高考数学压轴专题最新备战高考《三角函数与解三角形》易错题汇编含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【最新】数学《三角函数与解三角形》试卷含答案
一、选择题
1.已知π1
cos 25
α⎛⎫-= ⎪⎝⎭,则cos2α=( )
A .
725
B .725
-
C .
2325
D .2325
-
【答案】C 【解析】 【分析】
由已知根据三角函数的诱导公式,求得sin α,再由余弦二倍角,即可求解. 【详解】 由π1
cos α25
⎛⎫-=
⎪⎝⎭,得1sin α5=,又由2123cos2α12sin α122525=-=-⨯=.
故选C . 【点睛】
本题主要考查了本题考查三角函数的化简求值,其中解答中熟记三角函数的诱导公式及余弦二倍角公式的应用是解答的关键,着重考查了推理与计算能力,属于基础题.
2.在ABC ∆中,若sin :sin :sin 2:3:4A B C =,则ABC ∆是( ) A .直角三角形 B .钝角三角形
C .锐角三角形
D .等腰直角三角形
【答案】B 【解析】 【分析】
由题意利用正弦定理,推出a ,b ,c 的关系,然后利用余弦定理求出cosC 的值,即可得解. 【详解】
∵sinA :sinB :sinC=2:3:4
∴由正弦定理可得:a :b :c=2:3:4, ∴不妨令a=2x ,b=3x ,c=4x ,
∴由余弦定理:c 2
=a 2
+b 2
﹣2abcosC ,所以cosC=
2222a b c ab
+-=222
4916223x x x x x +-⨯⨯=﹣14, ∵0<C <π, ∴C 为钝角. 故选B . 【点睛】
本题是基础题,考查正弦定理,余弦定理的应用,考查计算能力,常考题型.
3.若函数()sin 2f x x =向右平移
6
π
个单位后,得到()y g x =,则关于()y g x =的说法
正确的是( ) A .图象关于点,06π⎛⎫
- ⎪⎝⎭
中心对称 B .图象关于6
x π
=-轴对称
C .在区间5,126ππ⎡⎤
--⎢⎥⎣⎦单调递增 D .在5,1212ππ⎡⎤
-
⎢⎥⎣
⎦单调递增 【答案】D 【解析】 【分析】
利用左加右减的平移原则,求得()g x 的函数解析式,再根据选项,对函数性质进行逐一判断即可. 【详解】
函数()sin 2f x x =向右平移6π
个单位,得()sin 2()sin(2)63
g x x x ππ=-=-. 由23
x π
-=k π,得26k x ππ=+()k ∈Z ,所以,06π⎛⎫
- ⎪⎝⎭
不是()g x 的对称中心,故A 错; 由23
x π-
=2
k π
π+
, 得212k x π5π
=
+
()k ∈Z ,所以()g x 的图象不关于6
x π=-轴对称,故B 错;
由2222
3
2
k x k π
π
π
ππ-
≤-
≤+
,得1212
k x k π5π
π-
≤≤π+
()k ∈Z , 所以在区间5,12
6ππ⎡⎤
-
-⎢⎥⎣⎦上()g x 不单调递增,在5,1212ππ⎡⎤-⎢⎥⎣⎦上单调递增, 故C 错,D 对; 故选:D . 【点睛】
解答三角函数问题时一般需将解析式化简为sin()y A x B ωϕ=++或cos()y A x B ωϕ=++,从而可利用正(余)弦型周期计算公式2||
T π
ω=
周期,对正弦型函数,其函数图象的对称中心为,k B πϕω-⎛⎫
⎪⎝⎭
,且对称中心在函数图象上,而对称轴必经过图象的最高点或最低点,此时函数取得最大值或最小值.
4.{}n a 为等差数列,公差为d ,且01d <<,5()2
k a k Z π
≠
∈,223557sin 2sin cos sin a a a a +⋅=,函数()sin(4)(0)f x d wx d w =+>在20,
3
π⎛⎫
⎪⎝
⎭
上单调且存在020,
3
x π⎛⎫
∈ ⎪⎝
⎭
,使得()f x 关于0(,0)x 对称,则w 的取值范围是( )
A .20,
3⎛⎤ ⎥⎝⎦
B .30,
2⎛
⎤ ⎥⎝⎦
C .24,
33⎛⎤
⎥⎝⎦
D .33,42⎛⎤
⎥⎝⎦
【答案】D 【解析】 【分析】
推导出sin4d =1,由此能求出d ,可得函数解析式,利用在203
x π⎛
⎫
∈ ⎪⎝
⎭
,
上单调且存在()()0020203
x f x f x x π⎛⎫
∈+-= ⎪⎝⎭
,
,,即可得出结论. 【详解】
∵{a n }为等差数列,公差为d ,且0<d <1,a 52
k π
≠(k ∈Z ), sin 2a 3+2sin a 5•cos a 5=sin 2a 7, ∴2sin a 5cos a 5=sin 2a 7﹣sin 2a 3=
2sin 372a a +cos 732a a -•2cos 372a a +sin 7
3
2a a -=2sin a 5cos2d •2cos a 5sin2d , ∴sin4d =1,
∴d 8
π
=
.
∴f (x )8
π
=
cosωx ,
∵在203x π⎛⎫∈ ⎪⎝⎭
,上单调 ∴
23
ππω≥, ∴ω32
≤
; 又存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭
,,, 所以f (x )在(0,23
π
)上存在零点, 即
223ππω<,得到ω34
>. 故答案为 33,42⎛⎤
⎥⎝⎦
故选D 【点睛】
本题考查等差数列的公差的求法,考查三角函数的图象与性质,准确求解数列的公差是本题关键,考查推理能力,是中档题.
5.已知函数()()πsin 06f x x ωω⎛⎫
=-> ⎪⎝
⎭,若()π02f f ⎛⎫=- ⎪⎝⎭在π0,2⎛⎫
⎪⎝
⎭上有且仅有三个
零点,则ω= ( ) A .
2
3
B .2
C .
143
D .
263
【答案】C 【解析】
∵函数()()sin 06f x x πωω⎛⎫
=-> ⎪⎝
⎭
,()02f f π⎛
⎫
=-
⎪⎝⎭
∴1
sin()sin()6262
π
ππω-=--=- ∴
22
6
6
k π
π
π
ωπ-
=+
或
52,2
6
6
k k Z π
π
π
ωπ-
=+
∈ ∴2
43k ω=+
或42,k k ω=+∈Z ∵函数()f x 在0,2
π⎛⎫
⎪⎝
⎭
上有且仅有三个零点
∴(,
)6
626
x π
πωπ
π
ω-∈-- ∴232
6
ωπ
π
ππ<-
≤
∴
1319
33
ω<≤ ∴14
3
ω=
或6ω= 故选C.
6.已知ABC V 的内角,,A B C 的对边分别为,,a b c ,且cos cos a B b A +=,
1a =,b =
c =( )
A B .1
C
D 【答案】B 【解析】 【分析】
先由正弦定理将cos cos a B b A +=
中的边转化为角,可得sin()A B +=
可求出角6
C π
=,再利用余弦定理可求得结果.
【详解】
解:因为cos cos 2cos a B b A C
+=
,
所以正弦定理得,sin cos sin cos A B B A +=
所以sin()A B +=
sin 2cos C C C
=,
因为sin 0C ≠,所以cos C =, 又因为(0,)C π∈,所以6
C π
=,
因为1a =,b =
所以由余弦定理得,2222cos 13211c a b ab C =+-=+-⨯=, 所以1c = 故选:B 【点睛】
此题考查的是利用正、余弦定理解三角形,属于中档题.
7.在ABC ∆中,060,A BC D ∠==是边AB 上的一点,CD CBD =
∆的面积为
1,
则BD 的长为( )
A .32
B .4
C .2
D .1
【答案】C 【解析】 1
sin 1sin
2BCD BCD ∠=∴∠=
2242
BD BD ∴=-=∴=,选C
8.已知πππ
sin()cos()0,322
ααα++-=-<<则2πcos()3α+等于( )
A B .35
-
C .
45
D .
35
【答案】C
【分析】
首先根据等式化简,得到4sin 65πα⎛⎫+=- ⎪
⎝
⎭,再利用诱导公式化简2cos 3πα⎛
⎫+ ⎪⎝⎭求值. 【详解】
解析:∵ππsin cos 32αα⎛⎫⎛
⎫++-= ⎪ ⎪⎝⎭⎝
⎭
13sin sin sin 22ααααα+==
6πα⎛
⎫=+= ⎪⎝
⎭ ∴π4
sin 65
()α+=-.
又2ππππcos cos sin 32()())6(6ααα+=++=-+, ∴2π4co (s 35
)α+=. 故选:C 【点睛】
本题考查三角恒等变换,化简求值,重点考查转化与变形,计算能力,属于基础题型.
9.在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,已知cos cos 2b C c B b +=,则
a
b
=( )
A .
B .2
C
D .1
【答案】B 【解析】 【分析】
由正弦定理及题设可知,sin cos sin cos 2sin B C C B B +=,即sin()2sin B C B +=,又
A B C π++=,可得sin 2sin A B =,再由正弦定理,可得解
【详解】
由正弦定理:
2sin sin b c
R B C
==,又cos cos 2b C c B b += 得到sin cos sin cos 2sin B C C B B +=,即sin()2sin B C B +=
在ABC ∆中,A B C π++=
故sin()2sin A B π-=,即sin 2sin A B = 故
sin 2sin a A b B
==
【点睛】
本题考查了正弦定理在边角互化中的应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题
10.已知sin α,sin()10
αβ-=-,,αβ均为锐角,则β=( ) A .
512
π
B .
3
π C .
4
π D .
6
π 【答案】C 【解析】 【分析】 由题意,可得22
π
π
αβ-
<-<
,利用三角函数的基本关系式,分别求得
cos ,cos()ααβ-的值,利用sin[(]sin )ααββ=--,化简运算,即可求解.
【详解】
由题意,可得α,β均为锐角,∴-2π <α-β<2
π.
又sin(α-β)=-
10,∴cos(α-β)=
10
.
又sin αcos α ∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)
=-×⎛ ⎝⎭
.∴β=4π. 【点睛】
本题主要考查了三角函数的化简、求值问题,其中熟记三角函数的基本关系式和三角恒等变换的公式,合理构造sin[(]sin )ααββ=--,及化简与运算是解答的关键,着重考查了推理与运算能力,属于基础题.
11.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知
sin sin (sin cos )0B A C C +-=
,a =2,c ,则C =
A .
π12
B .
π6
C .
π4
D .
π3
【答案】B 【解析】 【分析】 【详解】
试题分析:根据诱导公式和两角和的正弦公式以及正弦定理计算即可 详解:sinB=sin (A+C )=sinAcosC+cosAsinC , ∵sinB+sinA (sinC ﹣cosC )=0,
∴sinAcosC+cosAsinC+sinAsinC ﹣sinAcosC=0, ∴cosAsinC+sinAsinC=0, ∵sinC ≠0, ∴cosA=﹣sinA , ∴tanA=﹣1,
∵
π
2<A <π, ∴A= 3π4
,
由正弦定理可得
c sin sin a
C A
=, ∵a=2,
,
∴sinC=sin c A a
=12=22
, ∵a >c , ∴C=
π6, 故选B .
点睛:本题主要考查正弦定理及余弦定理的应用,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.
12.已知()0,απ∈,3sin 35πα⎛⎫
+= ⎪⎝
⎭,则cos 26πα⎛
⎫+= ⎪⎝⎭
( ) A .
24
25
B .2425
-
C .
725
D .725
-
【答案】B 【解析】 【分析】
根据余弦的二倍角公式先利用sin 3πα⎛
⎫+ ⎪⎝⎭求得2cos 23πα⎛⎫
+ ⎪⎝
⎭
.再由诱导公式求出sin 26πα⎛⎫+ ⎪⎝
⎭,再利用同角三角函数关系中的平方关系求得cos 26πα⎛
⎫+ ⎪⎝⎭.根据角的取值范
围,舍去不合要求的解即可. 【详解】
因为3sin 35πα⎛
⎫+= ⎪⎝
⎭
由余弦二倍角公式可得2
2237cos 212sin 1233525ππαα⎛⎫⎛⎫⎛⎫+
=-+=-⨯= ⎪ ⎪ ⎪
⎝
⎭⎝⎭⎝⎭
而2cos 2cos 2sin 23
626ππππααα⎛
⎫⎛⎫⎛
⎫+
=++=-+ ⎪ ⎪ ⎪⎝
⎭⎝⎭⎝
⎭
所以27sin 2cos 26325ππαα⎛
⎫
⎛
⎫
+
=-+=- ⎪ ⎪
⎝
⎭⎝
⎭
由同角三角函数关系式可得24cos 2625πα⎛
⎫
+==± ⎪⎝
⎭ 因为()0,απ∈ 则4,333π
ππ
α⎛⎫
+
∈ ⎪
⎝⎭,而3sin 035πα⎛⎫+=> ⎪⎝
⎭ 所以,33π
παπ⎛⎫
+∈ ⎪⎝⎭
则,33π
παπ⎛⎫+
∈ ⎪⎝⎭
所以22,233ππ
απ⎛⎫⎛⎫+
∈ ⎪
⎪⎝
⎭⎝⎭
32,
3262ππππα⎛
⎫⎛⎫
+-∈ ⎪ ⎪⎝
⎭⎝⎭
,即
32,662πππα⎛⎫+∈ ⎪⎝⎭ 又因为7sin 20625
πα⎛⎫
+=-< ⎪⎝
⎭,所以32,62ππ
απ⎛⎫
+∈ ⎪⎝⎭
故cos 206πα⎛
⎫
+
< ⎪⎝
⎭
所以24cos 2625πα⎛
⎫+=- ⎪
⎝
⎭ 故选:B 【点睛】
本题考查了同角三角函数关系式及诱导公式的化简应用,三角函数恒等变形及角的范围确定,综合性较强,属于中档题.
13.直线y a =与函数()tan (0)4f x x πωω⎛
⎫
=+
> ⎪⎝
⎭
的图象的相邻两个交点的距离为
2π,若()f x 在()(),0m m m ->上是增函数,则m 的取值范围是( )
A .(0,
]4
π
B .(0,]2
π
C .3(0,
]4
π D .3(0,
]2
π 【答案】B 【解析】 【分析】
根据直线y a =与函数()f x 的图象的相邻两个交点的距离为一个周期,得到1
2
ω=
,则()1
tan 2
4f x x π⎛⎫=+ ⎪⎝⎭,然后求得其单调增区间,再根据()f x 在()(),0m m m ->上是增
函数,由(,)m m -是增区间的子集求解. 【详解】
因为直线y a =与函数()f x 的图象的相邻两个交点的距离为一个周期, 所以12ω=,()1
tan 2
4f x x π⎛⎫=+ ⎪⎝⎭,
由12
242k x k π
ππππ-
<
+<+,得322()22k x k k ππ
ππ-<<+∈Z , 所以()f x 在3,22ππ⎛⎫
-
⎪⎝
⎭上是增函数, 由3(,),22m m ππ⎛⎫
-⊆-
⎪⎝⎭
, 解得02
m π
<≤.
故选:B 【点睛】
本题主要考查正切函数的图象和性质,还考查了运算求解的能力,属于中档题
14.已知2433sin 5cos 77ππαα⎛⎫⎛⎫+=-+ ⎪ ⎪⎝⎭⎝⎭,则tan 14πα⎛
⎫-= ⎪⎝
⎭( )
A .5
3-
B .35
-
C .
35
D .
53
【答案】B 【解析】 【分析】
根据诱导公式计算得到35tan 73πα⎛⎫+= ⎪⎝⎭,故3tan tan 147
2πππαα⎡⎤
⎛⎫⎛⎫-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,解得
答案.
【详解】
由诱导公式可知24333sin 3sin 33sin 777πππαπαα⎡⎤⎛⎫⎛⎫⎛⎫
+=++=-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣
⎦, 又2433sin 5cos 77ππαα⎛⎫⎛⎫+=-+
⎪ ⎪⎝⎭⎝⎭得333sin 5cos 77ππαα⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭
, 所以35tan 73πα⎛⎫+= ⎪⎝⎭,313tan tan 314725tan 7πππααπα⎡⎤⎛⎫⎛⎫-=+-=-=- ⎪ ⎪⎢⎥⎛⎫⎝⎭⎝⎭⎣⎦+ ⎪
⎝⎭
. 故选:B . 【点睛】
本题考查了三角恒等变换,意在考查学生的计算能力和转化能力.
15.若函数tan 23y x k π⎛
⎫
=-+ ⎪⎝
⎭,0,6x π⎛⎫
∈ ⎪⎝⎭
的图象都在x 轴上方,则实数k 的取值范围为( ) A
.)
+∞ B
.
)
+∞
C
.()
+∞
D
.()
【答案】A 【解析】 【分析】
计算tan 203x π⎛
⎫
<-< ⎪⎝
⎭,tan 23x k π⎛
⎫->- ⎪⎝
⎭恒成立,得到答案.
【详解】
∵0,6x π⎛⎫∈ ⎪⎝⎭,∴2033x ππ-<-<
,∴tan 203x π⎛
⎫-< ⎪⎝
⎭,
函数tan 23y x k π⎛
⎫
=-+ ⎪⎝
⎭,0,6x π⎛⎫
∈ ⎪⎝⎭
的图象都在x 轴上方, 即对任意的0,6x π⎛⎫
∈ ⎪⎝
⎭
,都有tan 203x k π⎛⎫
-
+> ⎪⎝
⎭,即tan 23x k π⎛
⎫->- ⎪⎝⎭
,
∵tan 23x π⎛
⎫
-> ⎪⎝
⎭
k -≤
,k ≥ 故选:A . 【点睛】
本题考查了三角函数恒成立问题,转化为三角函数值域是解题的关键.
16.已知双曲线()22
2210,0x y a b a b
-=>>的左右焦点分别为1F ,2F ,M 为双曲线上一点,若
121
cos 4
F MF ∠=
,122MF MF =,则此双曲线渐近线方程为( ) A
.y = B
.3
y x =±
C .y x =±
D .2y x =±
【答案】A 【解析】 【分析】
因为M 为双曲线上一点,可得122MF MF a -=,在12F MF ∆使用余弦定理,结合已知条件即可求得答案. 【详解】
Q 双曲线()222210,0x y a b a b
-=>>的左右焦点分别为1F ,2F ,M 为双曲线上一点 ∴ 1212
22MF MF a MF MF ⎧-=⎪⎨=⎪⎩,解得:14MF a =,22MF a = 在12F MF ∆中,根据余弦定理可得:
∴ 1212
122
2
122c 2os F F MF MF M MF MF F F ∠=+-⋅⋅
可得:2
2
2
1
(2)(4)(2)2424
c a a a a =+-⋅⋅⋅ 化简可得:2c a =
由双曲线性质可得:22222243b c a a a a =-=-= 可得
:b =
Q 双曲线渐近线方程为:b y x a
=±
则双曲线渐近线方程为
: y = 故选:A. 【点睛】
本题考查了求双曲线渐近线方程问题,解题关键是掌握双曲线的基本知识,数形结合,考查分析能力和计算能力,属于中档题.
17.在三角形ABC 中,给出命题:p “2ab c >”,命题:q “3
C π
<”,则p 是q 的( )
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
【答案】A 【解析】 【分析】
由余弦定理将2c 化为222cos a b ab C +-,整理后利用基本不等式求得12cos 2C +>,求出C 范围,即可判断充分性,取4a =,7b =,6c =,则可判断必要性不成立,两者结合可得正确的选项. 【详解】
充分性:由余弦定理,2222cos c a b ab C =+-, 所以2ab c >,即222cos ab a b ab C >+-,
整理得,22
12cos a b C ab
++>,
由基本不等式,222a b ab +≥=,
当且仅当a b =时等号成立, 此时,12cos 2C +>,即1
cos 2C >,解得3
C π<, 充分性得证;
必要性:取4a =,7b =,6c =,则164936291
cos 247562
C +-==>⨯⨯,
故3
C π
<
,但228ab c =<,故3
C π
<
推不出2ab c >.
故必要性不成立; 故p 是q 的充分不必要条件. 故选:A 【点睛】
本题主要考查充分必要条件的判断、余弦定理的应用和基本不等式的应用,考查学生分析转化能力,属于中档题.
18.若函数()y f x =同时满足下列三个性质:①最小正周期为π;②图象关于直线
3
x π
=
对称;③在区间,63ππ⎡⎤
-
⎢⎥⎣⎦
上单调递增,则()y f x =的解析式可以是( ) A .sin 26y x π⎛⎫
=- ⎪⎝
⎭
B .sin 26x y π⎛⎫=-
⎪⎝⎭ C .cos 26y x π⎛⎫
=- ⎪⎝
⎭
D .cos 23y x π⎛⎫
=+
⎪⎝
⎭
【答案】A 【解析】 【分析】
利用性质①可排除B ,利用性质②可排除C ,利用性质③可排除D ,通过验证选项A 同时满足三个性质. 【详解】
逐一验证,由函数()f x 的最小正周期为π,而B 中函数最小正周期为241
2
π
π
=,故排除B ;
又cos 2cos 0362πππ⎛⎫⨯-== ⎪
⎝
⎭,所以cos 26y x π⎛
⎫=- ⎪⎝⎭的图象不关于直线3x π=对称,故排除C ; 若63x ππ-
≤≤,则023x ππ≤+≤,故函数cos 23y x π⎛
⎫=+ ⎪⎝
⎭在,63ππ⎡⎤-⎢⎥⎣⎦上单调递减,
故排除D ; 令22
6
2
x π
π
π
-
≤-
≤
,得63x ππ-
≤≤,所以函数sin 26y x π⎛
⎫=- ⎪⎝
⎭在,63ππ⎡⎤-⎢⎥⎣⎦上单调递
增.由周期公式可得22T π
π=
=,当3x π=时,sin(2)sin 1362
πππ⨯-==, 所以函数sin 26y x π⎛
⎫=- ⎪⎝
⎭同时满足三个性质.
故选A . 【点睛】
本题考查了三角函数的周期性,对称性,单调性,属于中档题.
19.设2
α
是第一象限角,且cos cos αα=-,则α是第( )象限角 A .一 B .二
C .三
D .四
【答案】B 【解析】 【分析】
计算得到720180720k k α︒<<︒+︒,k Z ∈,再根据cos 0α<得到答案. 【详解】
∵
2
α是第一象限角,∴360903602k k α
︒<<︒+︒,k Z ∈,
∴720180720k k α︒<<︒+︒,k Z ∈,
∴α为第一象限角或第二象限角或终边在y 轴正半轴上的轴线角,
∵cos cos αα=-,∴cos 0α<,∴α是第二象限角. 故选:B . 【点睛】
本题考查了角度所在象限,意在考查学生的计算能力和转化能力.
20.在三棱锥P ABC -中,PA ⊥平面ABC ,2π
,43
BAC AP ∠=
=
,23AB AC ==,则三棱锥P ABC -的外接球的表面积为( )
A .32π
B .48π
C .64π
D .72π
【答案】C 【解析】 【分析】
先求出ABC V 的外接圆的半径,然后取ABC V 的外接圆的圆心G ,过G 作//GO AP ,
且1
22
GO AP =
=,由于PA ⊥平面ABC ,故点O 为三棱锥P ABC -的外接球的球心,OA 为外接球半径,求解即可. 【详解】
在ABC V 中,23AB AC ==,23BAC π∠=
,可得6
ACB π∠=, 则ABC V 的外接圆的半径
2323
π2sin 2sin
6
AB r ACB =
==,取ABC V 的外接圆的圆心G ,过G 作//GO AP ,且1
22
GO AP =
=, 因为PA ⊥平面ABC ,所以点O 为三棱锥P ABC -的外接球的球心, 则222OA OG AG =+,即外接球半径()
2
2
223
4R =
+=,
则三棱锥P ABC -的外接球的表面积为24π4π1664πR =⨯=. 故选C.
【点睛】
本题考查了三棱锥的外接球表面积的求法,考查了学生的空间想象能力,属于中档题.。