毕业生学业九年级数学考试试卷
2023年江西省(中考)初中学业水平考试试卷及参考答案(数学答案)
一、单项选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.A2.B3.D4.A5.C6.D 二、填空题(本大题共6小题,每小题3分,共18分)7.-58.1.8×1079.2a +110.211.612.90°或180°或270°三、解答题(本大题共5小题,每小题6分,共30分)13.(1)解:原式=2+1-1=2.(2)证明:∵AC 平分∠BAD ,∴∠BAC =∠DAC .在△ABC 和△ADC 中,∴△ABC △ADC (SAS ).14.解:(1)如下左图(右图中的C 1~C 5亦可):ABC12C C 答:△ABC 即为所求.(2)如下图:(方法一)(方法二)(方法三)答:点Q 即为所求.15.解:(1)②,③;(2)按甲同学的解法化简:原式=éëêùûúx (x -1)(x +1)(x -1)+x (x +1)(x -1)(x +1)·x 2-1xA B CDìíîïïAB =AD ,∠BAC =∠DAC ,AC =AC ,江西省2023年初中学业水平考试数学试题参考答案=x (x -1)+x (x +1)(x +1)(x -1)·(x +1)(x -1)x =2x 2(x +1)(x -1)·(x +1)(x -1)x =2x .按乙同学的解法化简:原式=x x +1·x 2-1x +x x -1·x 2-1x=x x +1·(x +1)(x -1)x +x x -1·(x +1)(x -1)x =x -1+x +1=2x .16.解:(1)随机.(2)解法一列表如下:甲乙丙丁甲(甲,乙)(甲,丙)(甲,丁)乙(乙,甲)(乙,丙)(乙,丁)丙(丙,甲)(丙,乙)(丙,丁)丁(丁,甲)(丁,乙)(丁,丙)同学1同学2由上表可知,所有可能结果共有12种,且每种结果出现的可能性相等,其中甲、丁同学都被选为宣传员的结果有2种.所以P (甲、丁同学都被选为宣传员)=212=16.解法二画树状图如下:甲乙丙丁乙甲丙丁丙甲乙丁丁甲乙丙由树状图可以看出,所有可能结果共有12种,且每种结果出现的可能性相等,其中甲、丁同学都被选为宣传员的结果有2种.所以P (甲、丁同学都被选为宣传员)=212=16.17.解:(1)∵直线y =x +b 与反比例函数y =kx(x >0)的图象交于点A (2,3),∴2+b =3,3=k2.∴b =1,k =6.∴直线AB 的表达式为y =x +1,反比例函数图象的表达式为y =6x(x >0).(2)过点A作AD⊥BC,垂足为D.∵直线y=x+1与y轴交点B的坐标为(0,1),BC∥x轴,∴C点的纵坐标为1.∴6x=1,x=6,即BC=6.由BC∥x轴,得BC与x轴的距离为1.∴AD=2.∴S△ABC=12BC·AD=12×6×2=6.四、解答题(本大题共3小题,每小题8分,共24分)18.解:(1)设该班的学生人数为x人.依题意,得3x+20=4x-25.解得x=45.答:该班的学生人数为45人.(2)由(1)可知,树苗总数为3x+20=155.设购买甲种树苗y棵,则购买乙种树苗(155-y)棵.依题意,得30y+40(155-y)≤5400.解得y≥80.答:至少购买了甲种树苗80棵.19.(1)证法一证明:∵AB=AC,∴∠B=∠ACB.∵AC=AD,∴∠ADC=∠ACD.∴∠BCD=∠ACB+∠ACD=12(∠ACB+∠B+∠ACD+∠ADC)=12×180°=90°.∴DC⊥BC.证法二证明:∵AB=AC=AD,∴点B,C,D在以点A为圆心,BD为直径的圆上.∴∠BCD=90°,即DC⊥BC.(2)解:过点E作EF⊥BC,垂足为F.在Rt△BCD中,cos B=BCBD,BC=1.8,∴BD=BCcos B=1.8cos55°≈3.16.∴BE=BD+DE=3.16+2=5.16.在Rt△EBF中,sin B=EF BE,∴EF=BE·sin B=5.16×sin55°≈4.2.因此,雕塑的高约为4.2m.EDAB C F20.解:(1)连接OE .∵∠ADE =40°,∴∠AOE =2∠ADE =80°.∴∠BOE =180°-∠AOE =100°.∴ BE 的长l =100∙π∙2180=109π.(2)证明:∵OA =OE ,∠AOE =80°,∴∠OAE =180°-∠AOE2=50°.∵∠EAD =76°,∴∠BAC =∠EAD -∠OAE =26°.又∠C =64°,∴∠ABC =180°-∠BAC -∠C =90°.即AB ⊥BC .又OB 是⊙O 的半径,∴CB 为⊙O 的切线.五、解答题(本大题共2小题,每小题9分,共18分)21.解:(1)68,23%.(2)320.(3)①小胡的说法正确.理由如下:理由一:从中位数看,初中生视力的中位数为1.0,高中生视力的中位数为0.9,所以初中生的视力水平好于高中生.理由二:从众数看,初中生视力的众数为1.0,高中生视力的众数为0.9,所以初中生的视力水平好于高中生.②方法一:26000×8+16+28+34+14+44+60+82200+320=14300(名).方法二:26000×(1-68+46+65+55200+320)=14300(名).所以,估计该区有14300名中学生视力不良.建议:①勤做眼保健操;②不要长时间用眼;③不要在强光下看书;④加强户外运动.22.(1)证法一证明:∵四边形ABCD 是平行四边形,∴OA =OC .又BD ⊥AC ,∴BD 垂直平分AC .∴BA =BC .∴□ABCD 是菱形.证法二证明:∵四边形ABCD 是平行四边形,∴OA =OC .A BCD OE A CBD O图1∵BD⊥AC,∴∠AOB=∠COB.又OB=OB,∴△AOB△COB(SAS).∴BA=BC.∴□ABCD是菱形.(2)①证明:∵四边形ABCD为平行四边形,AC=8,BD=6,∴OA=12AC=4,OD=12BD=3.∴OA2+OD2=42+32=25.又AD2=52=25,∴OA2+OD2=AD2.∴∠AOD=90°.即BD⊥AC.∴□ABCD是菱形.②方法一解:如图2,取CD的中点G,连接OG.∵□ABCD是菱形,∴BC=AD=5,OB=OD,∠ACB=∠ACD.∵∠E=12∠ACD,∴∠E=12∠ACB.即∠ACB=2∠E.又∠ACB=∠E+∠COE,∴∠E=∠COE.∴CE=CO=4.∵OB=OD,GC=GD,∴OG为△DBC的中位线.∴OG//BC,且OG=12BC=52.∴OG//CE.∴△OGF△ECF.∴OFEF=OGCE=58.方法二解:如图3,延长FO交AB于点H.同方法一可得CE=CO=4.∵□ABCD是菱形,∴BH//CF.∴HFFE=BCCE=54,HOOF=BOOD=1.∴HF=2OF.∴OFFE=58.ACBDOFEG图2ACBDO FEH图3六、解答题(本大题共12分)23.解:(1)①3.②S=t2+2.(2)方法一由图象可知,当点P运动到点B时,S=6.将S=6代入S=t2+2,得6=t2+2,解得t=2或t=-2(舍去).当点P由点B运动到点A时,设S关于t的函数解析式为S=a(t-4)2+2.将(2,6)代入,得6=a(2-4)2+2.解得a=1.故S关于t的函数解析式为S=(t-4)2+2.由图象可知,当P运动到A点时,S=18.由18=(t-4)2+2,得t=8或t=0(舍去)∴AB=(8-2)×1=6.方法二由图象可知,当点P运动到点B时,S=6,即BD2=6.∴BD=6.在Rt△DBC中,由勾股定理,得BC=BD2-CD2=2.∴点P由C运动到B的时间为2÷1=2s.当点P由点B运动到点A时,设S关于t的函数解析式为S=a(t-4)2+2.将(2,6)代入,得6=a(2-4)2+2.解得a=1.故S关于t的函数解析式为S=(t-4)2+2.由图象可知,当P运动到A点时,S=18.由18=(t-4)2+2,得t=8或t=0(舍去)∴AB=(8-2)×1=6.(3)①4.由(1)(2)可得S={t2+2,0≤t<2,(t-4)2+2,2≤t≤8.在图2中补全0≤t<2内的图象.根据图象可知0≤t≤2内的图象与2≤t≤4内的图象关于直线x=2对称.因此t1+t2=4.②方法一函数S=t2+2的图象向右平移4个单位与函数S=(t-4)2+2的图象重合.∵当t=t1和t=t3时,S的值相等,∴t3-t1=4.又t3=4t1,∴4t1-t1=4,得t1=43.此时正方形DPEF的面积S=t21+2=349.图1AFEB P CD图2方法二根据二次函数的对称性,可知t2+t3=8.由①可知t1+t2=4,∴t3-t1=4.又t3=4t1,∴4t1-t1=4,得t1=43.此时正方形DPEF的面积S=t21+2=349.。
2024年浙江义乌市初中毕业生学业水平考试数学试题
2024年浙江义乌市初中毕业生学业水平考试数学试题一、单选题1.2024-的绝对值是( ) A .2024B .12024-C .2024-D .120242.下列计算正确的是( ) A .()426a a =B .22(3)6a a =C .842a a a ÷=D .()2326ab a b -=3.如图,由相同的小正方体搭成的几何体的俯视图是( )A .B .C .D .4.据统计,目前我国每年直接浪费掉的粮食达到3500万吨,浪费掉的粮食就足够满足两亿人一年的口粮.将数据3500万用科学记数法表示为( ) A .73.510⨯B .80.3510⨯C .83.510⨯D .73510⨯5.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为( )A .15B .25C .35D .456x 的取值范围是( ) A .3x ≥B .3x ≥-C .3x ≤-D .3x ≤7.如图,已知直线m n ∥,将一块含30︒角的直角三角板ABC 按如图方式放置()30B ∠=︒,其中点A 落在直线m 上,直线n 分别交边,AB BC 于点,D E .若140∠=︒,则2∠的度数为( )A .40︒B .50︒C .60︒D .70︒8.如图,Rt ABC △中,已知90,30,2BAC B AC ∠=︒∠=︒=.现以AC 为一边向外侧作等边三角形ACN ,分别取,BC CN 的中点记为,D E ,连接DE .则DE 的长为( )A .BC .D 9.已知1y 和2y 是关于x 的函数,当x a =时,函数值分别是1R 和2R ,若存在实数a ,使得122R R =+,则称函数1y 和2y 是“奇妙函数”.以下函数1y 和2y 不是“奇妙函数”的是( )A .212y x =+和22y x =B .1y x =和2221y x x =+-C .11y x=和22y x =+ D .12y x=-和25y x =-10.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式,后人借助此分割方法所得图形证明了勾股定理.如图所示,矩形ABCD 就是由两个这样的图形拼成(无重叠、无缝隙).下面给出的条件中,一定能求出矩形ABCD 面积的是( )A .BM 与DM 的积B .BE 与DE 的积C .BM 与DE 的积D .BE 与DM 的积二、填空题11.8-的立方根是.12.因式分解:23mn mn +=.13.已知某班一合作学习小组6名同学一周在家劳动的时间(单位:h )分别为:3,4,5,4,6,5,则这组数据的中位数是.14.一个圆锥的侧面展开图是半径为9cm ,圆心角为120︒的扇形,则此圆锥底面圆的半径为cm .15.如图,在Rt ABC △中,90ACB ∠=︒,6AC =,8BC =,OC 是AB 边上的中线,点E 在CB 上,连结AE ,将C A E V 沿着AE 向ABC V 内部翻折得到PAE △.若PE O C ∥,则CE =.16.如图,抛物线23y x bx =+-的图象与x 轴交于点A ,与y 轴交于点B ,且1OA =.(1)b =.(2)已知点P 为该抛物线上一点且设其横坐标为(0)t t <,记该抛物线在点B 与点P 之间(包含点B 和点P )这部分图象的最高点和最低点到x 轴的距离分别为12,d d .若121d d -=,则t 的取值范围为.三、解答题1701(2024)2sin30π--+-︒. 18.先化简,再求值:()2213363x y x y -+-.其中1,2x y =-=. 19.小汪解答解分式方程:“2312x x x+--=-”的过程如下:你认为他的解题过程正确吗?若正确,请检验;若不正确,请指出错误(从第几步开始错),并写出正确的解答过程.20.为了着力解决小眼镜、小胖墩和学生心理健康问题等建议,某校开设了以“小课间大运动大课间小比赛”的活动课程,学校要求每位学生在“丢沙包”“滚保龄球”“踢毽子”与“跳绳”四门课程中选且只能选其中一门并随机调查了本校部分学生的选课情况,绘制了两幅不完整的统计图,请根据图表信息回答下列问题:(1)这次活动一共调查了________名学生,并补全条形统计图. (2)求图2中“丢沙包”扇形圆心角的度数.(3)若该学校共有1500名学生,请估计该校有多少名学生喜欢“滚保龄球”. 21.如图,已知四边形ABCD 是菱形,延长AD 至点E ,使2AE BC =.(1)求证:90ACE ∠=︒.(2)若16,10AC BC ==,求四边形ABCE 的面积. 22.草莓种植大棚是一种具有保温性能的框架结构.如图示,一般使用钢结构作为骨架,上面覆上一层或多层塑料膜,这样就形成了一个温室空间.大棚的设计要保证通风性且利于采光.(1)如图1,已知某草莓园的种植大棚横截面可以看作抛物线OPN ,其中点P 为抛物线的顶点,大棚高4m PE =,宽12m ON =.现以点O 为坐标原点,ON 所在直线为x 轴,过点O 且垂直于ON 的直线为y 轴建立平面直角坐标系.求此抛物线的解析式.(2)如图2,为方便进出,在大棚横截面中间开了两扇正方形的门,其中AB BE EC CD===.求门高AB的值.(3)若在某一时刻,太阳光线(假设太阳光线为平行线)透过A点恰好照射到N点,此时大棚横截面在地面上的阴影为线段OQ,求此时OQ的长.23.【基础巩固】(1)如图1,在ABCV中,点D是AB上的一点,且ACD B∠=∠,求证:2AC AB AD=⋅.【尝试应用】(2)如图2,在(1)的条件下,过点D作DE AC∥,交CB于点E.若:1:3A D D B=,8BC=,求CD的长.【拓展提高】(3)如图3,在ABCDY中,点E是CD的中点,连结BE,AE交BD于点F,且DFA EBA∠=∠.若sin BDC∠=tan C的值.24.如图1,已知AB是Oe的直径,点C为»AB的中点,点D为Oe上一点(不与A B C,,重合).连结AC,CD,DB,过点A作AE CD∥,交直线BD于点E.(1)当点D 在»BC上时, ①求CDB ∠的度数.②若2BEBD=,CD AE 的值. (2)如图2,记CD a =,作点D 关于直径AB 的对称点F ,连结DF ,CF .若CDF V 为等腰三角形,请直接写出AE 的值(用含a 的代数式表示).。
九年级学业测试数学试卷【含答案】
九年级学业测试数学试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若 a > b,则下列哪个选项一定成立?A. a c > b cB. a + c > b + cC. ac > bcD. a/c > b/c2. 下列哪个函数是奇函数?A. y = x^2B. y = |x|C. y = x^3D. y = x^2 + 13. 在直角坐标系中,点(3, -4)位于?A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 若一个等差数列的前三项分别是2, 5, 8,则第10项是?A. 29B. 30C. 31D. 325. 下列哪个数是既约分数?A. 2/4B. 3/6C. 4/8D. 5/7二、判断题(每题1分,共5分)6. 任何两个奇数之和都是偶数。
()7. 平方根的定义是:一个数的平方根是另一个数,其平方等于这个数。
()8. 任何两个负数相乘的结果都是正数。
()9. 一元二次方程 ax^2 + bx + c = 0(a ≠ 0)的判别式是 b^2 4ac。
()10. 在等差数列中,任何两个相邻项的差是常数。
()三、填空题(每题1分,共5分)11. 若 a = 3,b = -2,则 |a + b| = _______。
12. 函数 y = 2x + 3 的图像是一条_________。
13. 若一个等差数列的公差是3,第5项是14,则第1项是_______。
14. 平方根的算术平方根是_______。
15. 一元二次方程 x^2 5x + 6 = 0 的解是 x = _______ 和 x = _______。
四、简答题(每题2分,共10分)16. 解释等差数列和等比数列的定义。
17. 什么是算术平方根?如何计算一个数的算术平方根?18. 描述如何解一元二次方程。
19. 解释函数图像的斜率是什么,如何计算斜率?20. 什么是绝对值?请给出一个例子。
初三数学毕业试卷及答案
一、选择题(每题4分,共40分)1. 若m > 0,则下列不等式中正确的是()A. m + 1 > mB. m - 1 > mC. -m + 1 > mD. -m - 1 > m2. 下列函数中,在定义域内单调递增的是()A. y = -2x + 3B. y = 2x - 5C. y = x^2D. y = -x^23. 若a、b、c是等差数列,且a + b + c = 12,a + c = 8,则b的值为()A. 4B. 6C. 8D. 104. 在直角坐标系中,点P(2, -3)关于原点的对称点为()A. (2, 3)B. (-2, -3)C. (-2, 3)D. (2, -3)5. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 平行四边形D. 圆6. 已知等腰三角形ABC中,AB = AC,若∠B = 40°,则∠A的度数为()A. 40°B. 50°C. 60°D. 70°7. 下列方程中,解集不为空集的是()A. x^2 + 1 = 0B. x^2 - 1 = 0C. x^2 + 2x + 1 = 0D. x^2 - 2x + 1 = 08. 下列函数中,是奇函数的是()A. y = x^2B. y = 2xC. y = |x|D. y = x^39. 下列等式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^210. 在等腰三角形ABC中,AB = AC,若BC = 6,则AB + AC的值为()A. 12B. 8C. 10D. 14二、填空题(每题4分,共40分)11. 若x^2 - 5x + 6 = 0,则x的值为______。
2021年天津市(初三学业水平考试)中考数学真题试卷含详解
2021年天津市初中毕业生学业考试试卷数学一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算()53-⨯的结果等于()A.2- B.2 C.15- D.152.tan 30︒的值等于() A.33 B.22 C.1 D.23.据2021年5月12日《天津日报》报道,第七次全国人口普查数据公布,普查结果显示,全国人口共141178万人.将141178用科学记数法表示应为()A.60.14117810⨯ B.51.4117810⨯ C.414.117810⨯ D.3141.17810⨯4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.5.如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A. B.C.D.6.的值在()A.2和3之间 B.3和4之间C.4和5之间D.5和6之间7.方程组234x y x y +=⎧⎨+=⎩的解是()A.02x y =⎧⎨=⎩ B.11x y =⎧⎨=⎩ C.22x y =⎧⎨=-⎩ D.33x y =⎧⎨=-⎩8.如图,ABCD 的顶点A ,B ,C 的坐标分别是()()()2,0,1,2,2,2---,则顶点D 的坐标是()A.()4,1-B.()4,2- C.()4,1 D.()2,19.计算33a b a b a b ---的结果是()A.3 B.33a b + C.1 D.6aa b -10.若点()()()1235,,1,,5,A y B y C y -都在反比例函数5y x =-的图象上,则123,,y y y 的大小关系是()A.123y y y << B.231y y y << C.132y y y << D.312y y y <<11.如图,在ABC 中,120BAC ∠=︒,将ABC 绕点C 逆时针旋转得到DEC ,点A ,B 的对应点分别为D ,E ,连接AD .当点A ,D ,E 在同一条直线上时,下列结论一定正确的是()A.ABC ADC ∠=∠B.CB CD =C.DE DC BC +=D.AB CD∥12.已知抛物线2y ax bx c =++(,,a b c 是常数,0a ≠)经过点(1,1),(0,1)--,当2x =-时,与其对应的函数值1y >.有下列结论:①0abc >;②关于x 的方程230ax bx c ++-=有两个不等的实数根;③7a b c ++>.其中,正确结论的个数是()A.0 B.1 C.2 D.3二、填空题(本大题共6小题,每小题3分,共18分)13.计算42a a a +-的结果等于_____.14.计算1)-的结果等于_____.15.不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_____.16.将直线6y x =-向下平移2个单位长度,平移后直线的解析式为_____.17.如图,正方形ABCD 的边长为4,对角线,AC BD 相交于点O ,点E ,F 分别在,BC CD 的延长线上,且2,1CE DF ==,G 为EF 的中点,连接OE ,交CD 于点H ,连接GH ,则GH 的长为________.18.如图,在每个小正方形的边长为1的网格中,ABC 的顶点A ,C 均落在格点上,点B 在网格线上.(Ⅰ)线段AC 的长等于_____;(Ⅱ)以AB 为直径的半圆的圆心为O ,在线段AB 上有一点P ,满足AP AC =,请用无刻度...的直尺,在如图所示的网格中,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明)_____.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.解不等式组43,65 3.x x x +≥⎧⎨≤+⎩①②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得_______________;(Ⅱ)解不等式②,得_______________;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为___________.20.某社区为了增强居民节约用水的意识,随机调查了部分家庭一年的月均用水量(单位:t ).根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的家庭个数为________,图①中m 的值为_______;(Ⅱ)求统计的这组月均用水量数据的平均数、众数和中位数.21.已知ABC 内接于,,42O AB AC BAC =∠=︒ ,点D 是O 上一点.(Ⅰ)如图①,若BD 为O 的直径,连接CD ,求DBC ∠和ACD ∠的大小;(Ⅱ)如图②,若CD //BA ,连接AD ,过点D 作O 的切线,与OC 的延长线交于点E ,求E ∠的大小.22.如图,一艘货船在灯塔C 的正南方向,距离灯塔257海里的A 处遇险,发出求救信号.一艘救生船位于灯塔C 的南偏东40︒方向上,同时位于A 处的北偏东60︒方向上的B 处,救生船接到求救信号后,立即前往救援.求AB的长(结果取整数).参考数据:tan 400.84︒≈取1.73.23.在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学校、书店、陈列馆依次在同一条直线上,书店离学校12km ,陈列馆离学校20km .李华从学校出发,匀速骑行0.6h 到达书店;在书店停留0.4h 后,匀速骑行0.5h 到达陈列馆;在陈列馆参观学习一段时间,然后回学校;回学校途中,匀速骑行0.5h 后减速,继续匀速骑行回到学校.给出的图象反映了这个过程中李华离学校的距离km y 与离开学校的时间h x 之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表离开学校的时间/h0.10.50.813离学校的距离/km212(Ⅱ)填空:①书店到陈列馆的距离为________km ;②李华在陈列馆参观学的时间为_______h ;③李华从陈列馆回学校途中,减速前的骑行速度为______km/h ;④当李华离学校的距离为4km 时,他离开学校的时间为_______h .(Ⅲ)当0 1.5x ≤≤时,请直接写出y 关于x 的函数解析式.24.在平面直角坐标系中,O 为原点,OAB 是等腰直角三角形,90,OBA BO BA ∠=︒=,顶点()4,0A ,点B 在第一象限,矩形OCDE 的顶点7,02E ⎛⎫- ⎪⎝⎭,点C 在y 轴的正半轴上,点D 在第二象限,射线DC 经过点B .(Ⅰ)如图①,求点B 的坐标;(Ⅱ)将矩形OCDE 沿x 轴向右平移,得到矩形O C D E '''',点O ,C ,D ,E 的对应点分别为O ',C ',D ¢,E ',设OO t '=,矩形O C D E ''''与OAB 重叠部分的面积为S .①如图②,当点E '在x 轴正半轴上,且矩形O C D E ''''与OAB 重叠部分为四边形时,D E ''与OB 相交于点F ,试用含有t 的式子表示S ,并直接写出t 的取值范围;②当5922t ≤≤时,求S 的取值范围(直接写出结果即可).25.已知抛物线22y ax ax c =-+(a ,c 为常数,0a ≠)经过点()0,1C -,顶点为D .(Ⅰ)当1a =时,求该抛物线的顶点坐标;(Ⅱ)当0a >时,点()0,1E a +,若2DE =,求该抛物线的解析式;(Ⅲ)当1a <-时,点()0,1F a -,过点C 作直线l 平行于x 轴,(),0M m 是x 轴上的动点,()3,1N m +-是直线l 上的动点.当a 为何值时,FM DN +的最小值为10,并求此时点M ,N 的坐标.2021年天津市初中毕业生学业考试试卷数学一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算()53-⨯的结果等于()A.2- B.2 C.15- D.15【答案】C【分析】根据有理数的乘法法则运算即可求解.【详解】解:由题意可知:()5315-⨯=-,故选:C .【点睛】本题考查了有理数的乘法法则,属于基础题,运算过程中注意符号即可.2.tan 30︒的值等于()A.3B.2C.1D.2【答案】A【分析】根据30°的正切值直接求解即可.【详解】解:由题意可知,3tan 303︒=,故选:A .【点睛】本题考查30°的三角函数,属于基础题,熟记其正切值即可.3.据2021年5月12日《天津日报》报道,第七次全国人口普查数据公布,普查结果显示,全国人口共141178万人.将141178用科学记数法表示应为()A.60.14117810⨯ B.51.4117810⨯ C.414.117810⨯ D.3141.17810⨯【答案】B【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:141178=1.41178×105,故选:B.【点睛】此题考查科学记数法的表示方法,关键是确定a的值以及n的值.4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.【答案】A【分析】根据轴对称图形的概念对各项分析判断即可得解.【详解】A.是轴对称图形,故本选项符合题意;B.不是轴对称图形,故本选项不符合题意;C.不是轴对称图形,故本选项不符合题意;D.不是轴对称图形,故本选项不符合题意.故选A.【点睛】本题考查判断轴对称图形,理解轴对称图形的概念是解答的关键.5.如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A. B.C.D.【答案】D【分析】根据三视图中的主视图定义,从前往后看,得到的平面图形即为主视图.【详解】解:从正面看到的平面图形是3列小正方形,从左至右第1列有1个,第2列有2个,第3列有2个,故选:D .【点睛】本题主要考查了组合体的三视图,解题的关键是根据主视图的概念由立体图形得到相应的平面图形.6.的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】C【分析】估算无理数的大小.【详解】因为2224<5<,的值在4和5之间.故选C .7.方程组234x y x y +=⎧⎨+=⎩的解是()A.02x y =⎧⎨=⎩ B.11x y =⎧⎨=⎩ C.22x y =⎧⎨=-⎩ D.33x y =⎧⎨=-⎩【答案】B【分析】直接利用加减消元法解该二元一次方程组即可.【详解】234x y x y +=⎧⎨+=⎩ ①②,②-①得:32x y x y +--=,即22x =,∴1x =.将1x =代入①得:12y +=,∴1y =.故原二元一次方程组的解为11x y =⎧⎨=⎩.故选B .【点睛】本题考查解二元一次方程组.掌握解二元一次方程组的方法和步骤是解答本题的关键.8.如图,ABCD 的顶点A ,B ,C 的坐标分别是()()()2,0,1,2,2,2---,则顶点D 的坐标是()A.()4,1-B.()4,2-C.()4,1D.()2,1【答案】C【分析】根据平行四边形性质以及点的平移性质计算即可.【详解】解:∵四边形ABCD 是平行四边形,点B 的坐标为(-2,-2),点C 的坐标为(2,-2),∴点B 到点C 为水平向右移动4个单位长度,∴A 到D 也应向右移动4个单位长度,∵点A 的坐标为(0,1),则点D 的坐标为(4,1),故选:C .【点睛】本题主要考查平行四边形的性质,以及平移的相关知识点,熟知点的平移特点是解决本题的关键.9.计算33a b a b a b ---的结果是()A.3B.33a b +C.1D.6a a b-【答案】A【分析】先根据分式的减法运算法则计算,再提取公因式3,最后约分化简即可.【详解】原式33a b a b-=-,3()a b a b -=-3=.故选A .【点睛】本题考查分式的减法.掌握分式的减法运算法则是解答本题你的关键.10.若点()()()1235,,1,,5,A y B y C y -都在反比例函数5y x =-的图象上,则123,,y y y 的大小关系是()A.123y y y << B.231y y y << C.132y y y << D.312y y y <<【答案】B【分析】将A 、B 、C 三点坐标代入反比例函数解析式,即求出123、、y y y 的值,即可比较得出答案.【详解】分别将A 、B 、C 三点坐标代入反比例函数解析式得:1515y =-=-、2551y =-=-、3515y =-=-.则231y y y <<.故选B .【点睛】本题考查比较反比例函数值.掌握反比例函数图象上的点的坐标满足其解析式是解答本题的关键.11.如图,在ABC 中,120BAC ∠=︒,将ABC 绕点C 逆时针旋转得到DEC ,点A ,B 的对应点分别为D ,E ,连接AD .当点A ,D ,E 在同一条直线上时,下列结论一定正确的是()A.ABC ADC∠=∠ B.CB CD = C.DE DC BC += D.AB CD∥【答案】D【分析】由旋转可知120EDC BAC ∠=∠=︒,即可求出60ADC ∠=︒,由于60ABC ∠<︒,则可判断ABC ADC ∠≠∠,即A 选项错误;由旋转可知CB CE =,由于CE CD >,即推出CB CD >,即B 选项错误;由三角形三边关系可知DE DC CE +>,即可推出DE DC CB +>,即C 选项错误;由旋转可知DC AC =,再由60ADC ∠=︒,即可证明ADC 为等边三角形,即推出60ACD ∠=︒.即可求出180ACD BAC ∠+∠=︒,即证明//AB CD ,即D 选项正确;【详解】由旋转可知120EDC BAC ∠=∠=︒,∵点A ,D ,E 在同一条直线上,∴18060ADC EDC ∠=︒-∠=︒,∵60ABC ∠<︒,∴ABC ADC ∠≠∠,故A 选项错误,不符合题意;由旋转可知CB CE =,∵120EDC ∠=︒为钝角,∴CE CD >,∴CB CD >,故B 选项错误,不符合题意;∵DE DC CE +>,∴DE DC CB +>,故C 选项错误,不符合题意;由旋转可知DC AC =,∵60ADC ∠=︒,∴ADC 为等边三角形,∴60ACD ∠=︒.∴180ACD BAC ∠+∠=︒,∴//AB CD ,故D 选项正确,符合题意;故选D .【点睛】本题考查旋转的性质,三角形三边关系,等边三角形的判定和性质以及平行线的判定.利用数形结合的思想是解答本题的关键.12.已知抛物线2y ax bx c =++(,,a b c 是常数,0a ≠)经过点(1,1),(0,1)--,当2x =-时,与其对应的函数值1y >.有下列结论:①0abc >;②关于x 的方程230ax bx c ++-=有两个不等的实数根;③7a b c ++>.其中,正确结论的个数是()A.0 B.1 C.2 D.3【答案】D【分析】根据函数与点的关系,一元二次方程根的判别式,不等式的性质,逐一计算判断即可【详解】∵抛物线2y ax bx c =++(,,a b c 是常数,0a ≠)经过点(1,1),(0,1)--,当2x =-时,与其对应的函数值1y >.∴c =1>0,a -b +c =-1,4a -2b +c >1,∴a -b =-2,2a -b >0,∴2a -a -2>0,∴a >2>0,∴b =a +2>0,∴abc >0,∵230ax bx c ++-=,∴△=24(3)b a c --=28b a +>0,∴230ax bx c ++-=有两个不等的实数根;∵b =a +2,a >2,c =1,∴a +b +c =a +a +2+1=2a +3,∵a >2,∴2a >4,∴2a +3>4+3>7,故选D .【点睛】本题考查了二次函数的性质,一元二次方程根的判别式,不等式的基本性质,熟练掌握二次函数的性质,灵活使用根的判别式,准确掌握不等式的基本性质是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.计算42a a a +-的结果等于_____.【答案】5a【分析】根据合并同类项的性质计算,即可得到答案.【详解】()424215a a a a a+-=+-=故答案为:5a .【点睛】本题考查了整式加减的知识;解题的关键是熟练掌握合并同类项的性质,从而完成求解.14.计算1)-的结果等于_____.【答案】9【分析】根据二次根式的混合运算法则结合平方差公式计算即可.【详解】21)19+=-=.故答案为9.【点睛】本题考查二次根式的混合运算.掌握二次根式的混合运算法则是解答本题你的关键.15.不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_____.【答案】37【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:∵袋子中共有7个球,其中红球有3个,∴从袋子中随机取出1个球,它是红球的概率是37,故答案为37.【点睛】本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n .16.将直线6y x =-向下平移2个单位长度,平移后直线的解析式为_____.【答案】62y x =--【分析】直接根据“上加下减,左加右减”的平移规律求解即可.【详解】将直线y =-6x 向下平移2个单位长度,所得直线的解析式为y =-6x -2.故答案为y =-6x -2.【点睛】本题考查一次函数图象的平移变换.掌握其规律“左加右减,上加下减”是解答本题的关键.17.如图,正方形ABCD 的边长为4,对角线,AC BD 相交于点O ,点E ,F 分别在,BC CD 的延长线上,且2,1CE DF ==,G 为EF 的中点,连接OE ,交CD 于点H ,连接GH ,则GH 的长为________.【答案】132【分析】先作辅助线构造直角三角形,求出CH 和MG 的长,再求出MH 的长,最后利用勾股定理求解即可.【详解】解:如图,作OK ⊥BC ,垂足为点K ,∵正方形边长为4,∴OK =2,KC =2,∴KC =CE ,∴CH 是△OKE 的中位线∴112CH OK ==,作GM ⊥CD ,垂足为点M ,∵G 点为EF 中点,∴GM 是△FCE 的中位线,∴112GM CE ==,()()1115412222MC FC CD DF ==+=⨯+=,∴53122MH MC HC =-=-=,在Rt △MHG 中,132GH ===,故答案为:132.【点睛】本题综合考查了正方形的性质、三角形中位线定理、勾股定理等内容,解决本题的关键是能作出辅助线构造直角三角形,得到三角形的中位线,利用三角形中位线定理求出相应线段的长,利用勾股定理解直角三角形等.18.如图,在每个小正方形的边长为1的网格中,ABC 的顶点A ,C 均落在格点上,点B 在网格线上.(Ⅰ)线段AC 的长等于_____;(Ⅱ)以AB 为直径的半圆的圆心为O ,在线段AB 上有一点P ,满足AP AC =,请用无刻度...的直尺,在如图所示的网格中,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明)_____.【答案】①.5②.见解析【分析】(Ⅰ)根据勾股定理计算即可;(Ⅱ)现将ACB △补成等腰三角形,然后构建全等三角形即可.【详解】解:(Ⅰ)∵每个小正方形的边长为1,∴22125AC =+=,;(Ⅱ)如图,取BC 与网格线的交点D ,则点D 为BC 中点,连接OD 并延长,与半圆相交于点E ,连接BE 并延长,与AC 的延长线相交于点F ,则OE 为BFA V 中位线,且AB AF =,连接AE 交BC 于点G ,连接FG 并延长,与AB 相交于点P ,因为FAP BAC ≌,则点P即为所求.【点睛】本题主要考查复杂作图能力,勾股定理,中位线定理,全等三角形的判定和性质,等腰三角形的性质,平行线的性质等知识点,掌握以上知识点并与已知图形结合是解决本题关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.解不等式组43,65 3.x x x +≥⎧⎨≤+⎩①②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得_______________;(Ⅱ)解不等式②,得_______________;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为___________.【答案】(Ⅰ)1x ≥-;(Ⅱ)3x ≤;(Ⅲ)把不等式①和②的解集在数轴上表示见解析;(Ⅳ)13x -≤≤.【分析】根据解一元一次不等式组的步骤和不等式组的解集在数轴上的表示方法即可解答.【详解】(Ⅰ)解不等式43x +≥,得:1x ≥-.故答案为:1x ≥-;(Ⅱ)解不等式653x x ≤+,得:3x ≤.故答案为:3x ≤;(Ⅲ)在数轴上表示为:;(Ⅳ)原不等式的解集为13x -≤≤.故答案为:13x -≤≤.【点睛】本题考查解一元一次不等式组和在数轴上表示不等式组的解集.掌握解一元一次不等式组的步骤是解答本题的关键.20.某社区为了增强居民节约用水的意识,随机调查了部分家庭一年的月均用水量(单位:t ).根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的家庭个数为________,图①中m 的值为_______;(Ⅱ)求统计的这组月均用水量数据的平均数、众数和中位数.【答案】(Ⅰ)50,20;(Ⅱ)这组数据的平均数是5.9;众数为6;中位数为6.【分析】(Ⅰ)利用用水量为5t 的家庭个数除以其所占百分比即可求出本次接受调查的家庭个数;利用用水量为6.5t 的家庭个数除以本次接受调查的家庭个数即得出其所占百分比,即得出m 的值.(Ⅱ)根据加权平均数的公式,中位数,众数的定义即可求出结果.【详解】(Ⅰ)本次接受调查的家庭个数=85016%=,由题意可知10100%%50m ⨯=,解得20m =.故答案为50,20.(Ⅱ)观察条形统计图,∵58 5.512616 6.51074 5.950x ⨯+⨯+⨯+⨯+⨯==,∴这组数据的平均数是5.9.∵在这组数据中,6出现了16次,出现的次数最多,∴这组数据的众数为6.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是6,即有6662+=,∴这组数据的中位数为6.【点睛】本题考查条形统计图与扇形统计图相关联,加权平均数,中位数以及众数.从条形统计图与扇形统计图中找到必要的数据和信息是解答本题的关键.21.已知ABC 内接于,,42O AB AC BAC =∠=︒ ,点D 是O 上一点.(Ⅰ)如图①,若BD 为O 的直径,连接CD ,求DBC ∠和ACD ∠的大小;(Ⅱ)如图②,若CD //BA ,连接AD ,过点D 作O 的切线,与OC 的延长线交于点E ,求E ∠的大小.【答案】(Ⅰ)48DBC ∠=︒,21ACD ∠=︒;(Ⅱ)36E ∠=︒.【分析】(Ⅰ)由圆周角定理的推论可知90BCD ∠=︒,42BDC BAC ∠=∠=︒,即可推出9048DBC BDC ∠=︒-∠=︒;由等腰三角形的性质结合三角形内角和定理可求出69ABC ACB ∠=∠=︒,从而求出21ACD BCD ACB ∠=∠-∠=︒.(Ⅱ)连接OD ,由平行线的性质可知42ACD BAC ∠=∠=︒.由圆内接四边形的性质可求出180111ADC ABC ∠=︒-∠=︒.再由三角形内角和定理可求出27DAC ∠=︒.从而由圆周角定理求出254DOC DAC ∠=∠=︒.由切线的性质可知90ODE ∠=︒.即可求出9036E DOE ∠=︒-∠=︒.【详解】(Ⅰ)BD 为O 的直径,∴90BCD ∠=︒.∵在O 中,42BDC BAC ∠=∠=︒,∴9048DBC BDC ∠=︒-∠=︒;∵42AB AC BAC =∠=︒,,∴1180692()ABC ACB BAC ∠=∠=︒-∠=︒.∴21ACD BCD ACB ∠=∠-∠=︒.(Ⅱ)如图,连接OD .∵CD BA ,∴42ACD BAC ∠=∠=︒.∵四边形ABCD 是圆内接四边形,69ABC ∠=︒,∴180111ADC ABC ∠=︒-∠=︒.∴18027DAC ACD ADC ∠=︒-∠-∠=︒.∴254DOC DAC ∠=∠=︒.∵DE 是O 的切线,∴DE OD ⊥,即90ODE ∠=︒.∴9036E DOE ∠=︒-∠=︒.【点睛】本题为圆的综合题.考查圆周角定理及其推论,等腰三角形的性质,三角形内角和定理,平行线的性质,圆的内接四边形的性质以及切线的性质.利用数形结合的思想以及连接常用的辅助线是解答本题的关键.22.如图,一艘货船在灯塔C 的正南方向,距离灯塔257海里的A 处遇险,发出求救信号.一艘救生船位于灯塔C 的南偏东40︒方向上,同时位于A 处的北偏东60︒方向上的B 处,救生船接到求救信号后,立即前往救援.求AB的长(结果取整数).参考数据:tan 400.84︒≈取1.73.【答案】AB 的长约为168海里.【分析】如图,过点B 作BH ⊥CA ,垂足为H ,解直角三角形即可【详解】如图,过点B 作BH ⊥CA ,垂足为H .根据题意,60,40,257BAC BCA CA ∠=︒∠=︒=.∵在Rt BAH △中,tan BH BAH AH ∠=,cos AH BAH AB ∠=,∴tan 603,2cos60AH BH AH AB AH =⋅︒===︒.∵在Rt BCH 中,tan BH BCH CH ∠=,∴3tan 40tan 40BH CH ==︒︒.又CA CH AH =+,∴3257tan 40AH =+︒.可得3tan 40AH =+︒.∴22570.841681.730.843tan 40AB ⨯⨯=≈=++︒.答:AB 的长约为168海里.【点睛】本题考查了解直角三角形的应用,构造高线构造出直角三角形,并灵活解之是解题的关键.23.在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学校、书店、陈列馆依次在同一条直线上,书店离学校12km ,陈列馆离学校20km .李华从学校出发,匀速骑行0.6h 到达书店;在书店停留0.4h 后,匀速骑行0.5h 到达陈列馆;在陈列馆参观学习一段时间,然后回学校;回学校途中,匀速骑行0.5h 后减速,继续匀速骑行回到学校.给出的图象反映了这个过程中李华离学校的距离km y 与离开学校的时间h x 之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表离开学校的时间/h0.10.50.813离学校的距离/km212(Ⅱ)填空:①书店到陈列馆的距离为________km ;②李华在陈列馆参观学的时间为_______h ;③李华从陈列馆回学校途中,减速前的骑行速度为______km/h ;④当李华离学校的距离为4km 时,他离开学校的时间为_______h .(Ⅲ)当0 1.5x ≤≤时,请直接写出y 关于x 的函数解析式.【答案】(Ⅰ)10,12,20;(Ⅱ)①8;②3;③28;④15或316;(Ⅲ)当00.6x ≤≤时,20y x =;当0.61x <≤时,12y =;当1 1.5x <≤时,164y x =-.【分析】(Ⅰ)根据函数图象,利用待定系数法,分段写出函数解析式,根据表格中x ,代入相应的解析式,得到y ;(Ⅱ)①根据图象进行分析即可;②根据图象进行分析即可;③根据4.55x <≤时的函数解析式可求;④分00.6x ≤≤和5 5.5x <≤两种情况讨论,将距离为4km 代入相应的解析式求出时间x ;(Ⅲ)根据函数图象,利用待定系数法,分段写出函数解析式即可.【详解】对函数图象进行分析:①当00.6x ≤≤时,设函数关系式为y kx =,由图象可知,当x =0.6时,y =12,则12=0.6k ,解得20k =∴当00.6x ≤≤时,设函数关系式为20y x=②由图象可知,当0.61x <≤时,12y =③当1 1.5x <≤时,设函数关系式为y kx b =+,由图象可知,当x =1时,y =12;当x =1.5时,y =20,则121.520k b k b +=⎧⎨+=⎩,解得164k b =⎧⎨=-⎩∴当1 1.5x <≤时,设函数关系式为164y x =-④由图象可知,当1.5 4.5x ≤≤时,20y =⑤当4.55x <≤时,设函数关系式为y kx b =+,由图象可知,当x =4.5时,y =20;当x =5时,y =6,则 4.52056k b k b +=⎧⎨+=⎩,解得28146k b =-⎧⎨=⎩∴当4.55x <≤时,设函数关系式为28146y x =-+⑥当5 5.5x <≤时,设函数关系式为y kx b =+,由图象可知,当x =5时,y =6;当x =5.5时,y =0,则565.50k b k b +=⎧⎨+=⎩,解得1266k b =-⎧⎨=⎩∴当5 5.5x <≤时,设函数关系式为1266y x =-+(Ⅰ)∵当00.6x ≤≤时,函数关系式为20y x=∴当x =0.5时,200.510y =⨯=.故第一空为10.当0.61x <≤时,12y =.故第二空为12.当1.5 4.5x ≤<时,20y =.故第二空为20.(Ⅱ)①李华从学校出发,匀速骑行0.6h 到达书店;在书店停留0.4h 后,匀速骑行0.5h 到达陈列馆.由图象可知书店到陈列馆的距离2012=8-;②李华在陈列馆参观学习一段时间,然后回学校.由图象可知李华在陈列馆参观学的时间4.5 1.53-=;③当4.55x <≤时,设函数关系式为28146y x =-+,所以李华从陈列馆回学校途中,减速前的骑行速度为28;④当李华离学校的距离为4km 时,00.6x ≤≤或5 5.5x <≤由上对图象的分析可知:当00.6x ≤≤时,设函数关系式为20y x=令4y =,解得15x =当5 5.5x <≤时,设函数关系式为1266y x =-+令4y =,解得316x =∴当李华离学校的距离为4km 时,他离开学校的时间为15或316.(Ⅲ)由上对图象的分析可知:当00.6x ≤≤时,20y x =;当0.61x <≤时,12y =;当1 1.5x <≤时,164y x =-.【点睛】本题考查函数的图象与实际问题.解题的关键在于读懂函数的图象,分段进行分析.24.在平面直角坐标系中,O 为原点,OAB 是等腰直角三角形,90,OBA BO BA ∠=︒=,顶点()4,0A ,点B 在第一象限,矩形OCDE 的顶点7,02E ⎛⎫- ⎪⎝⎭,点C 在y 轴的正半轴上,点D 在第二象限,射线DC 经过点B .(Ⅰ)如图①,求点B 的坐标;(Ⅱ)将矩形OCDE 沿x 轴向右平移,得到矩形O C D E '''',点O ,C ,D ,E 的对应点分别为O ',C ',D ¢,E ',设OO t '=,矩形O C D E ''''与OAB 重叠部分的面积为S .①如图②,当点E '在x 轴正半轴上,且矩形O C D E ''''与OAB 重叠部分为四边形时,D E ''与OB 相交于点F ,试用含有t 的式子表示S ,并直接写出t 的取值范围;②当5922t ≤≤时,求S 的取值范围(直接写出结果即可).【答案】(Ⅰ)点B 的坐标为()2,2;(Ⅱ)①21717228S t t =-+-,t 的取值范围是1142t ≤<;②236388S ≤≤.【分析】(I)过点B 作BH OA ⊥,垂足为H ,由等腰三角形的“三线合一”性质得到122OH OA ==,再由∠BOH =45°得到△OBH 为等腰直角三角形,进而2BH OH ==,由此求得B 点坐标;(II)①由平移知,四边形O C D E ''''是矩形,得790,2O E D O E OE '''''∠=︒==,进而得到72FE OE t '==-',再由重叠部分面积OAB FOE S S S '=-即可求解;②画出不同情况下重叠部分的图形,分5722t ≤≤和7922t <≤两种情况,将重叠部分的面积表示成关于t 的二次函数,再结合二次函数的最值问题求解.【详解】解:(I)如图,过点B 作BH OA ⊥,垂足为H .由点()4,0A ,得4OA =.∵,90BO BA OBA =∠=︒,∴122OH OA ==.又∠BOH =45°,∴△OBH 为等腰直角三角形,∴2BH OH ==.∴点B 的坐标为()2,2.(II)①由点7,02E ⎛⎫- ⎪⎝⎭,得72OE =.由平移知,四边形O C D E ''''是矩形,得790,2O E D O E OE '''''∠=︒==.∴72OE OO O E t '''='=--,90FE O ∠='︒.∵BO BA =,90OBA ∠=︒,∴45BOA BAO ∠=∠=︒.∴9045OFE BOA ∠=︒-∠='︒∴FOE OFE ∠=∠''.∴72FE OE t '==-'.∴2117222FOE S OE FE t '⎛⎫=⋅=- ⎪⎝'⎭' .∴211742222OAB FOE S S S t '⎛⎫=-=⨯⨯-- ⎪⎝⎭.整理后得到:21717228S t t =-+-.当'O 与A 重合时,矩形O C D E ''''与OAB 重叠部分刚开始为四边形,如下图(1)所示:此时4OO t '==,当'D 与B 重合时,矩形O C D E ''''与OAB 重叠部分为三角形,接下来往右平移时重叠部分一直为三角形直到'E 与A 点重合,如下图(2)所示:此时''711222t OO DD ===+=,∴t 的取值范围是1142t ≤<,故答案为:21717228S t t =-+-,其中:1142t ≤<;②当5722t ≤≤时,矩形O C D E ''''与OAB 重叠部分的面积如下图3所示:此时'4AO t =-,∠BAO =45°,'AO F 为等腰直角三角形,∴''4AO FO t ==-,∴22'111''(4)48222AO F S AO FO t t t =×=-=-+ ,∴重叠部分面积22'114(48)4422AOB AO F S S S t t t t =-=--+=-+- ,∴S 是关于t 的二次函数,且对称轴为4t =,且开口向下,故自变量离对称轴越远,其对应的函数值越小,故将72t =代入,得到最大值217731(442228S =-´+´-=,将52t =代入,得到最小值215523(442228S =-´+´-=,当7922t <≤时,矩形O C D E ''''与OAB 重叠部分的面积如下图4所示:此时''4'AO OA OO t FO =-=-=,7'''2OE EE EO t ME =-=-='AO F 和'OE M 均为等腰直角三角形,∴22'111''(4)48222AO F S AO FO t t t =×=-=-+ ,22'1171749''(222228OE M S OE ME t t t =×=-=-+ ,∴重叠部分面积222''1174915814(48)()222828AOB OE M AO F S S S S t t t t t t =--=--+--+=-+- ,∴S 是关于t 的二次函数,且对称轴为154t =,且开口向下,故自变量离对称轴越远,其对应的函数值越小,故将154t =代入,得到最大值21515158163()424816S =-+´-=,将92t =代入,得到最小值291598127()22288S =-+´-=,∵272388>,6331168>,∴S 的最小值为238,最大值为6316,故答案为:2363816S ≤≤.【点睛】本题考查了矩形的性质、坐标与图形性质、平移的性质、直角三角形的性质、二次函数的最值等问题,属于综合题,需要画出动点不同状态下的图形求解,本题难度较大,需要分类讨论.25.已知抛物线22y ax ax c =-+(a ,c 为常数,0a ≠)经过点()0,1C -,顶点为D .(Ⅰ)当1a =时,求该抛物线的顶点坐标;(Ⅱ)当0a >时,点()0,1E a +,若2DE =,求该抛物线的解析式;(Ⅲ)当1a <-时,点()0,1F a -,过点C 作直线l 平行于x 轴,(),0M m 是x 轴上的动点,()3,1N m +-是直线l 上的动点.当a 为何值时,FM DN +的最小值为,并求此时点M ,N 的坐标.【答案】(Ⅰ)抛物线的顶点坐标为(1,2)-;(Ⅱ)2112y x x =--或23312y x x =--;(Ⅲ)点M 的坐标为7,06⎛⎫- ⎪⎝⎭,点N 的坐标为11,16⎛⎫- ⎪⎝⎭【分析】(Ⅰ)结合题意,通过列一元一次方程并求解,即可得到抛物线的解析式,将解析式化为顶点式,即可得到答案(Ⅱ)根据题意,得抛物线的解析式为221y ax ax =--;根据抛物线对称轴的性质,计算得点D 的坐标为(1,1)a --;过点D 作DG y ⊥轴于点G ,根据勾股定理和一元二次方程的性质,得112a =,232a =,从而得到答案;(Ⅲ)当1a <-时,将点(1,1)D a --向左平移3个单位长度,向上平移1个单位长度得(2,)D a '--;作点F 关于x 轴的对称点F ',当满足条件的点M 落在线段F D ''上时,根据两点之间线段最短的性质,得FM DN +最小,结合题意,根据勾股定理和一元二次方程性质,得152=-a ,从而得直线F D ''的解析式,通过计算即可得到答案.【详解】(Ⅰ)当1a =时,抛物线的解析式为22y x x c =-+.∵抛物线经过点(0,1)C -∴001c -+=-解得:1c =-∴抛物线的解析式为221y x x =--∵2221(1)2y x x x =--=--∴抛物线的顶点坐标为(1,2)-;(Ⅱ)当0a >时,由抛物线22y ax ax c =-+经过点(0,1)C -,可知1c =-∴抛物线的解析式为221y ax ax =--∴抛物线的对称轴为:1x =。
2024年辽宁省初中学业水平考试数学试卷(样卷)
2024年辽宁省初中学业水平考试数学试卷(样卷)学校:___________姓名:___________班级:___________考号:___________A ....3.下列图形既是轴对称图形又是中心对称图形的是()A ....4.下列运算正确的是()A .246a a+=.235a a a ⋅=22(2)2a a =33a a a÷=5.一元二次方程210x -=根的情况是(A .有两个不相等的实数根.有两个相等的实数根C .没有实数根.只有一个实数根6.解分式方程2x x =时,将方程两边都乘同一个整式.得到一个一元一次方程,这个整式是()A .x.1x -(1)x x +(1)x x -7.一次函数y kx =+的图象如图所示,下列结论正确的是(A .0k <y 随x 增大而增大C .图象经过原点.图象经过第一、二、三象限A.20︒B.30︒10.如图,线段8AB=,点P在线段的长为半径作孤,两弧相交于点的距离是()A.245B.485二、填空题11.计算:23⨯=.12.如图,AOB顶点A,B的坐标分别为点D的坐标是(1,2),则点B的对应点13.甲袋中装有1个白球、1个黄球,乙袋中装有外无其他差别,在看不到球的情况下,从两个袋子中各随机摸出一个球,摸出的两个球的颜色都是白色的概率是14.如图,矩形OABC 的顶点A 函数(0)ky x x=>的图象相交于点k 的值是.15.如图,在ABC 中,AB BC =,A ,C ,D ,E 按逆时针方向排列)BF 向点F 运动,到达点F 时停止,点连接EP ,PQ ,QE ,当EPQ △的面积为三、计算题16.计算:(1)23(13)(16)8⨯-+--÷;(2)211111x x x x x ⎛⎫+-⋅ ⎪++-⎝⎭.(1)当4x ≥时,求销售金额y (2)乙超市南果梨的标价为20销售.若购买12千克南果梨,通过计算说明在哪个超市购买更划算.20.某临街店铺在窗户上方安装如图长度200cm AB =,遮阳棚前端自然下垂边的长度面高度296.8cm AD =,遮阳棚与墙面的夹角(1)如图2,求遮阳棚前端B 到墙面AD 的距离;(2)如图3,某一时刻,太阳光线与地面夹角60CFG ∠=︒,求遮阳棚在地面上的遮挡宽度DF 的长(结果精确到1cm ).(参考数据:五、证明题(1)求证:BD CD=;(2)若2420,tan7BD EDC=∠=,求六、应用题22.【发现问题】“速叠杯”是深受学生喜爱的一项运动,杯子的叠放方式如图1所示:每层都是杯口朝下排成一行,自下向上逐层递减一个杯子,直至顶层只有一个杯子.爱思考的小丽发现叠放所需杯子的总数随着第一层(最底层)杯子的个数变化而变化.【提出问题】叠放所需杯子的总数y与第一层杯子的个数x之间有怎样的函数关系?【分析问题】小丽结合实际操作和计算得到下表所示的数据:第一层杯子的个数x12345⋯杯子的总数y1361015⋯然后在平面直角坐标系中,描出上面表格中各对数值所对应的点,得到图图2中点的分布情况,猜想其图象是二次函数图象的一部分;为了验证自己的猜想,小丽从“形”的角度出发,将要计算总数的杯子用黑色圆表示(如图3),再借助“补”的思想,补充相同数量的白色圆,使每层圆的数量相同,进而求出y 与x 的关系式.【解决问题】(1)直接写出y 与x 的关系式;(2)现有36个杯子,按【发现问题】中的方式叠放,求第一层杯子的个数;(3)杯子的侧面展开图如图4所示,ND ,MA 分别为上、下底面圆的半径, AB 所对的圆心角60AOB ∠=︒,24cm 15cm OA OD ==,.将这样足够数量的杯子按【发现问题】中的方式叠放,但受桌面长度限制,第一层摆放杯子的总长度不超过80cm ,求杯子叠放达到的最大高度和此时杯子的总数.(提示:杯子下底面圆周长与AB 的长度相等)七、证明题23.【问题初探】(1)在数学活动课上,李老师给出如下问题:如图1,在ACD 中,2D C AB CD ∠=∠⊥,,垂足为B ,且BC AB >.求证:BC AD BD =+.①如图2,小鹏同学从结论的角度出发给出如下解题思路:在BC 上截取BE BD =,连接AE ,将线段BC 与AD ,BD 之间的数量关系转化为AD 与CE 之间的数量关系.②如图3,小亮同学从2D C ∠=∠这个条件出发给出另一种解题思路:作AC 的垂直平分线,分别与AC ,CD 交于F ,E 两点,连接AE ,将2D C ∠=∠转化为D ∠与BEA ∠之间的数量关系.请你选择一名同学的解题思路,写出证明过程.【类此分析】(2)李老师发现之前两名同学都运用了转化思想,将证明三条线段的关系转化为证明【学以致用】(3)如图5,在四边形ABCD 100121,,sin 33AD CD D ==积.。
初三数学毕业试题及答案
初三数学毕业试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y=ax+bB. y=a(x-h)^2+kC. y=ax^2+bx+cD. y=a(x+h)^2+k2. 如果一个多边形的内角和是720度,那么这个多边形有多少条边?A. 4B. 5C. 6D. 73. 计算下列表达式的结果:(2x+3)(x-1) = ?A. 2x^2+x-3B. 2x^2-x+3C. 2x^2-x-3D. 2x^2+x+34. 下列哪个选项是不等式2x-3>5的解集?A. x>4B. x<4C. x>1D. x<15. 一个圆的半径是5厘米,那么它的周长是多少?A. 31.4厘米B. 10π厘米C. 20π厘米D. 50π厘米6. 如果一个等腰三角形的底边长为6厘米,高为4厘米,那么它的面积是多少?A. 12平方厘米B. 24平方厘米C. 6平方厘米D. 18平方厘米7. 下列哪个选项是方程x^2-5x+6=0的解?A. x=2或x=3B. x=1或x=6C. x=2或x=-3D. x=-2或x=-38. 计算下列表达式的值:(3x-2)/(x+1) 当x=1时,该表达式的值为?A. 1/2B. 1C. -1D. 09. 一个长方体的长、宽、高分别是4厘米、3厘米、2厘米,那么它的体积是多少?A. 24立方厘米B. 12立方厘米C. 8立方厘米D. 6立方厘米10. 一个正数的平方根是2,那么这个数是多少?A. 4B. -4C. 2D. -2二、填空题(每题3分,共30分)11. 一个数的立方根是2,那么这个数是______。
12. 一个直角三角形的两条直角边长分别是3厘米和4厘米,那么它的斜边长是______厘米。
13. 如果一个数的相反数是-5,那么这个数是______。
14. 一个数的绝对值是7,那么这个数可以是______或______。
15. 一个正比例函数的图象经过点(2,6),那么它的解析式是y=______。
芜湖市初中毕业学业考试数学试卷
芜湖市初中毕业学业考试数 学 试 卷一、选择题(本题共10个小题,每小题4分,共40分.)在每小题给出的四个选项中,只有一项符合题意的,请把你认为正确的选项前字母填写在该题后面的括号中.1.-6的绝对值是()A .6B .-6C .16D .- 162.2010年芜湖市承接产业转移示范区建设成效明显,一季度完成固定资产投资238亿元,用科学记数法可记作()A .238×108元B .23.8×109元C .2.38×1010元D .0.238×1011元 3.一个几何体的三视图如图所示,那么这个几何体是()A .B .C .D .4.下列命题中是真命题的是()A .对角线互相垂直且相等的四边形是正方形B .有两边和一角对应相等的两个三角形全等C .两条对角线相等的平行四边形是矩形D .两边相等的平行四边形是菱形5.要使式子a +2a有意义,a 的取值范围是() A .a ≠0 B .a >-2且a ≠0 C .a >-2或a ≠0 D .a ≥-2且a ≠06.下列数据:16,20,22,25,24,25的平均数和中位数分别为()A .21和22B .22和23 C22和24. D .21和237.关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足()A .a ≥1B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠58.如图,在等腰梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD 于点O ,AE ⊥BC ,DF ⊥BC ,垂足分别为E 、F ,AD =4,BC =8,则AE +EF 等于()A .9B .10C .11D .129.如图所示,在圆⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为()A.19 B.16 C.18 D.2010.二次函数y=ax2+bx+c的图象如图所示,反比例函数y=ax与正比例函数y=(b+c)x在同一坐标系中的大致图象可能是()A. B. C. D.二、填空题(本题共6个小题,每小题5分,共30分.)将正确的答案填表在题中的横线上.11.一个正多边形的每个外角都是36°,这个正多边形的边数是__________.12.因式分解:9x2-y2-4y-4=__________.13.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD 的距离是2.7m,则AB与CD间的距离是__________m.±.αβπ′″√⊙∽∵∴∶≤≥<>⊥△□∽≈≌≠°∥∠=—-14.已知x1、x2为方程x2+3x+1=0的两实根,则x12+8x2+20=__________.15.若两圆相切,圆心距是7,其中一圆的半径为10,则另一个圆的半径为__________.16.芜湖国际动漫节期间,小明进行了富有创意的形象设计.如图1,他在边长为1的正方形ABCD内作等边三角形BCE,并与正方形的对角线交于F、G点,制成如图2的图标.则图标中阴影部分图形AFEGD的面积=____.三、解答题(本大题共有8小题,共80分.)解答应写明文字说明和运算步骤.17.(本题共有2小题,每小题6分,满分12分)(1)计算:(1)2010×( 12 )-3+(sin58°- π2 )0+|3-4cos600| 解:(2)求不等式组⎩⎨⎧≤->+1083152x x 的整数解 解:18.(本小题满分8分)图1为已建设封项的16层楼房和其塔吊图,图2为其示意图,吊臂AB 与地面EH 平行,测得A 点到楼顶D 点的距离为5m ,每层楼高3.5m ,AE 、BF 、CH 都垂直于地面,EF =16cm ,求塔吊的高CH 的长.解:19.(本小题满分8分)某中学生为调查本校学生平均每天完成作业所用时间的情况,随机调查了50名同学,下图是根据调查所得数据绘制的统计图的一部分.请根据以上信息,解答下列问题:(1)将统计图补充完整;(2)若该校共有1800名学生,根据以上调查结果估计该校全体学生每天完成作业所用总时间.解:20.(本小题满分8分)用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2x m.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.解:21.(本小题满分8分)如图,直角梯形ABCD中,∠ADC=90°,AD∥BC,点E在BC上,点F在AC上,∠DFC=∠AEB.(1)求证:△ADF ∽△CAE;(2)当AD=8,DC=6,点E、F分别是BC、AC的中点时,求直角梯形ABCD的面积(1)证明:22.(本小题满分8分)“端午”节前,第一次爸爸去超市购买了大小、质量都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时随机取出火腿粽子的概率为13;妈妈发现小亮喜欢吃的火腿粽子偏少,第二次妈妈又去买了同样的5只火腿粽子和1只豆沙粽子放入同一盒中,这时随机取出火腿粽子的概率为12. (1)请计算出第一次爸爸买的火腿粽子和豆沙粽子各有多少只?(2)若妈妈从盒中取出火腿粽子4只、豆沙粽子6只送爷爷和奶奶后,再让小亮从盒中不放回地任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用字母和数字表示豆沙粽子和火腿粽子,用列表法计算)解:23.(本小题满分12分)如图,BD 是⊙O 的直径,OA ⊥OB ,M 是劣弧AB 上一点,过点M 点作⊙O 的切线MP 交OA 的延长线于P 点,MD 与OA 交于N 点.(1)求证:PM =PN ;(2)若BD =4,PA = 32AO ,过点B 作BC ∥MP 交⊙O 于C 点,求BC 的长. (1)证明:(2)解:24.(本小题满分14分)如图,在平面直角坐标系中放置一矩形ABCO ,其顶点为A (0,1)、B (-33,1)、C (-33,0)、O (0,0).将此矩形沿着过E (-3,1)、F (-433,0)的直线EF 向右下方翻折,B 、C 的对应点分别为B ′、C ′.(1)求折痕所在直线EF的解析式;(2)一抛物线经过B、E、B′三点,求此二次函数解析式;(3)能否在直线EF上求一点P,使得△PBC周长最小?如能,求出点P的坐标;若不能,说明理由.解:。
2024年山东济南初中学业水平考试数学试卷真题(含答案详解)
秘密★启用前济南市2024年九年级学业水平考试数学试题本试卷共8页,满分150分.考试时间为120分钟注意事项:1.答卷前,考生务必将自己的姓名、准考证号、座号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案,用2B铅笔把答题卡上对应题目的答案标 号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,用0.5mm黑色签字笔将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.9的相反数是()11A.—B.——C.9D.-9992.黑陶是继彩陶之后中国新石器时代制陶工艺的又一个高峰,被誉为“土与火的艺术,力与美的结晶”.如图是山东博物馆收藏的蛋壳黑陶高柄杯.关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同3.截止2023年底,我国森林面积约为3465000000亩,森林覆盖率达到24.02%,将数字3465000000用科学记数法表示为()A.0.3465xlO9B. 3.465xl09C. 3.465xl08D.34.65xl084. 一个正多边形,它的每一个外角都等于45。
,则该正多边形是()A.正六边形B.正七边形C.正八边形D.正九边形5.如图,已知 △DEC ,ZA = 60。
,ZB = 4。
,则 NQCE 的度数为().DA. 40°C. 80°D. 100°6. 下列运算正确的是()A. 3x + 3y = 6xy B. = xy 6 C. 3(x + 8)= 3x + 8 D.疽泌二 j7. 若关于x 的方程x 2-x-m^ 0有两个不相等的实数根,则实数川的取值范围是()m <——4 B. m > ——4 C. m<-4 D. m>-48. 3月14日是国际数学节、某学校在今年国际数学节策划了“竞速华容道”“玩转幻方”和“巧 解鲁班锁”三个挑战活动,如果小红和小丽每人随机选择参力口其中一个活动,则她们恰好 选到同一个活动的概率是()1112A. — B . — C. — D .—9 6 3 39. 如图,在正方形刃与CD 中,分别以点力和8为圆心,以大于」,8的长为半径作弧,两弧2相交于点E 和E ,作直线EE ,再以点力为圆心,以刀。
2022年山东省济南市(初三学业水平考试)中考数学真题试卷含详解
济南市2022年九年级学业水平考试数学试卷选择题部分共48分一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣7的相反数是()A.﹣7B.7C.17D.﹣172.如图是某几何体的三视图,该几何体是()A .圆柱B.球C.圆锥D.正四棱柱3.神舟十三号飞船在近地点高度200000m ,远地点高度356000m 的轨道上驻留了6个月后,于2022年4月16日顺利返回.将数字356000用科学记数法表示为()A.53.5610⨯ B.60.35610⨯ C.63.5610⨯ D.435.610⨯4.如图,//AB CD ,点E 在AB 上,EC 平分∠AED ,若∠1=65°,则∠2的度数为()A.45°B.50°C.57.5°D.65°5.下列绿色能源图标中既是轴对称图形又是中心对称图形的是()A. B. C. D.6.实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是()A.0ab >B.0a b +> C.a b< D.11+<+a b 7.某班级计划举办手抄报展览,确定了“5G 时代”、“北斗卫星”、“高铁速度”三个主题,若小明和小亮每人随机选择其中一个主题,则他们恰好选择同一个主题的概率是()A.19B.16C.13D.238.若m -n =2,则代数式222m n mm m n-⋅+的值是()A.-2B.2C.-4D.49.某学校要建一块矩形菜地供学生参加劳动实践,菜地的一边靠墙,另外三边用木栏围成,木栏总长为40m .如图所示,设矩形一边长为xm ,另一边长为ym ,当x 在一定范围内变化时,y 随x 的变化而变化,则y 与x 满足的函数关系是()A.正比例函数关系B.一次函数关系C.反比例函数关系D.二次函数关系10.如图,矩形ABCD 中,分别以A ,C 为圆心,以大于12AC 的长为半径作弧,两弧相交于M ,N 两点,作直线MN 分别交AD ,BC 于点E ,F ,连接AF ,若BF =3,AE =5,以下结论错误..的是()A .AF =CFB.∠FAC =∠EACC.AB =4D.AC =2AB11.数学活动小组到某广场测量标志性建筑AB 的高度.如图,他们在地面上C 点测得最高点A 的仰角为22°,再向前70m 至D 点,又测得最高点A 的仰角为58°,点C ,D ,B 在同一直线上,则该建筑物AB 的高度约为()(精确到1m .参考数据:sin 220.37︒≈,tan 220.40︒≈,sin 580.85︒≈,tan 58 1.60︒≈)A .28mB.34mC.37mD.46m12.抛物线2222y x mx m =-+-+与y 轴交于点C ,过点C 作直线l 垂直于y 轴,将抛物线在y 轴右侧的部分沿直线l 翻折,其余部分保持不变,组成图形G ,点()11,M m y -,()21,N m y +为图形G 上两点,若12y y <,则m 的取值范围是()A.1m <-或0m > B.1122m -<< C.0m ≤< D.11m -<<非选择题部分共102分二、填空题(本大题共6个小题,每小题4分,共24分,直接填写答案.)13.因式分解:244a a ++=______.14.如果小球在如图所示的地板上自由地滚动,并随机的停留在某块方砖上,那么它最终停留在阴影区域的概率是______.15.小的整数_____.16.代数式32x +与代数式21x -的值相等,则x =______.17.利用图形的分、和、移、补探索图形关系,是我国传统数学的一种重要方法.如图1,BD 是矩形ABCD 的对角线,将△BCD 分割成两对全等的直角三角形和一个正方形,然后按图2重新摆放,观察两图,若a =4,b =2,则矩形ABCD 的面积是______.18.规定:在平面直角坐标系中,一个点作“0”变换表示将它向右平移一个单位,一个点作“1”变换表示将它绕原点顺时针旋转90°,由数字0和1组成的序列表示一个点按照上面描述依次连续变换.例如:如图,点()0,0O 按序列“011…”作变换,表示点O 先向右平移一个单位得到()11,0O ,再将()11,0O 绕原点顺时针旋转90°得到()20,1O -,再将()20,1O -绕原点顺时针旋转90°得到()31,0O -…依次类推.点()0,1经过“011011011”变换后得到点的坐标为______.三、解答题(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.计算:1134sin 303-⎛⎫--︒+ ⎪⎝⎭.20.解不等式组:()1,232532.x x x x -⎧<⎪⎨⎪-≤-⎩①②,并写出它的所有整数解.21.已知:如图,在菱形ABCD 中,E ,F 是对角线AC 上两点,连接DE ,DF ,∠ADF =∠CDE .求证:AE =CF.22.某校举办以2022年北京冬奥会为主题的知识竞赛,从七年级和八年级各随机抽取了50名学生的竞赛成绩进行整理、描述和分析,部分信息如下:a :七年级抽取成绩的频数分布直方图如图.(数据分成5组,5060x ≤<,6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤)b :七年级抽取成绩在7080x ≤<这一组的是:70,72,73,73,75,75,75,76,77,77,78,78,79,79,79,79.c :七、八年级抽取成绩的平均数、中位数如下:年级平均数中位数七年级76.5m 八年级78.279请结合以上信息完成下列问题:(1)七年级抽取成绩在6090x ≤<的人数是_______,并补全频数分布直方图;(2)表中m 的值为______;(3)七年级学生甲和八年级学生乙的竞赛成绩都是78,则______(填“甲”或“乙”)的成绩在本年级抽取成绩中排名更靠前;(4)七年级的学生共有400人,请你估计七年级竞赛成绩90分及以上的学生人数.23.已知:如图,AB 为⊙O 的直径,CD 与⊙O 相切于点C ,交AB 延长线于点D ,连接AC ,BC ,∠D =30°,CE 平分∠ACB 交⊙O 于点E ,过点B 作BF ⊥CE ,垂足为F .(1)求证:CA =CD ;(2)若AB =12,求线段BF 的长.24.为增加校园绿化面积,某校计划购买甲、乙两种树苗.已知购买20棵甲种树苗和16棵乙种树苗共花费1280元,购买1棵甲种树苗比1棵乙种树苗多花费10元.(1)求甲、乙两种树苗每棵的价格分别是多少元?(2)若购买甲、乙两种树苗共100棵,且购买乙种树苗的数量不超过甲种树苗的3倍,则购买甲、乙两种树苗各多少棵时花费最少?请说明理由.25.如图,一次函数112y x =+的图象与反比例函数()0ky x x =>的图象交于点(),3A a ,与y 轴交于点B .(1)求a ,k 的值;(2)直线CD 过点A ,与反比例函数图象交于点C ,与x 轴交于点D ,AC =AD ,连接C B .①求△ABC 的面积;②点P 在反比例函数的图象上,点Q 在x 轴上,若以点A ,B ,P ,Q 为顶点的四边形是平行四边形,请求出所有符合条件的点P 坐标.26.如图1,△ABC 是等边三角形,点D 在△ABC 的内部,连接AD ,将线段AD 绕点A 按逆时针方向旋转60°,得到线段AE ,连接BD ,DE ,CE .(1)判断线段BD 与CE 的数量关系并给出证明;(2)延长ED 交直线BC 于点F .①如图2,当点F 与点B 重合时,直接用等式表示线段AE ,BE 和CE 的数量关系为_______;②如图3,当点F 为线段BC 中点,且ED =EC 时,猜想∠BAD 的度数,并说明理由.27.抛物线21164y ax x =+-与x 轴交于(),0A t ,()8,0B 两点,与y 轴交于点C ,直线y =kx -6经过点B .点P 在抛物线上,设点P 的横坐标为m .(1)求抛物线的表达式和t,k的值;(2)如图1,连接AC,AP,PC,若△APC是以CP为斜边的直角三角形,求点P的坐标;(3)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求12CQ PQ的最大值.济南市2022年九年级学业水平考试数学试卷选择题部分共48分一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣7的相反数是()A.﹣7 B.7C.17D.﹣17【答案】B【分析】据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.【详解】解:根据概念,﹣7的相反数是7.故选:B .【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.如图是某几何体的三视图,该几何体是()A.圆柱B.球C.圆锥D.正四棱柱【答案】A【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:主视图和左视图都是长方形,那么此几何体为柱体,由俯视图为圆,可得此几何体是圆柱.故选:A .【点睛】此题考查了由三视图判断几何体,主视图和左视图的大致轮廓为三角形的几何体为锥体.3.神舟十三号飞船在近地点高度200000m ,远地点高度356000m 的轨道上驻留了6个月后,于2022年4月16日顺利返回.将数字356000用科学记数法表示为()A.53.5610⨯ B.60.35610⨯ C.63.5610⨯ D.435.610⨯【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【详解】解:356000=3.56×105.故选:A.【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.AB CD,点E在AB上,EC平分∠AED,若∠1=65°,则∠2的度数为()4.如图,//A.45°B.50°C.57.5°D.65°【答案】B【分析】根据平行线及角平分线的性质即可求解.AB CD,【详解】解:∵//∴∠AEC=∠1(两直线平行,内错角相等),∵EC平分∠AED,∴∠A EC=∠CED=∠1,∵∠1=65°,∴∠CED=∠1=65°,∴∠2=180°-∠CED-∠1=180°-65°-65°=50°.故选:B.【点睛】本题考查了平行线的性质,解题关键根据直线平行和角平分线的性质得出角度之间的关系即可得出答案.5.下列绿色能源图标中既是轴对称图形又是中心对称图形的是()A. B. C. D.【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A 、既不是轴对称图形,也不是中心对称图形,故本选项不合题意;B 、既是轴对称图形,又是中心对称图形,故本选项符合题意;C 、不是轴对称图形,是中心对称图形,故本选项不合题意;D 、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:B .【点睛】本题考查了中心对称图形以及轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.6.实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是()A.0ab >B.0a b +> C.a b< D.11+<+a b 【答案】D【分析】利用数轴与实数的关系,及正负数在数轴上的表示求解.【详解】解:根据图形可以得到:320a -<<-<,01b <<,∴0ab <,故A 项错误,0a b +<,故B 项错误,a b >,故C 项错误,11+<+a b ,故D 项错误.故选:D .【点睛】本题考查了数轴与实数的关系,理解并正确运用是解题的关键.7.某班级计划举办手抄报展览,确定了“5G 时代”、“北斗卫星”、“高铁速度”三个主题,若小明和小亮每人随机选择其中一个主题,则他们恰好选择同一个主题的概率是()A.19B.16C.13D.23【答案】C【分析】画树状图,共有9种等可能的结果,其中小明和小刚恰好选择同一个主题结果有3种,再由概率公式求解即可.【详解】解:把“5G时代”、“北斗卫星”、“高铁速度”三个主题分别记为A、B、C,画树状图如下:共有9种等可能的结果,其中小明和小刚恰好选择同一个主题的结果有3种,∴小明和小刚恰好选择同一个主题的概率为31 93=.故选:C.【点睛】本题考查了用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.8.若m-n=2,则代数式222m n mm m n-⋅+的值是()A.-2B.2C.-4D.4【答案】D【分析】先因式分解,再约分得到原式=2(m-n),然后利用整体代入的方法计算代数式的值.【详解】解:原式m n m nm+-=()()•2mm n+=2(m-n),当m-n=2时,原式=2×2=4.故选:D.【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.9.某学校要建一块矩形菜地供学生参加劳动实践,菜地的一边靠墙,另外三边用木栏围成,木栏总长为40m.如图所示,设矩形一边长为xm,另一边长为ym,当x在一定范围内变化时,y随x的变化而变化,则y 与x 满足的函数关系是()A.正比例函数关系B.一次函数关系C.反比例函数关系D.二次函数关系【答案】B 【分析】根据矩形周长找出关于x 和y 的等量关系即可解答.【详解】解:根据题意得:240x y +=,∴240y x =-+,∴y 与x 满足的函数关系是一次函数;故选:B .【点睛】本题通过矩形的周长考查一次函数的定义,解题的关键是理清实际问题中的等量关系准确地列式.10.如图,矩形ABCD 中,分别以A ,C 为圆心,以大于12AC 的长为半径作弧,两弧相交于M ,N 两点,作直线MN 分别交AD ,BC 于点E ,F ,连接AF ,若BF =3,AE =5,以下结论错误..的是()A.AF =CFB.∠FAC =∠EACC.AB =4D.AC =2AB【答案】D【分析】根据作图过程可得,MN 是AC 的垂直平分线,再由矩形的性质可以证明AFO CEO △≌△,可得5,AF CE AE ===再根据勾股定理可得AB 的长,即可判定得出结论.【详解】解:A ,根据作图过程可得,MN 是AC 的垂直平分线,,AF CF ∴=故此选项不符合题意.B ,如图,由矩形的性质可以证明AFO CEO △≌△,,AE CF ∴=,FA FC = ,AE AF ∴=∵MN 是AC 的垂直平分线,,FAC EAC ∴∠∠=故此选项不符合题意.C ,5AE =,5AF AE ∴==,在Rt ABF 中3,BF =4,AB ∴==故此选项不符合题意.D ,358,BC BF FC =+=+=AC ∴==4,AB = 2.AC AB ∴≠故此选项符合题意.故选:D .【点睛】本题考查了作图-基本作图,线段垂直平分线的性质、矩形的性质、勾股定理,解决本题的关键是掌握基本作图方法.11.数学活动小组到某广场测量标志性建筑AB 的高度.如图,他们在地面上C 点测得最高点A 的仰角为22°,再向前70m 至D 点,又测得最高点A 的仰角为58°,点C ,D ,B 在同一直线上,则该建筑物AB 的高度约为()(精确到1m .参考数据:sin 220.37︒≈,tan 220.40︒≈,sin 580.85︒≈,tan 58 1.60︒≈)A.28mB.34mC.37mD.46m【答案】C 【分析】在Rt △ABD 中,解直角三角形求出58DB AB =,在Rt △ABC 中,解直角三角形可求出AB .【详解】解:在Rt △ABD 中,tan ∠ADB =AB DB ,∴5tan 58 1.68AB AB DB AB =≈=︒,在Rt △ABC 中,tan ∠ACB =AB CB ,∴tan 220.45708AB AB ︒=≈+,解得:112373AB =≈m ,故选:C .【点睛】本题考查了解直角三角形的应用,熟练掌握正切函数的定义是解题的关键.12.抛物线2222y x mx m =-+-+与y 轴交于点C ,过点C 作直线l 垂直于y 轴,将抛物线在y轴右侧的部分沿直线l 翻折,其余部分保持不变,组成图形G ,点()11,M m y -,()21,N m y +为图形G 上两点,若12y y <,则m 的取值范围是()A.1m <-或0m > B.1122m -<< C.0m ≤< D.11m -<<【答案】D【分析】求出抛物线的对称轴、C 点坐标以及当x =m -1和x =m +1时的函数值,再根据m -1<m +1,判断出M 点在N 点左侧,此时分类讨论:第一种情况,当N 点在y 轴左侧时,第二种情况,当M 点在y 轴的右侧时,第三种情况,当y 轴在M 、N 点之间时,来讨论,结合图像即可求解.【详解】抛物线解析式2222y x mx m =-+-+变形为:22()y x m =--,即抛物线对称轴为x m =,当x =m -1时,有22(1)1y m m =---=,当x =m +1时,有22(1)1y m m =-+-=,设(m -1,1)为A 点,(m +1,1)为B 点,即点A (m -1,1)与B (m +1,1)关于抛物线对称轴对称,当x =0时,有222(0)2y m m =--=-,∴C 点坐标为2(0,2)m -,当x =m 时,有22()2y m m =--=,∴抛物线顶点坐标为(,2)m ,∵直线l ⊥y 轴,∴直线l 为22y m =-,∵m -1<m +1,∴M 点在N 点左侧,此时分情况讨论:第一种情况,当N 点在y 轴左侧时,如图,由图可知此时M 、N 点分别对应A 、B 点,即有121y y ==,∴此时不符合题意;第二种情况,当M 点在y 轴的右侧时,如图,由图可知此时M 、N 点满足12y y =,∴此时不符合题意;第三种情况,当y 轴在M 、N 点之间时,如图,或者,由图可知此时M 、N 点满足12y y <,∴此时符合题意;此时由图可知:101m m -+<<,解得11m -<<,综上所述:m 的取值范围为:11m -<<,故选:D .【点睛】本题考查了二次函数的图像与性质、翻折的性质,注重数形结合是解答本题的关键.非选择题部分共102分二、填空题(本大题共6个小题,每小题4分,共24分,直接填写答案.)13.因式分解:244a a ++=______.【答案】()22a +【分析】原式利用完全平方公式分解即可.【详解】解:244a a ++=()22a +.故答案为:()22a +.【点睛】此题考查了公式法的运用,熟练掌握因式分解的方法是解本题的关键.14.如果小球在如图所示的地板上自由地滚动,并随机的停留在某块方砖上,那么它最终停留在阴影区域的概率是______.【答案】49【分析】根据题意可得一共有9块方砖,其中阴影区域的有4块,再根据概率公式计算,即可求解.【详解】解:根据题意得:一共有9块方砖,其中阴影区域的有4块,∴它最终停留在阴影区域的概率是49.故答案为:49【点睛】本题考查了概率公式:熟练掌握随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数;P (必然事件)=1;P (不可能事件)=0是解题的关键.15.小的整数_____.【答案】3(答案不唯一)和进行估算,再根据题意即可得出答案.2<3<45<,小的整数有2,3,4.故答案为:3(答案不唯一).是解题的关键.16.代数式32x +与代数式21x -的值相等,则x =______.【答案】7【分析】根据题意列出分式方程,求出方程的解,得到x 的值即可.【详解】解:∵代数式32x +与代数式21x -的值相等,∴3221x x =+-,去分母()()3122x x -=+,去括号号3324x x -=+,解得7x =,检验:当7x =时,()()210x x +-≠,∴分式方程的解为7x =.故答案为:7.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.17.利用图形的分、和、移、补探索图形关系,是我国传统数学的一种重要方法.如图1,BD 是矩形ABCD 的对角线,将△BCD 分割成两对全等的直角三角形和一个正方形,然后按图2重新摆放,观察两图,若a =4,b =2,则矩形ABCD 的面积是______.【答案】16【分析】设小正方形的边长为x ,利用a 、b 、x 表示矩形的面积,再用a 、b 、x 表示三角形以及正方形的面积,根据面积列出关于a 、b 、x 的关系式,解出x ,即可求出矩形面积.【详解】解:设小正方形的边长为x ,∴矩形的长为()a x +,宽为()b x +,由图1可得:()()211122222a xb x ax bx x ++=⨯+⨯+,整理得:20x ax bx ab ++-=,4a = ,2b =,2680x x ∴+-=,268x x ∴+=,∴矩形的面积为()()()()242688816a x b x x x x x ++=++=++=+=.故答案为:16.【点睛】本题主要考查列代数式,一元二次方程的应用,求出小正方形的边长是解题的关键.18.规定:在平面直角坐标系中,一个点作“0”变换表示将它向右平移一个单位,一个点作“1”变换表示将它绕原点顺时针旋转90°,由数字0和1组成的序列表示一个点按照上面描述依次连续变换.例如:如图,点()0,0O 按序列“011…”作变换,表示点O 先向右平移一个单位得到()11,0O ,再将()11,0O 绕原点顺时针旋转90°得到()20,1O -,再将()20,1O -绕原点顺时针旋转90°得到()31,0O -…依次类推.点()0,1经过“011011011”变换后得到点的坐标为______.【答案】()1,1--【分析】根据题意得出点()0,1坐标变化规律,进而得出变换后的坐标位置,进而得出答案.【详解】解:点()0,1按序列“011011011”作变换,表示点()0,1先向右平移一个单位得到()1,1,再将()1,1绕原点顺时针旋转90°得到()1,1-,再将()1,1-绕原点顺时针旋转90°得到()1,1--,然后右平移一个单位得到()0,1-,再将()0,1-绕原点顺时针旋转90°得到()1,0-,再将()1,0-绕原点顺时针旋转90°得到()0,1,然后右平移一个单位得到()1,1,再将()1,1绕原点顺时针旋转90°得到()1,1-,再将()1,1-绕原点顺时针旋转90°得到()1,1--.故答案为:()1,1--【点睛】此题主要考查了点的坐标变化规律,得出点坐标变化规律是解题关键.三、解答题(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.计算:1134sin 3043-⎛⎫--︒+ ⎪⎝⎭.【答案】6【分析】先根据绝对值的意义,特殊角的三角函数值,负整数指数幂,算术平方根定义进行化简,然后再进行计算即可.【详解】解:1134sin 3043-⎛⎫--︒ ⎪⎝⎭11342123=-⨯++3223=-++6=【点睛】本题主要考查了实数的混合运算,熟练掌握绝对值的意义,特殊角的三角函数值,负整数指数幂,算术平方根定义,是解题的关键.20.解不等式组:()1,232532.x x x x -⎧<⎪⎨⎪-≤-⎩①②,并写出它的所有整数解.【答案】13x ≤<,整数解为1,2【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,进而确定出整数解即可.【详解】解不等式①,得3x <,解不等式②,得1≥x ,在同一条数轴上表示不等式①②的解集原不等式组的解集是13x ≤<,∴整数解为1,2.【点睛】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.21.已知:如图,在菱形ABCD 中,E ,F 是对角线AC 上两点,连接DE ,DF ,∠ADF =∠CDE .求证:AE =CF.【答案】见解析【分析】根据菱形的性质得出DA DC =,DAC DCA ∠=∠,再利用角的等量代换得出ADE CDF ∠=∠,接着由角边角判定DAE DCF △≌△,最后由全等的性质即可得出结论.【详解】解:∵四边形ABCD 是菱形,E ,F 是对角线AC 上两点,∴DA DC =,DAC DCA ∠=∠.∵ADF CDE ∠=∠,∴ADF EDF CDE EDF ∠-∠=∠-∠,即ADE CDF ∠=∠.在DAE △和DCF 中,DA DC ADE CD DAC DC F A ⎧⎪=⎨⎪∠=∠∠∠⎩=,∴DAE DCF ASA △≌△(),∴AE CF =.【点睛】本题考查菱形的性质,全等三角形的判定和性质,解题的关键是熟练地掌握这些性质和判定定理,并能从题中找到合适的条件进行证明.22.某校举办以2022年北京冬奥会为主题的知识竞赛,从七年级和八年级各随机抽取了50名学生的竞赛成绩进行整理、描述和分析,部分信息如下:a :七年级抽取成绩的频数分布直方图如图.(数据分成5组,5060x ≤<,6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤)b :七年级抽取成绩在7080x ≤<这一组的是:70,72,73,73,75,75,75,76,77,77,78,78,79,79,79,79.c :七、八年级抽取成绩的平均数、中位数如下:年级平均数中位数七年级76.5m 八年级78.279请结合以上信息完成下列问题:(1)七年级抽取成绩在6090x ≤<的人数是_______,并补全频数分布直方图;(2)表中m 的值为______;(3)七年级学生甲和八年级学生乙的竞赛成绩都是78,则______(填“甲”或“乙”)的成绩在本年级抽取成绩中排名更靠前;(4)七年级的学生共有400人,请你估计七年级竞赛成绩90分及以上的学生人数.【答案】(1)38,理由见解析(2)77(3)甲(4)七年级竞赛成绩90分及以上人数约为64人【分析】(1)根据题意及频数分布直方图即可得出结果;(2)根据中位数的计算方法求解即可;(3)由七八年级中位数与甲乙学生成绩的比较即可得出结果;(4)用总人数乘以七年级竞赛成绩90分及以上的学生人数占总的人数的比例求解即可.【小问1详解】解:由题意可得:70≤x <80这组的数据有16人,∴七年级抽取成绩在60≤x <90的人数是:12+16+10=38人,故答案为:38;补全频数分布直方图如图所示;【小问2详解】解:∵4+12=16<25,4+12+16>25,∴七年级中位数在70≤x <80这组数据中,∴第25、26的数据分别为77,77,∴m =7777772+=,故答案为:77;【小问3详解】解:∵七年级学生的中位数为77<78,八年级学生的中位数为79>78,∴甲的成绩在本年级抽取成绩中排名更靠前,故答案为:甲;【小问4详解】解:84006450⨯=(人)答:七年级竞赛成绩90分及以上人数约为64人.【点睛】题目主要考查统计的相关应用,包括频数分布直方图及用部分估计总体、中位数的求法等,理解题意,综合运用这些知识点是解题关键.23.已知:如图,AB 为⊙O 的直径,CD 与⊙O 相切于点C ,交AB 延长线于点D ,连接AC ,BC ,∠D =30°,CE 平分∠ACB 交⊙O 于点E ,过点B 作BF ⊥CE ,垂足为F .(1)求证:CA =CD ;(2)若AB =12,求线段BF 的长.【答案】(1)见解析(2)【分析】(1)连接OC ,欲证明CA =CD ,只要证明CAD CDA ∠=∠即可.(2)因为AB 为直径,所以90ACB ∠=︒,可得出三角形CBF 为等腰直角三角形,即可求出BF ,由此即可解决问题.【小问1详解】证明:连接OC∵CD 与O 相切于点C ,∴OC CD ⊥,∴90OCD ∠=︒,∵30CDA ∠=︒,∴9060COB CDA ∠=︒-∠=︒,∵ BC所对的圆周角为CAB ∠,圆心角为COB ∠,∴1302CAB COB ∠=∠=︒,∴CAD CDA ∠=∠,∴CA CD =.【小问2详解】∵AB 为直径,∴90ACB ∠=︒,在Rt ABC 中,30CAB ∠=︒,12AB =,∴162BC AB ==,∵CE 平分ACB ∠,∴1452ECB ACB ∠=∠=︒,∵BF CE ⊥,∴90CFB ∠=︒,∴2sin 456322BF BC =⋅=⨯=︒【点睛】本题考查切线的性质,圆周角定理、解直角三角形等知识,解题的关键是灵活运用这些知识解决问题,学会条件常用辅助线,属于中考常考题型.24.为增加校园绿化面积,某校计划购买甲、乙两种树苗.已知购买20棵甲种树苗和16棵乙种树苗共花费1280元,购买1棵甲种树苗比1棵乙种树苗多花费10元.(1)求甲、乙两种树苗每棵的价格分别是多少元?(2)若购买甲、乙两种树苗共100棵,且购买乙种树苗的数量不超过甲种树苗的3倍,则购买甲、乙两种树苗各多少棵时花费最少?请说明理由.【答案】(1)甲种树苗每棵40元,乙种树苗每棵30元(2)当购买甲种树苗25棵,乙种树苗75棵时,花费最少,理由见解析【分析】(1)设每棵甲种树苗的价格为x 元,每棵乙种树苗的价格y 元,由“购买20棵甲种树苗和16棵乙种树苗共花费1280元,购买1棵甲种树苗比1棵乙种树苗多花费10元”列出方程组,求解即可;(2)设购买甲种树苗m 棵,则购买乙种树苗()100m -棵,购买两种树苗总费用为W 元得出一次函数,根据一次函数的性质求解即可.【小问1详解】设甲种树苗每棵x 元,乙种树苗每棵y 元.由题意得,2016128010x y x y +=⎧⎨-=⎩,解得4030x y =⎧⎨=⎩,答:甲种树苗每棵40元,乙种树苗每棵30元.【小问2详解】设购买甲种树苗m 棵,则购买乙种树苗()100m -棵,购买两种树苗总费用为W 元,由题意得()4030100W m m =+-,103000W m =+,由题意得1003m m -≤,解得25m ≥,因为W 随m 的增大而增大,所以当25m =时W 取得最小值.答:当购买甲种树苗25棵,乙种树苗75棵时,花费最少.【点睛】本题考查了一次函数的应用,二元一次方程组的应用,找到正确的数量关系是本题的关键.25.如图,一次函数112y x =+的图象与反比例函数()0k y x x =>的图象交于点(),3A a ,与y 轴交于点B .(1)求a ,k 的值;(2)直线CD 过点A ,与反比例函数图象交于点C ,与x 轴交于点D ,AC =AD ,连接C B .①求△ABC 的面积;②点P 在反比例函数的图象上,点Q 在x 轴上,若以点A ,B ,P ,Q 为顶点的四边形是平行四边形,请求出所有符合条件的点P 坐标.【答案】(1)4a =,12k =;(2)①8;②符合条件的点P 坐标是()6,2和()3,4.【分析】(1)将点(),3A a 代入112y x =+,求出4a =,即可得()4,3A ,将点()4,3A 代入k y x=,即可求出k ;(2)①如图,过A 作AM x ⊥轴于点M ,过C 作CN x ⊥轴于点N ,交AB 于点E ,求出()2,6C ,()2,2E ,得到CE ,进一步可求出△ABC 的面积;②设()11,P x y ,()2,0Q x .分情况讨论:ⅰ、当四边形ABQP 为平行四边形时,ⅱ、当四边形APBQ 为平行四边形时,计算即可.【小问1详解】解:将点(),3A a 代入112y x =+,得4a =,()4,3A ,将点()4,3A 代入k y x=,得4312k =⨯=,反比例函数的解析式为12y x =.【小问2详解】解:①如图,过A 作AM x ⊥轴于点M ,过C 作CN x ⊥轴于点N ,交AB 于点E ,∴AM CN ∥,∵AC AD =,∴12AM DA CN DC ==,∴6CN =,∴1226C x ==,∴()2,6C ,∴()2,2E ,∴624CE =-=,∴114242822ABC ACE BCE S S S =+=⨯⨯+⨯⨯=△△△.②分两种情况:设()11,P x y ,()2,0Q x .。
数学初三毕业考试卷及答案
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √2B. πC. -1/3D. 0.1010010001...2. 若a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 < b - 2C. a 2 > b 2D. a / 2 < b / 23. 已知一元二次方程x^2 - 5x + 6 = 0,则该方程的解为()A. x = 2, x = 3B. x = 3, x = 2C. x = 1, x = 4D. x = 4, x = 14. 在平面直角坐标系中,点A(2,3)关于原点的对称点是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(3,-2)5. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = 1/xC. y = x^2D. y = 3x6. 在梯形ABCD中,AD || BC,若AD = 4cm,BC = 6cm,AB = 3cm,CD = 5cm,则梯形ABCD的面积是()A. 12cm^2B. 15cm^2C. 18cm^2D. 20cm^27. 若等差数列的前三项分别是a,b,c,且a + b + c = 9,a + c = 6,则该数列的公差是()A. 1B. 2C. 3D. 48. 下列命题中,正确的是()A. 所有的实数都是有理数B. 所有的有理数都是整数C. 所有的整数都是自然数D. 所有的自然数都是整数9. 若等比数列的首项为a,公比为q,则第n项an =()A. a q^(n-1)B. a q^nC. a / q^(n-1)D. a / q^n10. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若a = 5,b = 8,c = 10,则角A的余弦值cosA =()A. 1/2B. 1/3C. 2/3D. 3/4二、填空题(每题3分,共30分)11. 若x + y = 5,xy = 6,则x^2 + y^2 = _______。
九年级学业测试数学试卷【含答案】
九年级学业测试数学试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若 a > b,则下列哪个选项一定成立?A. a c > b cB. a + c > b + cC. ac > bcD. a/c > b/c (c ≠ 0)2. 下列哪个函数是奇函数?A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)3. 若一组数据的方差为0,那么这组数据一定?A. 有很多不同的数B. 都相等C. 都是正数D. 都是负数4. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的对角线长度是?A. 5cmB. 6cmC. 7cmD. 9cm5. 若一个等差数列的前三项分别是2、5、8,那么第10项是?A. 29B. 30C. 31D. 32二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。
()2. 平方根的定义是:一个数的平方根是它的二次方根。
()3. 一组数据的平均数一定大于或等于中位数。
()4. 对角线互相垂直的四边形一定是矩形。
()5. 两个等腰三角形的面积相等,则它们的底边和高也相等。
()三、填空题(每题1分,共5分)1. 若一个数的平方是49,那么这个数是______。
2. 一个正方形的边长是6cm,那么它的面积是______cm²。
3. 若sin(α) = 0.6,且α 是锐角,那么cos(α) = ______。
4. 一个等差数列的第5项是23,公差是4,那么第1项是______。
5. 若 x + y = 5 且 x y = 3,那么 x = ______,y = ______。
四、简答题(每题2分,共10分)1. 解释什么是等差数列。
2. 简述勾股定理的内容。
3. 解释二次函数的标准形式。
4. 什么是算术平均数?5. 如何计算一个圆的面积?五、应用题(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,求它的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
左面A .B .C .D . 初中毕业生学业考试试卷数 学(A )注意事项:1.全卷共计150分,考试时间120分钟.考生在答题前务必将毕业学校、志愿学校、姓名、准考证号、考场、座位号填写在试卷的相应位置上.2.答题时请用同一颜色(蓝色或黑色)的钢笔、碳素笔或圆珠笔将答案直接写在试卷上,要求字迹工整,卷面整洁.3.不得另加附页,附页上答题不记分.一、选择题(本题共12个小题,每小题4分,共计48分.在每小题给出的4个选项中,只有一项是符合题目要求的)1.图1是北京奥运会自行车比赛项目标志,则图中两轮所 在圆的位置关系是( ) A .内含 B .相交 C .相切 D .外离 2.方程24x x =的解是( )A .4x =B .2x =C .4x =或0x =D .0x =3.正方形网格中,AOB ∠如图2放置,则cos AOB ∠的值为( )A .5B .25C .12D .24.桌面上放着1个长方体和1个圆柱体,按下图所示的方式摆放在一起,其左视图是( )5.若反比例函数ky x=的图象经过点(3)m m ,,其中0m ≠,则此反比例函数的图象在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限 6.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是( ) A .24 B .18 C .16 D .6 7.如图3,已知EF 是O e 的直径,把A ∠为60o的直角三 角板ABC 的一条直角边BC 放在直线EF 上,斜边AB 与 O e 交于点P ,点B 与点O 重合.将三角板ABC 沿OE 方 向平移,使得点B 与点E 重合为止.设POF x ∠=o ,则x 的取值范围是( )图1ABO图2A CFO (B ) EP图3A .3060x ≤≤B .3090x ≤≤C .30120x ≤≤D .60120x ≤≤8.如图4,现有一个圆心角为90°,半径为8cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为( ) A .4cm B .3cm C .2cm D .1cm9.已知二次函数2y ax bx c =++(0a ≠)的图象如图5所示,有下列4个结论:①0abc >;②b a c <+;③420a b c ++>;④240b ac ->;其中正确的结论有( ) A .1个B .2个C .3个D .4个10.下列表格是二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,判断方程20ax bx c ++=(0a a b c ≠,,,为常数)的一个解x 的范围是( )A .6 6.17x <<B .6.17 6.18x <<C .6.18 6.19x <<D .6.19 6.20x <<11.如图6,在ABC △中,1086AB AC BC ===,,, 经过点C 且与边AB 相切的动圆与CB CA,分别相交于点 E F ,,则线段EF 长度的最小值是( ) A .B .4.75C .5D .4812.把长为8cm 的矩形按虚线对折,按图中的虚线剪出一个直角梯形,找开得到一个等腰梯形,剪掉部分的面积为6cm 2,则打开后梯形的周长是( )A.(10+cmB.(10+cmC .22cmD .18cm二、填空题(本题共8个小题,每小题4分,共32分,请把答案填在题中的横线上.) 13.函数y =的自变量x 的取值范围为 . 3cm3cm图4 图5 图614.如图7所示,有一电路AB 是由图示的开关控制,闭合a ,b ,c ,d ,e 五个开关中的任意两个开关,使电路形成通路.则使电路形成通路的概率是 .15.在同一坐标平面内,下列4个函数①22(1)1y x =+-,②223y x =+,③221y x =--,④2112y x =-的图象不可能...由函数221y x =+的图象通过平移变换、轴对称变换得到的函数是 (填序号).16.如图8,在Rt ABC △中,903C AC ∠==o,.将其绕B 点顺时针旋转一周,则分别以BA BC ,为半径的圆形成一圆环.则该圆环的面积为 .17.如图9,点A B ,是O e 上两点,10AB =,点P 是O e 上的动点(P 与A B ,不重合)连结AP PB ,,过点O 分别作OE AP ⊥于点E ,OF PB ⊥于点F ,则EF = . 18.如图10,小明在楼顶A 处测得对面大楼楼顶点C 处的仰角为52°,楼底点D 处的俯角为13°.若两座楼AB 与CD 相距60米,则楼CD 的高度约为 米.(结果保留三个有效数字)(sin130.2250︒≈,cos130.9744o≈,tan130.2309o≈,sin 520.7880o≈,cos520.6157o ≈,tan52 1.2799≈)19.农村常需要搭建截面为半圆形的全封闭蔬菜塑料暖房如图11所示,则需要塑料布y (m 2)与半径R(m )的函数关系式是(不考虑塑料埋在土里的部分).图7A C B图8 图10图11 P图920.如图12,已知双曲线ky x=(0x >)经过矩形OABC 的边AB BC ,的中点F E ,,且四边形OEBF 的面积为2,则k = .三、解答题(本大题共8道题,共计70分,解答时写出必要的文字说明、证明过程或演算步骤) 21.(本题满分6分)(1)一木杆按如图13-1所示的方式直立在地面上,请在图中画出它在阳光下的影子(用线段CD 表示); (2)图13-2是两根标杆及它们在灯光下的影子.请在图中画出光源的位置(用点P 表示),并在图中画出人在此光源下的影子.(用线段表示).22.(本题满分7分)已知关于x 的一元二次方程220x x a --=. (1)如果此方程有两个不相等的实数根,求a 的取值范围; (2)如果此方程的两个实数根为12x x ,,且满足121123x x +=-,求a 的值.23.(本题满分7分)李明对某校九年级(2)班进行了一次社会实践活动调查,从调查的内容中抽出两项. 调查一:对小聪、小亮两位同学的毕业成绩进行调查,其中毕业成绩按综合素质、考试成绩、体育测试三项进行计算,计算的方法按4:4:2进行,毕业成绩达80分以上(含80分)为“优秀毕业生”,小聪、小亮的三项成绩如右表:(单位:分)综合素质 考试成绩 体育测试 满分 100 100 100 小聪 72 98 60 小亮907595调查二:对九年级(2)班50名同学某项跑步成绩进行调查, 并绘制了一个不完整的扇形统计图,如图14. 请你根据以上提供的信息,解答下列问题:太阳光线木杆 图13-1 图13-2 A BA 'B '(1)小聪和小亮谁能达到“优秀毕业生”水平?哪位同学的毕业成绩更好些? (2)升入高中后,请你对他俩今后的发展给每人提一条建议. (3)扇形统计图中“优秀率”是多少? (4)“不及格”在扇形统计图中所占的圆心角是多少度?24.(本题满分9分)已知正比例函数y kx =的图象与反比例函数5ky x-=(k 为常数,0k ≠)的图象有一个交点的横坐标是2.(1)求两个函数图象的交点坐标;(2)若点11()A x y ,,22()B x y ,是反比例函数5ky x-=图象上的两点,且12x x <,试比较12y y ,的大小.25.(本题满分9分)如图15,平行四边形ABCD 中,AB AC ⊥,1AB =,BC =.对角线AC BD ,相交于点O ,将直线AC 绕点O 顺时针旋转,分别交BC AD ,于点E F ,. (1)证明:当旋转角为90o时,四边形ABEF 是平行四边形;(2)试说明在旋转过程中,线段AF 与EC 总保持相等;(3)在旋转过程中,四边形BEDF 可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC 绕点O 顺时针旋转的度数.26.(本题满分10分)一座拱桥的轮廓是抛物线型(如图16所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m .(1)将抛物线放在所给的直角坐标系中(如图17所示),求抛物线的解析式; (2)求支柱EF 的长度;AB C OF E图15 图14 优秀3人(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.27.(本题满分10分)如图18,四边形ABCD 内接于O e ,BD 是O e 的直径,AE CD ⊥,垂足为E ,DA 平分BDE ∠. (1)求证:AE 是O e 的切线;(2)若301cm DBC DE ∠==o,,求BD 的长.28.(本题满分12分)如图19-1,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,5OA =,4OC =.(1)在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,求D E ,两点的坐标;(2)如图19-2,若AE 上有一动点P (不与A E ,重合)自A 点沿AE 方向向E 点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t 秒(05t <<),过P 点作ED 的平行线交AD 于点M ,过点M 作AE 的平行线交DE 于点N .求四边形PMNE 的面积S 与时间t 之间的函数关系式;当t 取何值时,S 有最大值?最大值是多少? (3)在(2)的条件下,当t 为何值时,以A M E ,,为顶点的三角形为等腰三角形,并求出相应的时刻点M 的坐标.图18x图16。