;
结合A ,故B 不正确;
对于C ,当n →+∞,且0n d >时,数列{}n a 为递增数列, 则n a 无最大值,故C 不正确;
对于D ,由数列{}n d 是递减数列,当存在0n d <时,则n a 无最小值,故D 不正确; 故选:A 【点睛】
本题考查了数列的单调性以及不等式,属于基础题.
10.D
解析:D 【分析】
利用已知条件转化推出1122n n a a a +-==,说明数列是等差数列,然后求解数列的和即可. 【详解】 解:结合1
1
12()n
n
n S S S S 可知,11122n n n S S S a +-+-=,
得到1122n n a a a +-==,故数列{}n a 为首项为1,公差为2的等差数列,则12(1)21n a n n =+-=-,所以1529a =,
所以11515()15(291)15
22522
a a S ++=
==, 故选:D . 【点睛】
本题考查数列的递推关系式的应用,考查数列求和,是基本知识的考查.
11.A
解析:A 【分析】
将前五项的分母整理为1,2,3,4,5,则其分子为2,3,4,5,6,据此归纳即可. 【详解】 因为12a =,232a =,343
a =,454a =,56
5a =,
故可得1223,12a a =
=, 343
a =,454a =,56
5a =, 故可归纳得1
+=n n a n
. 故选:A. 【点睛】
本题考查简单数列通项公式的归纳总结,属基础题.
12.C
解析:C 【分析】 由题意有13
28010
n n a a +=+且6400=a ,即可求34,a a ,进而可得34,b b ,即可比较它们的大小. 【详解】 由题意知:13
28010
n n a a +=
+,6400=a , ∴345400a a a ===,而700n n a b +=,
∴34300b b ==, 故选:C 【点睛】
本题考查了根据数列间的递推关系比较项的大小,属于简单题.
13.D
解析:D 【分析】
分别求出23456,,,,a a a a a ,得到数列{}n a 是周期为4的数列,利用周期性即可得出结果. 【详解】
由题意知,212312a +==--,3131132a -==-+,41
1121312a -
==+,51132113
a +
==-,612312
a +==--,…,
因此数列{}n a 是周期为4的周期数列, ∴20205054413
a a a ⨯===. 故选D. 【点睛】
本题主要考查的是通过观察法求数列的通项公式,属于基础题.
14.A
解析:A 【分析】
首先将n a 化简为()2
34n a n =--,即可得到答案。

【详解】
因为()
()2
2
69434n a n n n =-+-=--
当3n =时,n a 取得最小值。

故选:A
15.C
解析:C 【分析】
判断出()f x 的周期,求得{}n a 的通项公式,由此求得56()()f a f a +. 【详解】
依题意定义在R 上的函数()f x 是奇函数,且满足3()()2
f x f x -=,
所以()333332222f x f x f x f
x ⎛⎫⎛⎫⎛
⎫⎛
⎫+=---=--=-+ ⎪ ⎪ ⎪
⎪⎝⎭⎝⎭⎝⎭
⎝⎭ ()()()32f x f x f x ⎛⎫
=---=--= ⎪⎝⎭
,所以()f x 是周期为3的周期函数.

21n n S a n n
=-得2n n S a n =-①, 当1n =时,11a =,
当2n ≥时,()1121n n S a n --=--②,
①-②得11221,21n n n n n a a a a a --=--=+(2n ≥),
所以21324354213,217,2115,2131a a a a a a a a =+==+==+==+=,
652163a a =+=.
所以
56()()f a f a +=
()()()()()()()316331013211013f f f f f f f +=⨯++⨯=+=--=-
故选:C 【点睛】
如果一个函数既是奇函数,图象又关于()0x a a =≠对称,则这个函数是周期函数,且周期为4a .
16.C
解析:C 【分析】
由0、2、4、8、12、18、24、32、40、50…,可得偶数项的通项公式:2
22n a n =,即可得
出. 【详解】
由0,2,4,8,12,18,24,32,40,50…,可得偶数项的通项公式:2
22n a n =.
则此数列第40项为2220800⨯=. 故选:C
17.B
解析:B 【分析】
利用迭代法可得21123211n n n n n n n F F F F F F F F F ++---=+=++++
+++,可得
21n n F S +=+,代入2019n =即可求解.
【详解】
由题意可得该数列从第三项开始,每项等于其前两相邻两项之和, 则211112n n n n n n n n n n F F F F F F F F F F ++----=+=++=+++
1211232n n n n n n n n n F F F F F F F F F -------=+++=++++=
123211n n n n F F F F F F ---=++++
+++,
所以21n n F S +=+,令2019n =,可得201920211S F =-,
故选:B 【点睛】
关键点点睛:本题的关键点是理解数列新定义的含义得出21n n n F F F ++=+,利用迭代法得出
21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,进而得出21n n F S +=+.
18.C
解析:C 【分析】
由累加法求出2
33n a n n =+-,所以
331n a n n n
,设33
()1f n n n
=
+-,由此能导出5n =或6时()f n 有最小值,借此能得到
n
a n
的最小值. 【详解】
解:()()()112211n n n n n a a a a a a a a ---=-+-+⋯+-+
22[12(1)]3333n n n =++⋯+-+=+-
所以
331n a n n
n
设33
()1f n n n
=
+-,由对勾函数的性质可知, ()
f n 在(上单调递减,在
)
+∞上单调递减,
又因为n ∈+N ,所以当5n =或6时()f n 可能取到最小值. 又因为56536321,55662
a a ===, 所以
n a n
的最小值为62162a =.
故选:C. 【点睛】
本题考查了递推数列的通项公式的求解以及对勾函数的单调性,考查了同学们综合运用知识解决问题的能力.
19.C
解析:C 【分析】
根据题设条件,得到数列{}n a 是以6项为周期的数列,其中
1234560a a a a a a +++++=,再由2020336644a a a ⨯+==,即可求解.
【详解】
由题意,数列{}n a 中,13a =,26a =,且21n n n a a a ++=-, 可得
3214325436547653,3,6,3,3,
a a a a a a a a a a a a a a a =-==-=-=-=-=-=-=-=,
可得数列{}n a 是以6项为周期的数列,其中1234560a a a a a a +++++=, 所以20203366443a a a ⨯+===-. 故选:C. 【点睛】
本题主要考查了数列的递推关系式,以及数列的周期性的应用,其中解答中得出数列的周期性是解答的关键,着重考查了推理与运算能力,属于基础题.
20.B
解析:B 【分析】
根据数列{}n a 的递推公式逐项可计算出5a 的值. 【详解】
在数列{}n a 中,11a =,122n n n a a a +=
+,则12
12212
2123
a a a ⨯===++,2322
2213222
23
a a a ⨯
===++, 3431
222212522a a a ⨯
===++,45
422215223
25
a a a ⨯===++. 故选:B. 【点睛】
本题考查利用递推公式写出数列中的项,考查计算能力,属于基础题.
二、多选题 21.ABD 【分析】
对于A ,由题意得bn
=an2,然后化简4(b2020-b2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{an}满足a1=a2=1,an =an -1+an -2 (n≥3
解析:ABD 【分析】
对于A ,由题意得b n =
4
πa n 2
,然后化简4(b 2020-b 2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n -12=a n -1 a n -2-a n -1 a n ,然后累加求解;对于D ,由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2,化简可得结果 【详解】
由题意得b n =
4πa n 2,则4(b 2020-b 2019)=4(4πa 20202-4π
a 20192)=π(a 2020+a 2019)(a 2020-a 2019)=πa 2018·
a 2021,则选项A 正确; 又数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),所以a n -2=a n -a n -1(n ≥3),a 1+a 2+a 3+…+a 2019=(a 3-a 2)+(a 4-a 3)+(a 5-a 4)+…+(a 2021-a 2020)=a 2021-a 2=a 2021-1,则选项B 正确;
数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n
-1
2
=a n -1 a n -2-a n -1 a n ,则a 12+a 22+a 32…+(a 2020)2=a 12+(a 2a 1-a 2a 3)+(a 3a 2-a 3a 4)+…+
(a 2020a 2019-a 2020a 2021)=a 12-a 2020a 2021=1-a 2020a 2021,则选项C 错误;
由题意a n -1=a n -a n -2,则a 2019·
a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=a 2019·(a 2021-a 2019)+a 2020·(a 2018-a 2020)=a 2019·a 2020+a 2020·(-a 2019)=0,则选项D 正确; 故选:ABD. 【点睛】
此题考查数列的递推式的应用,考查累加法的应用,考查计算能力,属于中档题
22.AB 【分析】
由题意可得,利用裂项相相消法求和求出,只需对于任意的恒成立,转化为对于任意的恒成立,然后将选项逐一验证即可求解. 【详解】 ,, 则,,,,
上述式子累加可得:,, 对于任意的恒成立
解析:AB 【分析】 由题意可得
111
11n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n
=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为
()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.
【详解】
111
n n n a a n n
++-
=,11111(1)1n n a a n n n n n n +∴-==-+++,

11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111
122
a a -=-, 上述式子累加可得:111n a a n n -=-,1
22n a n n
∴=-<,
()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,
整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,
对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦
,包含[]1,2,故A 正确;
对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦
,包含[]1,2,故B 正确;
对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦
,不包含[]1,2,故C 错误;
对D ,当2a =时,不等式()()2120t t -+≤,解集12,2
⎡⎤-⎢⎥⎣

,不包含[]1,2,故D 错误,
故选:AB. 【点睛】
本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题.
23.ABC 【分析】
根据不等式对于任意正整数n 恒成立,即当n 为奇数时有恒成立,当n 为偶数时有恒成立,分别计算,即可得解. 【详解】
根据不等式对于任意正整数n 恒成立, 当n 为奇数时有:恒成立, 由递减
解析:ABC 【分析】
根据不等式1(1)(1)2n n
a n +--<+对于任意正整数n 恒成立,即当n 为奇数时有12+a n
-<恒成立,当n 为偶数时有1
2a n
<-恒成立,分别计算,即可得解. 【详解】
根据不等式1(1)(1)2n n
a n
+--<+对于任意正整数n 恒成立,
当n 为奇数时有:1
2+a n
-<恒成立, 由12+
n 递减,且1
223n
<+≤, 所以2a -≤,即2a ≥-, 当n 为偶数时有:1
2a n
<-恒成立, 由12n -
第增,且31
222n ≤-<, 所以3
2
a <
, 综上可得:322
a -≤<, 故选:ABC . 【点睛】
本题考查了不等式的恒成立问题,考查了分类讨论思想,有一定的计算量,属于中当题.
24.BD 【分析】
利用递推关系可得,再利用数列的单调性即可得出答案. 【详解】 解:∵, ∴时,, 化为:,
由于数列单调递减, 可得:时,取得最大值2. ∴的最大值为3. 故选:BD . 【点睛】 本
解析:BD 【分析】
利用递推关系可得12
11
n n a a n -=+-,再利用数列的单调性即可得出答案. 【详解】 解:∵2
3
n n n S a +=
, ∴2n ≥时,1121
33
n n n n n n n a S S a a --++=-=
-,
化为:
112111n n a n a n n -+==+--, 由于数列21n ⎧⎫

⎬-⎩⎭
单调递减, 可得:2n =时,2
1
n -取得最大值2. ∴
1
n
n a a -的最大值为3. 故选:BD . 【点睛】
本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题.
25.ABC 【分析】
利用数列满足的递推关系及,依次取代入计算,能得到数列是周期为4的周期数列,得项的所有可能值,判断选项即得结果. 【详解】
数列满足,,依次取代入计算得, ,,,,因此继续下去会循环
解析:ABC 【分析】
利用数列{}n a 满足的递推关系及13
5
a =
,依次取1,2,3,4n =代入计算2345,,,a a a a ,能得到数列{}n a 是周期为4的周期数列,得项的所有可能值,判断选项即得结果. 【详解】
数列{}n a 满足112,02
121,1
2n n n n n a a a a a +⎧
≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,依次取1,2,3,4,...n =代入计算得,
211215a a =-=
,32225a a ==,43425a a ==,5413
215
a a a =-==,因此继续下去会循环,数列{}n a 是周期为4的周期数列,所有可能取值为:1234
,,,5555
. 故选:ABC. 【点睛】
本题考查了数列的递推公式的应用和周期数列,属于基础题.
26.BC 【分析】
根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】
解:斐波那契数列为1,1,2,3,5,8,13,21,……, 显然,,,,,所以且,即B 满足条件; 由, 所以 所以数列
解析:BC 【分析】
根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】
解:斐波那契数列为1,1,2,3,5,8,13,21,……,
显然()()11,21F F ==,()()()3122F F F =+=,()()()4233F F F =+=,

()()()11,2F n F n F n n +=+-≥,所以()()()11,2F n F n F n n +=+-≥且()()11,21F F ==,即B 满足条件;
由()()()11,2F n F n F n n +=+-≥, 所以(
)(
)(
)()11F n n F n n ⎤+-
=--⎥⎣⎦
所以数列(
)()1F n n ⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭
为公比的等比数列, 所以(
)(
)1n
F n n +-=⎝⎭
11515()n F F n n -
+=++, 令
1
n
n n F
b -=
⎝⎭
,则11n n b +=
+,
所以1
n n b b +=
-, 所以n
b ⎧⎪
⎨⎪⎪⎩
⎭的等比数列, 所以1
n n b -+,
所以(
)11
15n n n n
F n --⎤
⎤⎛⎫+⎥⎥=+=- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭

⎭⎝⎭⎣⎦
⎣⎦; 即C 满足条件; 故选:BC 【点睛】
考查等比数列的性质和通项公式,数列递推公式的应用,本题运算量较大,难度较大,要求由较高的逻辑思维能力,属于中档题.
27.AD 【分析】
先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求,最后根据和项与通项关系得. 【详解】
因此数列为以为首项,为公差的等差数列,也是递增数列,即D 正确;
解析:AD 【分析】
先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求S n ,最后根据和项与通项关系得n a . 【详解】
11140(2),40n n n n n n n a S S n S S S S ---+=≥∴-+= 1
11
04n n n S S S -≠∴
-= 因此数列1{
}n S 为以1
1
4S =为首项,4为公差的等差数列,也是递增数列,即D 正确; 所以1144(1)44n n n n S S n
=+-=∴=,即A 正确; 当2n ≥时1111
44(1)4(1)
n n n a S S n n n n -=-=
-=--- 所以1,141,24(1)n n a n n n ⎧
=⎪⎪
=⎨⎪-≥-⎪⎩
,即B ,C 不正确;
故选:AD 【点睛】
本题考查由和项求通项、等差数列定义与通项公式以及数列单调性,考查基本分析论证与
求解能力,属中档题.
28.BD 【分析】
由题意可知,由已知条件可得出,可判断出AB 选项的正误,求出关于的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】
由于等差数列是递增数列,则,A 选项错误
解析:BD 【分析】
由题意可知0d >,由已知条件753a a =可得出13a d =-,可判断出AB 选项的正误,求出n S 关于d 的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】
由于等差数列{}n a 是递增数列,则0d >,A 选项错误;
753a a =,则()11634a d a d +=+,可得130a d =-<,B 选项正确;
()()()22
171117493222224n n n d n n d n n d S na nd n d -⎡⎤
--⎛⎫=+=-+==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦

当3n =或4时,n S 最小,C 选项错误; 令0n S >,可得270n n ->,解得0n <或7n >.
n N *∈,所以,满足0n S >时n 的最小值为8,D 选项正确.
故选:BD.
29.AB 【分析】
根据已知条件求得的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项. 【详解】
依题意,等差数列中,即, .
对于A 选项,,所以A 选项正确. 对于C 选项,,,所以,
解析:AB 【分析】
根据已知条件求得1,a d 的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项. 【详解】
依题意,等差数列{}n a 中81535a a =,即()()1137514a d a d +=+,
1149249,2
a d a d =-=-
. 对于A 选项,24912490a a a d +=+=,所以A 选项正确. 对于C 选项,149
2
a d =-
,10a >,所以0d <,所以C 选项错误. 对于B 选项,()()149511122n a a n d d n d n d ⎛
⎫=+-=-
+-=- ⎪⎝
⎭,令0n a ≥得5151
0,22n n -
≤≤,由于n 是正整数,所以25n ≤,所以数列{}n S 中最大值的项是25S ,所以B 选项正确. 对于D 选项,由上述分析可知,125n ≤≤时,0n a ≥,当26n ≥时,0n a <,且0d <.所以数列
{}n
a 的前25项递减,第26项后面递增,不是等差数列,所以D 选项错误.
故选:AB 【点睛】
等差数列有关知识的题目,主要把握住基本元的思想.要求等差数列前n 项和的最值,可以令0n a ≥或0n a ≤来求解.
30.BD 【分析】
设等差数列的公差为,根据条件、、成等差数列可求得与的等量关系,可得出、的表达式,进而可判断各选项的正误. 【详解】
设等差数列的公差为,则,, 因为、、成等差数列,则,即, 解得,,
解析:BD 【分析】
设等差数列{}n a 的公差为d ,根据条件12a 、8S 、9S 成等差数列可求得1a 与d 的等量关系,可得出n a 、n S 的表达式,进而可判断各选项的正误. 【详解】
设等差数列{}n a 的公差为d ,则81187
88282
S a d a d ⨯=+
=+,91198
99362
S a d a d ⨯=+
=+, 因为12a 、8S 、9S 成等差数列,则81922S a S =+,即11116562936a d a a d +=++,
解得14a d =-,()()115n a a n d n d ∴=+-=-,()()21
9122
n n n d n n d S na --=+=.
对于A 选项,59233412a a d d +=⨯=,()2
8
88942
d S d -⨯=
=-,A 选项错误; 对于B 选项,()2
2
29272
d S
d -⨯=
=-,()2
7
79772
d S
d -⨯=
=-,B 选项正确;
对于C 选项,()2
298192224n d d S n n n ⎡⎤
⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦
.
若0d >,则4S 或5S 最小;若0d <,则4S 或5S 最大.C 选项错误; 对于D 选项,50a =,D 选项正确. 故选:BD. 【点睛】
在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解,另外在求解等差数列前n 项和n S 的最值时,一般利用二次函数的基本性质或者数列的单调性来求解.
31.ABD 【分析】
由,判断,再依次判断选项. 【详解】 因为,,
,所以数列是递减数列,故,AB 正确; ,所以,故C 不正确;
由以上可知数列是单调递减数列,因为可知,的最大值,故D 正确. 故选:AB
解析:ABD 【分析】
由1n n n S S a --=()2n ≥,判断6780,0,0a a a >=<,再依次判断选项. 【详解】
因为5665600S S S S a <⇒->⇒>,677670S S S S a =⇒-==,
788780S S S S a >⇒-=<,所以数列{}n a 是递减数列,故0d <,AB 正确;
()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确;
由以上可知数列{}n a 是单调递减数列,因为6780,0,0a a a >=<可知,67n S S S 与均为的最大值,故D 正确. 故选:ABD 【点睛】
本题考查等差数列的前n 项和的最值,重点考查等差数列的性质,属于基础题型.
32.BCD
【分析】
根据等差数列的性质即可判断选项的正误. 【详解】
A 选项:给出数列的有限项不一定可以确定通项公式;
B 选项:由等差数列性质知,必是递增数列;
C 选项:时,是等差数列,而a = 1,
解析:BCD 【分析】
根据等差数列的性质即可判断选项的正误. 【详解】
A 选项:给出数列的有限项不一定可以确定通项公式;
B 选项:由等差数列性质知0d >,{}n a 必是递增数列;
C 选项:1a b c ===时,
111
1a b c
===是等差数列,而a = 1,b = 2,c = 3时不成立; D 选项:数列{}n a 是等差数列公差为d ,所以
11112(1)223(31)n n a a a n d a nd a n d ++=+-++=+-也是等差数列;
故选:BCD 【点睛】
本题考查了等差数列,利用等差数列的性质判断选项的正误,属于基础题.
33.BC 【分析】
根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案. 【详解】 A 选项,若,则, 那么.故A 不正确; B 选项,若,则,
又因为,所以前8项为正,从第9项开始为负, 因为
解析:BC 【分析】
根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案. 【详解】
A 选项,若101109
1002
S a d ⨯=+
=,则1290a d +=, 那么()()2811128281029160S S a d a d a d d +=+++=+=-≠.故A 不正确; B 选项,若412S S =,则()5611128940a a a a a a ++
++=+=,
又因为10a >,所以前8项为正,从第9项开始为负, 因为()
()116168916802
a a S a a +=
=+=, 所以使0n S >的最大的n 为15.故B 正确; C 选项,若()115158151502
a a S a +=
=>,()
()116168916802a a S a a +=
=+<, 则80a >,90a <,则{}n S 中8S 最大.故C 正确;
D 选项,若78S S <,则80a >,而989S S a -=,不能判断9a 正负情况.故D 不正确. 故选:BC . 【点睛】
本题考查等差数列性质的应用,涉及等差数列的求和公式,属于常考题型.
34.ABD 【分析】
由已知递推式可得数列是首项为,公差为1的等差数列,结合选项可得结果. 【详解】 得, ∴,
即数列是首项为,公差为1的等差数列, ∴,
∴,得,由二次函数的性质得数列为递增数列,
解析:ABD 【分析】
由已知递推式可得数列2=,公差为1的等差数列,结合选项
可得结果. 【详解】
)
2
11n a =
-得)
2
11n a +=

1=,
即数列
2=,公差为1的等差数列,
2(1)11n n =+-⨯=+,
∴2
2n a n n =+,得28a =,由二次函数的性质得数列{}n a 为递增数列,
所以易知ABD 正确, 故选:ABD. 【点睛】
本题主要考查了通过递推式得出数列的通项公式,通过通项公式研究数列的函数性质,属于中档题.
35.ABD 【分析】
先根据题意可知前9项的和最小,判断出正确;根据题意可知数列为递减数列,则,又,进而可知,判断出不正确;利用等差中项的性质和求和公式可知,,故正确. 【详解】
根据题意可知数列为递增
解析:ABD 【分析】
先根据题意可知前9项的和最小,判断出A 正确;根据题意可知数列为递减数列,则
190a >,又181919S S a =-,进而可知1516S S >,判断出C 不正确;利用等差中项的性质
和求和公式可知()0117917917
217
172
2
a a a S a <+⨯⨯=
=
=,()1191019
1019219
1902
2
a a a S a +⨯⨯=
=
=>,故BD 正确. 【详解】
根据题意可知数列为递增数列,90a <,100a >,
∴前9项的和最小,故A 正确;
()117917917
217
1702
2a a a S a +⨯⨯===<,故B 正确; ()11910191019
219
1902
2
a a a S a +⨯⨯=
=
=>,故D 正确; 190a >, 181919S S a ∴=-, 1819S S ∴<,故C 不正确.
故选:ABD . 【点睛】
本题考查等差数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.。

相关文档
最新文档