三连续时间信号与系统的频域分析

合集下载

第3章连续信号与系统的频域分析

第3章连续信号与系统的频域分析
8
2013年8月13日8时10分
3.0 引言
LTI系统的特性完全可以由其单位冲激响应
来表征,通过对LTI系统单位冲激响应的研究就可
分析LTI系统的特性。
连续时间信号分解为一系列完备正交信号集, 再根据线性叠加原理求解系统的零状态响应。
9
2013年8月13日8时10分
3.1信号的正交分解
3.1.1 矢量的正交分解 1 、正交矢量(2维空间)
3.1.2 信号的正交分解 2、正交函数的两个重要定理 定理2:若 则:
f (t ) c1 g1 (t ) cr gr (t ) cn gn (t ) ci gi (t )
i 1
n

t2
t1
f (t ) dt ci gi (t ) dt
t2 i 1 t1
完备正交函 数集
1,cos t,cos 2t,,sin t,sin 2t,
17
2013年8月13日8时10分
3.2 周期信号的连续时间傅立叶级数
一般地,若 即有:
则有:
f ( t ) 在区间(-∞,+
∞)内,每隔周期T重复,
f (t ) f (t kT )

T 2 T 2
V1 V2 0
V1 V3 0
V2 V3 0
11
2013年8月13日8时10分
3.1信号的正交分解
3.1.1 矢量的正交分解 3 、正交矢量(n维空间)
c3 V3 V3 o V2 c2 V2 V1
V cV1 crVr cnVn 1
V c1 V1
cr
V cos r Vr
3.7 连续信号的抽样定理

信号与系统分析PPT电子教案第三章连续时间信号与系统的频谱分析

信号与系统分析PPT电子教案第三章连续时间信号与系统的频谱分析

f (t ) A0 An cos(n1t n ) n1
A0
n1
An 2
[e e ] j(n1t n ) j(n1t n )
A0
1 2
n1
An
e e jn jn1t
1 2
n1
An
e e jn jn1t
上式中第三项的n用–n代换,则上式写为
f (t)
A0
1 2
n1
An e jn e jn1t
T0
因此,信号绝对可积就保证了 ak 的存在。
② 在任何有限区间内,只有有限个极值点,且极值
为有限值。
③ 在任何有限区间内,只有有限个第一类间断点。
其它形式
余弦形式 f (t) A0 An cos n1t n
2
n1
A0 a0
an An cosn
An an2 bn2
bn An sinn
cos
2 1 t
4

请画出其幅度谱和相位谱。
化为余弦形式
f (t) 1
5
cos(1t
0.15
)
cos
2 1 t
4
三角形式的傅里叶级数的谱系数
三角函数形式的频谱图
A0 1
0 0
An A1 2.24
A0 1
A2 1
0 1 21
n
0.25
1
0
21
0.15
A1 5 2.236 1 0.15
在时域可以看到,如果一个周期信号的周期趋 于无穷大,则周期信号将演变成一个非周期信 号;反过来,任何非周期信号如果进行周期性 延拓,就一定能形成一个周期信号。我们把非 周期信号看成是周期信号在周期趋于无穷大时 的极限,从而考查连续时间傅立叶级数在 T趋 于无穷大时的变化,就应该能够得到对非周期 信号的频域表示方法。

信号与系统 第3章-3

信号与系统 第3章-3

解 若直接按定义求图示信号的频谱,会遇到形如te-jωt的繁 复积分求解问题。而利用时域积分性质,则很容易求解。 将f(t)求导,得到图 3.5-5(b)所示的波形f1(t),将f1(t)再求导, 得到图 3.5-5(c)所示的f2(t), 显然有
第3章 连续信号与系统的频域分析
f 2 (t ) = f (t ) = f " (t )
ω )为各频率点
上单位频带中的信号能量,所以信号在整个频率范围的全部
W = ∫ G (ω )dω
0

式中
G (ω ) =
1
π
F ( jω )
2
第3章 连续信号与系统的频域分析 表 3.2 傅里叶变换的性质
第3章 连续信号与系统的频域分析
3.6 周期信号的傅里叶变换
设f(t)为周期信号,其周期为T,依据周期信号的傅里叶级数分 析, 可将其表示为指数形式的傅里叶级数。即
f ( −t ) ↔ F ( − jω )
也称为时间倒置定理 倒置定理。 倒置定理
第3章 连续信号与系统的频域分析
若已知f(t) ↔ F(jω ),求f(at - b)的傅立叶变换。
此题可用不同的方法来求解。 解 此题可用不同的方法来求解。
第3章 连续信号与系统的频域分析
(2) 先利用尺度变换性质,有 先利用尺度变换性质,
第3章 连续信号与系统的频域分析 2. 时移性 时移性 若f(t) ←→ F(jω), 且t0为实常数(可正可负),则有
f ( t − t0 ) ↔ F ( jω ) e
此性质可证明如下
− jω t 0
F [ f (t − t 0 )] = ∫− ∞ f (t − t 0 )e 令τ = t − t 0

连续时间信号的时域分析和频域分析

连续时间信号的时域分析和频域分析

时域与频域分析的概述
时域分析
研究信号随时间变化的规律,主 要关注信号的幅度、相位、频率 等参数。
频域分析
将信号从时间域转换到频率域, 研究信号的频率成分和频率变化 规律。
02
连续时间信号的时
域分析
时域信号的定义与表示
定义
时域信号是在时间轴上取值的信号, 通常用 $x(t)$ 表示。
表示
时域信号可以用图形表示,即波形图 ,也可以用数学表达式表示。
05
实际应用案例
音频信号处理
音频信号的时域分析
波形分析:通过观察音频信号的时域波形,可 以初步了解信号的幅度、频率和相位信息。
特征提取:从音频信号中提取出各种特征,如 短时能量、短时过零率等,用于后续的分类或 识别。
音频信号的频域分析
傅里叶变换:将音频信号从时域转换 到频域,便于分析信号的频率成分。
通信系统
在通信系统中,傅里叶变 换用于信号调制和解调, 以及频谱分析和信号恢复。
时频分析方法
01
短时傅里叶变换
通过在时间上滑动窗口来分析信 号的局部特性,能够反映信号的 时频分布。
小波变换
02
03
希尔伯特-黄变换
通过小波基函数的伸缩和平移来 分析信号在不同尺度上的特性, 适用于非平稳信号的分析。
将信号分解成固有模态函数,能 够反映信号的局部特性和包络线 变化。
频域信号的运算
乘法运算
01
在频域中,两个信号的乘积对应于将它们的频域表示
相乘。
卷积运算
02 在频域中,两个信号的卷积对应于将它们的频域表示
相乘后再进行逆傅里叶变换。
滤波器设计
03
在频域中,通过对频域信号进行加权处理,可以设计

系统的频域分析

系统的频域分析

6 系统的频域分析 p 5
Yzs (jw)= H(jw) F(jw)
Yzs ( jw ) 或 : H ( jw ) H ( jw ) e j (w ) F ( jw )
如果信号不存在傅氏变换时,不可以用频域分析方法。 在本教材中,没有特别提示时,涉及到H(jw) 的求解, 都指满足IR条件的LTI因果系统,即不考虑初始状态的影响, 即满足:
4/RC
w
随着频率的增加,系统的幅度响应|H(jw)|不断减小,说明信号 的频率越高,信号通过该系统的损耗也就越大,即低通。 由于|H(j(1/RC))|=0.707,所以把wc=1/RC称为该系统的3db截频。
6 系统的频域分析 p 13
连续信号通过系统响应的频域分析
在此就是求零状态响应。又称:零状态响应的频域分析法
H ( jw ) FT[h(t )]
1 1 jw 1 jw 2 1 ( jw ) 2 3( jw ) 2
6 系统的频域分析 p 9
例 LTI系统,输入 f(t)=e –t u(t),输出 y(t)= e-tu(t) + e2tu(t) ,求频率响应H(jw)和h(t)。
部分分式展开
1 3( jw ) 3 jw 44 Yzs ( jw ) Fzs ( jw ) H ( jw ) jw ) 22 jw 2 (jw 3 1)((jw )(3 jw 3)
1 -t 5 - 3t - 2t y zs (t ) FT [Yzs ( jw )] [ e 2e - e ]u (t ) 2 2
j wC
由Fourier反变换,得系 统的冲激响应h(t)为:
6 系统的频域分析 p 12
1 -(1 / RC)t h(t ) e u(t ) RC

连续时间信号与系统的频域分析报告

连续时间信号与系统的频域分析报告

连续时间信号与系统的频域分析报告1. 引言连续时间信号与系统的频域分析是信号与系统理论中的重要分支,通过将信号和系统转换到频域,可以更好地理解和分析信号的频谱特性。

本报告将对连续时间信号与系统的频域分析进行详细介绍,并通过实例进行说明。

2. 连续时间信号的频域表示连续时间信号可以通过傅里叶变换将其转换到频域。

傅里叶变换将信号分解成一系列不同频率的正弦和余弦波的和。

具体来说,对于连续时间信号x(t),其傅里叶变换表示为X(ω),其中ω表示频率。

3. 连续时间系统的频域表示连续时间系统可以通过频域中的频率响应来描述。

频率响应是系统对不同频率输入信号的响应情况。

通过系统函数H(ω)可以计算系统的频率响应。

系统函数是频域中系统输出与输入之比的函数,也可以通过傅里叶变换来表示。

4. 连续时间信号的频域分析频域分析可以帮助我们更好地理解信号的频谱特性。

通过频域分析,我们可以获取信号的频率成分、频谱特性以及信号与系统之间的关系。

常用的频域分析方法包括功率谱密度估计、谱线估计等。

5. 连续时间系统的频域分析频域分析也可以用于系统的性能评估和系统设计。

通过分析系统的频响特性,我们可以了解系统在不同频率下的增益和相位变化情况,进而可以对系统进行优化和设计。

6. 实例分析以音频信号的频域分析为例,我们可以通过对音频信号进行傅里叶变换,将其转换到频域。

通过频域分析,我们可以获取音频信号的频谱图,从而了解音频信号的频率成分和频率能量分布情况。

进一步,我们可以对音频信号进行系统设计和处理,比如对音乐进行均衡、滤波等操作。

7. 结论连续时间信号与系统的频域分析是信号与系统理论中重要的内容,通过对信号和系统进行频域分析,可以更好地理解和分析信号的频谱特性。

频域分析也可以用于系统的性能评估和系统设计,对于音频信号的处理和优化具有重要意义。

总结:通过本报告,我们了解了连续时间信号与系统的频域分析的基本原理和方法。

频域分析可以帮助我们更好地理解信号的频谱特性和系统的频响特性,对系统设计和信号处理具有重要意义。

第三、四章连续时间信号与系统的频域分析内容总结

第三、四章连续时间信号与系统的频域分析内容总结
X

连续时间信号与系统的频域分析总结
8 页
例15、试求信号f(t)=cos(4t+ )的频谱 。 3
解:
X

连续时间信号与系统的频域分析总结
9 页
例16、一因果LTI系统的输入和输出,由下列微分方程表示:(采用傅里叶变
换计算)。 (1)求系统的单位冲激响应 h( t ) ;
d 2 y( t ) dy( t )
X

连续时间信号与系统的频域分析内容总结
2 页
第四章是傅里叶变换在LTI系统分析中的应用。 在第三章信号频域分解、分析基础上,研究不同激励信号 通过系统的响应、信号通过系统无失真条件、理想低通滤波器 模型以及物理可实现条件、希尔伯特变换、抽样定理等主要内 容。
X

连续时间信号与系统的频域分析总结
3) (j
5)
1ห้องสมุดไป่ตู้
j
3
1
j 5
2
j
4
y z s(t ) e 3t (t ) e 5t (t ) 2e 4t (t )
X

连续时间信号与系统的频域分析总结
10 页
例17、如图所示系统,其乘法器的两个输入端分别为:f (t) sin(2t) , s(t) cos(6t)
系统的频率响应为
8
15y( t ) 2 f ( t )
dt 2
dt
(2)若 f ( t ) e4t( t ) ,求该系统的零状态响应 yzs (t) 。
解: (1)
H ( j)
2
11
j2 8 j 15 j 3 j 5
h(t) e 3t(t) e 5t(t)
(2)

《信号与系统》第3章 连续信号与系统的频域分析 PPT课件

《信号与系统》第3章 连续信号与系统的频域分析 PPT课件

3.1 信号的正交分解
3.1.1 矢量的正交分解 V2
1. 正交矢量
90 °
o
V1
图 3.1-1 两个矢量正交
两矢量V1与V2正交时的夹角为90°。不难得到两正交矢量的点积为零, 即
V1V 2 V1 V2 cos90 0
V1 Ve

o c12 V2
V2
图 3.1-2 矢量的近似表示及误差
t2 t1
gi
(t)

g
* j
(t
)dt

0 Ki
则该函数集就称为区间(t1, t2)上的正交函数集。 如果
t2 t1
gi
(t)

g
* j
(t
)dt

0 1
则称该函数集为归一化正交函数集。
i j i j
i j i j
用一个在区间(t1, t2)上的正交函数集{gi(t)}中各函数的线性组合就可逼近定 义在(t1, t2)区间上的信号f(t),即
A6 0.8
6 30
其余 An 0
An 3 3
2 2
1
0.8
0.4
o 2 3 4 5 6
(a)
n 45 °
45 °
30 ° 30 °
20 °
15° 10°
图 3.3-1 例 3.3-1 信号
(a) 振幅谱;
o

2
3
4 5
6

(b) 相位谱
(b)
|F n |
上述正交三角函数集中,当n=0时,cos 0°=1, sin 0°=0,而0不应计在此正交函数集 中,故一正交三角函数集可具体写为

实验三 连续信号与系统的频域分析

实验三 连续信号与系统的频域分析
郑慧乐
学号
0174280
同组人:无
实验项目
实验三连续信号与系统的频域分析
☑必修□选修
□演示性实验☑验证性实验□操作性实验□综合性实验
实验地点
H113
实验仪器台号
F0
指导教师
蒋娜
实验日期及节次
week14->2-12
一、实验目的及要求:
1、目的
1.掌握非周期信号的傅里叶变换:fourier函数和ifourier函数;
四、实验结果与数据处理:
1.利用fourier函数求下列信号的傅里叶变换F(jω),并用ezplot函数绘出其幅度谱和相位谱。
(1)
syms t v w phase im re;%定义变量t,v,w,phase,im re
f=sym('Heaviside(t)-Heaviside(t-2)');%
Fw=fourier(f);
plot([07.0711],[0.7070.707],':');
axis([04001.1]);
grid;
xlabel('角频率(\omega)');
ylabel('幅度');
title('H(j\omega)的幅频特性');
subplot(212);
plot(w,h2*180/pi);
axis([0400200]);
(2)
syms t v w phase im re;%定义变量t,v,w,phase,im re
f=exp(-1*t)*sym('Heaviside(t)');%
Fw=fourier(f);
subplot(311);

信号与系统的频域分析

信号与系统的频域分析

信号与系统的频域分析信号与系统是电子、通信、自动控制、计算机等领域的重要基础课程,频域分析是其中的重要内容之一。

频域分析是指将信号在频域上进行分析和处理,通过分析信号的频谱特性和频率分量来了解信号的频率成分和频率响应。

一、频域分析的基本概念和原理频域分析是将时域信号转换为频域信号的过程,可以通过傅里叶变换来实现。

傅里叶变换是一种将非周期信号或有限时长的周期信号分解为一系列基础频率分量的技术,可以将信号在频域上进行表达和处理。

在频域中,信号的频率成分和相对能量分布可以清晰地呈现出来,方便人们对信号进行分析和理解。

二、傅里叶级数和傅里叶变换傅里叶级数是用来分解周期信号为一系列余弦和正弦函数的技术,适用于周期信号的频域分析。

傅里叶级数展开后,通过求解各个频率分量的振幅和相位,可以得到该周期信号在频域中的频率成分和能量分布。

傅里叶变换是对非周期信号或有限时长的周期信号进行频域分析的方法。

傅里叶变换将信号从时域转换到频域,得到信号的频谱特性。

通过傅里叶变换,可以将时域中的信号分解为一系列基础频率分量,同时还可以得到每个频率分量的相位和振幅信息。

三、频域分析的应用频域分析在信号处理和系统分析中广泛应用。

在通信系统中,频域分析可以用于信号调制、解调和信道估计等方面。

在音频和视频信号处理中,频域分析可以用于音频和视频编码、去噪和增强等技术。

在自动控制系统中,频域分析可以用于系统的稳定性和响应特性分析。

四、常见的频域分析方法除了傅里叶变换外,还有一些常见的频域分析方法,如离散傅里叶变换(DFT)、快速傅里叶变换(FFT)、功率谱密度分析(PSD)等。

这些方法在不同的领域和应用中有着各自的优缺点和适用范围。

熟练掌握这些方法的原理和使用技巧,可以更好地进行频域分析和信号处理。

五、总结频域分析是信号与系统领域中重要的理论和实践内容,通过分析信号在频域上的频率成分和能量分布,可以深入理解信号的特性和系统的行为。

傅里叶变换作为频域分析的核心工具,能够将信号在时域和频域之间进行转换,为信号处理和系统分析提供了强有力的工具。

信号分析与处理(修订版) 课件 吴京ch03、4 连续时间信号的频域分析、 连续时间信号及系统的复频

信号分析与处理(修订版) 课件 吴京ch03、4 连续时间信号的频域分析、 连续时间信号及系统的复频
当周期信号波形具有某种对称性时,其傅里叶级数中有些项就不出现。掌握傅里叶级 数的这一特点,就可以迅速判断信号中包含哪些谐波成分,从而简化系数的计算。另外, 有些信号经简单处理也可能具有对称性,这时就可利用信号的潜在对称性进行简化分析。
02 周期信号的傅里叶级数
二、指数函数形式的傅里叶级数
即周期为T的信号x(t),可以在任意(t0 ,t0+T)区间,在虚指数信号集 上分解为一系列不同频率的虚指数信号
里叶反变换,可简记为
二者的关系也可记作x(t)→X(jω) ,双箭头 x(t)与频域频谱X(jω)是一对傅里叶变换对。
表示对应关系,说明时域信号来自03 非周期信号的傅里叶变换
二、常用信号的傅里叶变换 1 .单边指数信号的频谱 单边指数信号的表达式为 由于所得频谱是复函数,故有
其时域波形图及频谱图 如图所示。

(2) x(t)的极大值和极小值的数目应有限;
(3) x(t)如有间断点,间断点的数目应有限。
02 周期信号的傅里叶级数
一、三角函数形式的傅里叶级数
周期为T的信号x(t) ,可以在任意(t0,t0 十T)区间,用三角函数信号集{ sinkω0t,cosk ω0t,1;k= 1,2,…;ω0 = 2π/T}精确分解为下面的三角形式的傅里叶级数,即
高等院校公共课系列精品教材
高等院校公共课系列精品教材
第四章
连续时间信号及系 统的复频域分析
电子信息科学与工程类
高等院校公共课系列精品教材
01 拉普拉斯 变换
01 拉普拉斯变换
一、从傅里叶变换到拉普拉斯变换
式(4.6)和式(4. 7)称为拉普拉斯变换对,简称拉氏变换对,记为x(t)→X(s)。
X(s)称为x(t)的拉氏变换,又称为象函数,记为

信号与系统实验报告实验三 连续时间LTI系统的频域分析

信号与系统实验报告实验三   连续时间LTI系统的频域分析

实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法与特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习与掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MA TLAB 语言进行系统频响特性分析的方法。

基本要求:掌握LTI 连续与离散时间系统的频域数学模型与频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波与滤波器的概念,掌握利用MATLAB 计算与绘制LTI 系统频率响应特性曲线中的编程。

二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response),就是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况与响应的相位随频率的变化情况两个方面。

上图中x(t)、y(t)分别为系统的时域激励信号与响应信号,h(t)就是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3、1或者: )()()(ωωωj X j Y j H =3、2)(ωj H 为系统的频域数学模型,它实际上就就是系统的单位冲激响应h(t)的傅里叶变换。

即⎰∞∞--=dt e t h j H tj ωω)()( 3、3由于H(j ω)实际上就是系统单位冲激响应h(t)的傅里叶变换,如果h(t)就是收敛的,或者说就是绝对可积(Absolutly integrabel)的话,那么H(j ω)一定存在,而且H(j ω)通常就是复数,因此,也可以表示成复数的不同表达形式。

在研究系统的频率响应时,更多的就是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3、4上式中,)j (ωH 称为幅度频率相应(Magnitude response),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。

信号与系统第二版余成波-第三章 01

信号与系统第二版余成波-第三章 01

n1
An
cos n0t
n
单边
物理解释:满足狄里赫利条件的周期函数可以分解为直流和许多余弦 (或正弦)分量。其中第一项A0/2是常数项,也即为信号所包含的直 流分量;从第二项开始,是信号的谐波分量,n为谐波次数,An(n为 自然数)为谐波振幅,φn为相应谐波的初相角。其中,n为1的一次 谐波也称为基波。

1 2
Ane j n ,
Fn
1 2 An
2
an T
T
2 T
f
t cos n0tdt,n
1,2,

2
2
bn T
T
2 T
f
t sin n0tdt,n
1,2,

2

f t
Fne jn0t
n
Fn

1 T
T
2 T
f
2
t
e jn0t dt
Hn

1 T0
T0
f 2
T0 2
t t1
e jn0t dt
令τ= t - t1,则t =τ+ t1,上式改写为
1
Hn T0
f T0
2
t1

T0 2
t1

e d jn0 t1

e
jn0t1
1 T
f T0
2
t1

T0 2
t1

e
t2 t1 i

t

j

t

dt

0, i Ki 0, i

j j
Ki为常数

南邮信号与系统课后答案第三章

南邮信号与系统课后答案第三章

3-14
如题图 3 14 所示信号 f t F ,在不求出 前提下,求
1
F 的
f t
(1) F 0 F 0
-1
0
1
t
解: F 0 F 0




f t e
j t
dt
0




f t dt
f 1 t
1
(a)
2 5
0
-1
2 5
t
2 2 解: f 1 t cos 10 t u t u t cos 10 tg 4 t 5 5 5 2 f t g 4 t Sa F 5 5 5 4 f 1 t 1 2
y 1 t
H 2
cos 2 t
4 5
sin 2 t cos 2 t 127
4 5 Ae
j



另解:
1 j2 1 j2
j
e
j 127

y t A cos 2 t cos 2 t 127




1 10
g 10 t Sa 5 1 10 5
1 10 , A 10
Sa 5 t 2
g 10
对称性
u 5 u 5

g 10

5
3-8
已知 f t F ,求下列函数的傅里叶
2 j
F e
2 j
t ( 6 ) t 2 f 2

信号与系统实验报告实验三连续时间LTI系统的频域分析

信号与系统实验报告实验三连续时间LTI系统的频域分析

实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MATLAB 语言进行系统频响特性分析的方法。

基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。

二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。

上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。

即⎰∞∞--=dt et h j H tj ωω)()( 3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。

在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章连续时间信号与系统的频域分析3.1 信号的正交分解
3.1.1 正交函数集
3.1.2 信号的正交分解与最小均方误差
3.2 周期信号的傅里叶级数分析
图3.1 周期信号
图3.2 由持续时间为一个周期的信号作周期性的延拓而形成的周期信号3.2.1 傅里叶级数的三角函数形式
3.2.2 傅里叶级数的指数形式
3.2.3 函数的对称性与傅里叶系数的关系
图3.3 偶函数
图3.4 奇函数
图3.5 奇谐函数
图3.6 方波信号示意图
图3.7 奇对称周期信号
图3.8 周期矩形脉冲信号3.3 周期信号的频谱
3.3.1 周期信号频谱的特点
图3.9 周期信号的频谱
3.3.2 周期矩形脉冲的频谱
图3.11 周期性矩形脉冲示意图
图3.12 取样(抽样)函数波形图
图3.13 周期矩形脉冲的频谱图
图3.14 周期矩形脉冲的幅度谱和相位谱图
图3.15 脉冲宽度与频谱的关系
图3.16 周期与频谱的关系3.3.3 周期信号的功率
3.4 非周期信号的频谱
图3.17 利用f(t)构成一个新的周期信号fT(t)
图3.18 傅里叶频谱线的变化
图3.19 在T→∞时,傅里叶级数变为傅里叶积分
图3.20 门函数及其频谱
图3.21 单边指数函数和频谱3.5 常用非周期信号的傅里叶变换
3.5.1 单位冲激
图3.22 单位冲激函数及其频谱
3.5.2 冲激函数导数
3.5.3 单位直流信号
图3.23 求极限过程
图3.24 直流信号及其频谱3.5.4 单位阶跃信号
图3.25 单位阶跃信号及其频谱
3.5.5 符号函数
图3.26 符号函数及其频谱3.5.6 矩形脉冲信号
图3.27 门函数及其频谱图
3.5.7 虚指数函数
3.5.8 周期信号
3.5.9 高斯函数信号
图3.28 高斯函数信号及其频谱3.6 傅里叶变换的性质
3.6.1 线性性质
图3.29 f(t)的信号波形与分解图
3.6.2 奇偶特性
3.6.3 正反变换的对称性
图3.30 抽样函数与其频谱图
3.6.4 尺度变换(展缩性质或波形的缩放特性)3.6.5 时移特性
3.6.6 频移特性
图3.31 f(t)与fa(t)及其频谱
3.6.7 卷积定理
图3.32 信号f(t)及其分解图
图3.33 f(t)信号频谱图
3.6.8 时域微分和积分性质
图3.34 信号f(t)、一阶导数和二阶导数的图3.6.9 频域微分和频域积分
3.6.10 能量谱和功率谱
表3.2 傅里叶变换的主要性质
3.7 傅里叶反变换
3.7.1 利用傅里叶变换对称特性
3.7.2 部分分式展开
3.7.3 利用傅里叶变换性质和常见信号的傅里叶变换对3.8 LTI系统的频域分析
3.8.1 频率响应
图3.35 时域分析与频域分析示意图
图3.36 例3.23图
3.8.2 信号无失真传输
图3.37 无失真传输系统的幅频特性和相频特性3.8.3 理想低通滤波器的响应
图3.38 理想滤波器频率特性示意图
图3.39 理想低通滤波的冲激响应与阶跃响应示意图3.9 希尔伯特变换
3.9.1 因果时间函数的傅里叶变换的实部或虚部自满性
3.9.2 连续时间解析信号的希尔伯特变换表示法
图3.40 连续时间90°相移器
3.10 调制与解调
3.10.1 正弦幅度调制和解调
图3.41 幅度调制的基本模型
图3.42 复指数载波幅度调制所进行的频谱搬移
图3.43 连续时间正弦幅度调制和解调
图3.44 调幅传输系统的基本模型
图3.45 调幅波及其频谱
图3.46 包络检波的工作过程
图3.47 双边带和单边带调幅的已调制信号频谱
图3.48 利用理想高通滤波器获得只包含上边带的单边带信号
图3.49 实信号恢复出原实信号的示意图
图3.50 利用希尔伯特变换实现下边带的单带调制器3.10.2 脉冲幅度调制
图3.51 连续时间脉冲幅度调制及其波形图
图3.52 图3.51(a)中连续时间脉冲幅度调制的频谱示意图3.11 连续时间信号的抽样
3.11.1 周期抽样
图3.53 抽样脉冲及抽样信号的波形
图3.54 抽样过程方框图
3.11.2 抽样的时域表示
图3.55 矩形抽样信号频谱
图3.56 冲激抽样及其频谱
图3.57 混叠现象
3.11.4 连续时间信号的重建
图3.58 由抽样信号恢复连续信号
图 3.59
图 3.60
图 3.61
图 3.62
图 3.63
图 3.64
图 3.65
图 3.66
图 3.67
图 3.68
图 3.69
图 3.70
图 3.71
图 3.72
图 3.73
图 3.74。

相关文档
最新文档