呼中区第一中学2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ob呼中区第一中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________ 一、选择题
1.若方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是()A.(0,+∞)B.(0,2) C.(1,+∞)D.(0,1)
2.如图框内的输出结果是()
A.2401 B.2500 C.2601 D.2704
3.已知点M的球坐标为(1,,),则它的直角坐标为()
A.(1,,)B.(,,)C.(,,)D.(,,)
u4.设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题:
①若m∥l,m⊥α,则l⊥α;
②若m∥l,m∥α,则l∥α;
③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;
④若α∩β=l,β∩γ=m,γ∩α=n,n∥β,则l∥m.
其中正确命题的个数是()
A.1 B.2 C.3 D.4
o5.已知,则f{f[f(﹣2)]}的值为()
A.0 B.2 C.4 D.8
u6.如果随机变量ξ~N (﹣1,σ2),且P(﹣3≤ξ≤﹣1)=0.4,则P(ξ≥1)等于()
A.0.1 B.0.2 C.0.3 D.0.4
7.若数列{a n}的通项公式a n=5()2n﹣2﹣4()n﹣1(n∈N*),{a n}的最大项为第p项,最小项为第q项,则q﹣p等于()
A.1 B.2 C.3 D.4
8.已知m、n 是两条不重合的直线,α、β、γ是三个互不重合的平面,则下列命题中正确的是()A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥β
C.若m⊥α,n⊥α,则m∥n D.若m∥α,m∥β,则α∥β
9.执行右面的程序框图,若输入x=7,y=6,则输出的有数对为()
A.(11,12)B.(12,13)C.(13,14)D.(13,12)
10.记,那么
A
B
C
D
11.函数f (x )=3x +x ﹣3的零点所在的区间是( ) A .(0,1) B .(1,2) C .(2.3) D .(3,4)
12.已知定义在R 上的奇函数)(x f ,满足(4)()f x f x +=-,且在区间[0,2]上是增函数,则 A 、(25)(11)(80)f f f -<< B 、(80)(11)(25)f f f <<- C 、(11)(80)(25)f f f <<- D 、(25)(80)(11)f f f -<<
二、填空题
13.下列命题:
①函数y=sinx 和y=tanx 在第一象限都是增函数;
②若函数f (x )在[a ,b]上满足f (a )f (b )<0,函数f (x )在(a ,b )上至少有一个零点; ③数列{a n }为等差数列,设数列{a n }的前n 项和为S n ,S 10>0,S 11<0,S n 最大值为S 5; ④在△ABC 中,A >B 的充要条件是cos2A <cos2B ;
⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强.
其中正确命题的序号是 (把所有正确命题的序号都写上).
14.已知函数322()7f x x ax bx a a =++--在1x =处取得极小值10,则b
a
的值为 ▲ .
15.若“x <a ”是“x 2﹣2x ﹣3≥0”的充分不必要条件,则a 的取值范围为 .
16.如图是某赛季甲乙两名篮球运动员每场比赛得分的茎叶图,则甲乙两人比赛得分的中位数之和
是 .
17.已知函数f (x )=
,若f (f (0))=4a ,则实数a= .
18.8名支教名额分配到三所学校,每个学校至少一个名额,且甲学校至少分到两个名额的分配方案为 (用数字作答)
三、解答题
19.双曲线C :x 2﹣y 2=2右支上的弦AB 过右焦点F . (1)求弦AB 的中点M 的轨迹方程
(2)是否存在以AB 为直径的圆过原点O ?若存在,求出直线AB 的斜率K 的值.若不存在,则说明理由.
20.
已知椭圆的离心率,且点在椭圆上.
(Ⅰ)求椭圆
的方程;
(Ⅱ)直线与椭圆交于
、
两点,且线段的垂直平分线经过点.求(为坐标原点)
面积的最大值.
21.(本小题满分12分)
如图,在四棱锥P ABCD -中,底面ABCD 是菱形,且120ABC ∠=︒.点E 是棱PC 的中点,平面ABE 与棱PD 交于点F . (1)求证://AB EF ;
(2)若2PA PD AD ===,且平面PAD ⊥平面ABCD ,求平面PAF 与平面AFE 所成的锐二面角的余 弦值.
【命题意图】本小题主要考查空间直线与平面,直线与直线垂直的判定,二面角等基础知识,考查空间想象能
力,推理论证能力,运算求解能力,以及数形结合思想、化归与转化思想.
22.(本小题满分10分)选修4—5:不等式选讲 已知函数()f x x a =-,()a R ∈.
(Ⅰ)若当04x ≤≤时,()2f x ≤恒成立,求实数a 的取值; (Ⅱ)当03a ≤≤时,求证:()()()()f x a f x a f ax af x ++-≥-.
23.在平面直角坐标系xOy 中,圆C :x 2+y 2=4,A (,0),A 1(﹣
,0),点P 为平面内一动点,以
PA 为直径的圆与圆C 相切.
(Ⅰ)求证:|PA 1|+|PA|为定值,并求出点P 的轨迹方程C 1;
(Ⅱ)若直线PA 与曲线C 1的另一交点为Q ,求△POQ 面积的最大值.
24.已知一个几何体的三视图如图所示. (Ⅰ)求此几何体的表面积;
(Ⅱ)在如图的正视图中,如果点A为所在线段中点,点B为顶点,求在几何体侧面上从点A到点B的最短路径的长.
呼中区第一中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】D
【解析】解:∵方程x2+ky2=2,即表示焦点在y轴上的椭圆
∴故0<k<1
故选D.
【点评】本题主要考查了椭圆的定义,属基础题.
2.【答案】B
【解析】解:模拟执行程序框图,可得S=1+3+5+…+99=2500,
故选:B.
【点评】本题主要考查了循环结构的程序框图,等差数列的求和公式的应用,属于基础题.
3.【答案】B
【解析】解:设点M的直角坐标为(x,y,z),
∵点M的球坐标为(1,,),
∴x=sin cos=,y=sin sin=,z=cos=
∴M的直角坐标为(,,).
故选:B.
【点评】假设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数r,φ,θ来确定,其中r为原点O与点P间的距离,θ为有向线段OP与z轴正向的夹角,φ为从正z轴来看自x轴按逆时针方向转到OM 所转过的角,这里M为点P在xOy面上的投影.这样的三个数r,φ,θ叫做点P的球面坐标,显然,这里r,φ,θ的变化范围为r∈[0,+∞),φ∈[0,2π],θ∈[0,π],
4.【答案】B
【解析】解:∵①若m∥l,m⊥α,
则由直线与平面垂直的判定定理,得l⊥α,故①正确;
②若m∥l,m∥α,则l∥α或l⊂α,故②错误;
③如图,在正方体ABCD﹣A1B1C1D1中,
平面ABB1A1∩平面ABCD=AB,
平面ABB1A1∩平面BCC1B1=BB1,
平面ABCD∩平面BCC1B1=BC,
由AB、BC、BB1两两相交,得:
若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n不成立,故③是假命题;
④若α∩β=l,β∩γ=m,γ∩α=n,n∥β,
则由α∩γ=n知,n⊂α且n⊂γ,由n⊂α及n∥β,α∩β=m,
得n∥m,同理n∥l,故m∥l,故命题④正确.
故选:B.
【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.
5.【答案】C
【解析】解:∵﹣2<0
∴f(﹣2)=0
∴f(f(﹣2))=f(0)
∵0=0
∴f(0)=2即f(f(﹣2))=f(0)=2
∵2>0
∴f(2)=22=4
即f{f[(﹣2)]}=f(f(0))=f(2)=4
故选C.
6.【答案】A
【解析】解:如果随机变量ξ~N(﹣1,σ2),且P(﹣3≤ξ≤﹣1)=0.4,
∵P(﹣3≤ξ≤﹣1)
=
∴
∴P(ξ≥1)=.
【点评】一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似的服从正态分布,正态分布在概率和统计中具有重要地位.
7.【答案】A
【解析】解:设=t∈(0,1],a n=5()2n﹣2﹣4()n﹣1(n∈N*),
∴a n=5t2﹣4t=﹣,
∴a n∈,
当且仅当n=1时,t=1,此时a n取得最大值;同理n=2时,a n取得最小值.
∴q﹣p=2﹣1=1,
故选:A.
【点评】本题考查了二次函数的单调性、指数函数的单调性、数列的通项公式,考查了推理能力与计算能力,属于中档题.
8.【答案】C
【解析】解:对于A,若m∥α,n∥α,则m与n相交、平行或者异面;故A错误;
对于B,若α⊥γ,β⊥γ,则α与β可能相交,如墙角;故B错误;
对于C,若m⊥α,n⊥α,根据线面垂直的性质定理得到m∥n;故C正确;
对于D,若m∥α,m∥β,则α与β可能相交;故D错误;
故选C.
【点评】本题考查了空间线线关系.面面关系的判断;熟练的运用相关的定理是关键.
9.【答案】A
【解析】解:当n=1时,满足进行循环的条件,故x=7,y=8,n=2,
当n=2时,满足进行循环的条件,故x=9,y=10,n=3,
当n=3时,满足进行循环的条件,故x=11,y=12,n=4,
当n=4时,不满足进行循环的条件,
故输出的数对为(11,12),
故选:A
【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.
10.【答案】B
【解析】【解析1】,
所以
【解析2】
,
11.【答案】A
【解析】解:∵f (0)=﹣2<0,f (1)=1>0,
∴由零点存在性定理可知函数f (x )=3x +x ﹣3的零点所在的区间是(0,1). 故选A
【点评】本题主要考查了函数的零点的判定定理,这种问题只要代入所给的区间的端点的值进行检验即可,属于基础题.
12.【答案】D
【解析】∵(4)()f x f x +=-,∴(8)(4)f x f x +=-+,∴(8)()f x f x +=, ∴()f x 的周期为8,∴(25)(1)f f -=-,)0()80(f f =,
(11)(3)(14)(1)(1)f f f f f ==-+=--=,
又∵奇函数)(x f 在区间[0,2]上是增函数,∴)(x f 在区间[2,2]-上是增函数, ∴(25)(80)(11)f f f -<<,故选D.
二、填空题
13.【答案】 ②③④⑤
【解析】解:①函数y=sinx 和y=tanx 在第一象限都是增函数,不正确,取x=
,
,但是
,
,因此不是单调递增函数;
②若函数f (x )在[a ,b]上满足f (a )f (b )<0,函数f (x )在(a ,b )上至少有一个零点,正确;
③数列{a n }为等差数列,设数列{a n }的前n 项和为S n ,S 10>0,S 11<0,∴
=5(a 6+a 5)>0,
=11a 6<0,
∴a 5+a 6>0,a 6<0,∴a 5>0.因此S n 最大值为S 5,正确;
④在△ABC 中,cos2A ﹣cos2B=﹣2sin (A+B )sin (A ﹣B )=2sin (A+B )sin (B ﹣A )<0⇔A >B ,因此正确;
⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强,正确.
其中正确命题的序号是②③④⑤.
【点评】本题综合考查了三角函数的单调性、函数零点存在判定定理、等差数列的性质、两角和差化积公式、线性回归分析,考查了推理能力与计算能力,属于难题.
14.【答案】
1 2
考
点:函数极值
【方法点睛】函数极值问题的常见类型及解题策略
(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.
(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.
(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反.
15.【答案】a≤﹣1.
【解析】解:由x2﹣2x﹣3≥0得x≥3或x≤﹣1,
若“x<a”是“x2﹣2x﹣3≥0”的充分不必要条件,
则a≤﹣1,
故答案为:a≤﹣1.
【点评】本题主要考查充分条件和必要条件的应用,根据条件求出不等式的等价是解决本题的关键.16.【答案】64.
【解析】解:由图可知甲的得分共有9个,中位数为28
∴甲的中位数为28
乙的得分共有9个,中位数为36
∴乙的中位数为36
则甲乙两人比赛得分的中位数之和是64
故答案为:64.
【点评】求中位数的关键是根据定义仔细分析.另外茎叶图的茎是高位,叶是低位,这一点一定要注意.17.【答案】2.
【解析】解:∵f(0)=2,
∴f(f(0))=f(2)=4+2a=4a,
所以a=2
故答案为:2.
18.【答案】15
【解析】解:8名支教名额分配到三所学校,每个学校至少一个名额,则8人可以分为(6,1,1),(5,2,1),(4,3,1),(4,2,2),(3,3,2),
∵甲学校至少分到两个名额,第一类是1种,第二类有4种,第三类有4种,第四类有3种,第五类也有3种,
根据分类计数原理可得,甲学校至少分到两个名额的分配方案为1+4+4+3+3=15种
故答案为:15.
【点评】本题考查了分类计数原理得应用,关键是分类,属于基础题.
三、解答题
19.【答案】
【解析】解:(1)设M(x,y),A(x1,y1)、B(x2,y2),则x12﹣y12=2,x22﹣y22=2,
两式相减可得(x1+x2)(x1﹣x2)﹣(y1+y2)(y1﹣y2)=0,
∴2x(x1﹣x2)﹣2y(y1﹣y2)=0,
∴=,
∵双曲线C:x2﹣y2=2右支上的弦AB过右焦点F(2,0),
∴,
化简可得x2﹣2x﹣y2=0,(x≥2)﹣﹣﹣﹣﹣﹣﹣
(2)假设存在,设A(x1,y1),B(x2,y2),l AB:y=k(x﹣2)
由已知OA⊥OB得:x1x2+y1y2=0,
∴﹣﹣﹣﹣﹣﹣﹣﹣﹣①
,
所以(k2≠1)﹣﹣﹣﹣﹣﹣﹣﹣②
联立①②得:k2+1=0无解
所以这样的圆不存在.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
20.【答案】
【解析】【知识点】圆锥曲线综合椭圆
【试题解析】(Ⅰ)由已知,
点在椭圆上,,解得.
所求椭圆方程为
(Ⅱ)设,,的垂直平分线过点, 的斜率存在.
当直线的斜率时,
当且仅当时,
当直线的斜率时,设.
消去得:
由.①
,
,的中点为
由直线的垂直关系有,化简得②
由①②得
又到直线的距离为,
时,.
由,,解得;
即时,;
综上:;
21.【答案】
【解析】
∵BG ⊥平面PAD ,∴)0,3,0(=GB 是平面PAF 的一个法向量,
22.【答案】
【解析】【解析】(Ⅰ)()2x a f x -=≤得,22a x a -≤≤+ 由题意得20
42
a a -≤⎧⎨≤+⎩,故22a ≤≤,所以2a = …… 5分
(Ⅱ)
03a ≤≤,∴112a -≤-≤,∴12a -≤,
()()2f ax af x ax a a x a ax a ax a -=---=---()()
2212ax a ax a a a a a a ≤---=-=-≤ ()()()2222f x a f x a x a x x a x a a -++=-+≥--==,
∴()()()()f x a f x a f ax af x -++≥-.…… 10分
23.【答案】
【解析】(Ⅰ)证明:设点P (x ,y ),记线段PA 的中点为M ,则
两圆的圆心距d=|OM|=|PA 1|=R ﹣|PA|, 所以,|PA
1|+|PA|=4>2
,
故点P的轨迹是以A,A1为焦点,以4为长轴的椭圆,
所以,点P的轨迹方程C1为:=1.…
(Ⅱ)解:设P(x
,y1),Q(x2,y2),直线PQ的方程为:x=my+,…
1
代入=1消去x,整理得:(m2
+4)y2+2my﹣1=0,
则y1+y2=﹣,y1y2=﹣,…
△POQ面积S=|OA||y
﹣y2|=2…
1
令t=(0,则S=2≤1(当且仅当t=时取等号)
所以,△POQ面积的最大值1.…
24.【答案】
【解析】解:(Ⅰ)由三视图知:几何体是一个圆锥与一个圆柱的组合体,且圆锥与圆柱的底面半径为2,母线长分别为2、4,
其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.
S圆锥侧=×2π×2×2=4π;
S圆柱侧=2π×2×4=16π;
S圆柱底=π×22=4π.
∴几何体的表面积S=20π+4π;
(Ⅱ)沿A点与B点所在母线剪开圆柱侧面,如图:
则AB===2,
∴以从A点到B点在侧面上的最短路径的长为2.。