安徽省马鞍山市2021届新高考第四次大联考数学试卷含解析
安徽省淮南市2021届新高考数学第四次调研试卷含解析
安徽省淮南市2021届新高考数学第四次调研试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下图所示函数图象经过何种变换可以得到sin 2y x =的图象( )A .向左平移3π个单位 B .向右平移3π个单位 C .向左平移6π个单位 D .向右平移6π个单位 【答案】D 【解析】 【分析】根据函数图像得到函数的一个解析式为()sin 23f x x π⎛⎫=+ ⎪⎝⎭,再根据平移法则得到答案. 【详解】设函数解析式为()()sin f x A x b ωϕ=++, 根据图像:1,0A b ==,43124T πππ=-=,故T π=,即2ω=, sin 1126f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,2,3k k Z πϕπ=+∈,取0k =,得到()sin 23f x x π⎛⎫=+ ⎪⎝⎭,函数向右平移6π个单位得到sin 2y x =. 故选:D . 【点睛】本题考查了根据函数图像求函数解析式,三角函数平移,意在考查学生对于三角函数知识的综合应用. 2.已知复数2(1)(1)i z a a =-+-(i 为虚数单位,1a >),则z 在复平面内对应的点所在的象限为( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B 【解析】 【分析】分别比较复数z 的实部、虚部与0的大小关系,可判断出z 在复平面内对应的点所在的象限. 【详解】因为1a >时,所以10a -<,210a ->,所以复数z 在复平面内对应的点位于第二象限. 故选:B. 【点睛】本题考查复数的几何意义,考查学生的计算求解能力,属于基础题. 3.已知菱形ABCD 的边长为2,60ABC ∠=︒,则BD CD ⋅=u u u v u u u v() A .4 B .6C .23D .43【答案】B 【解析】 【分析】根据菱形中的边角关系,利用余弦定理和数量积公式,即可求出结果. 【详解】 如图所示,菱形形ABCD 的边长为2,60ABC ∠=︒,∴120C ∠=︒,∴22222222cos12012BD =+-⨯⨯⨯︒=, ∴23BD =,且30BDC ∠=︒,∴|||3302|326BD CD BD CD cos =⨯⨯︒=⨯⨯=⋅u u u r u u u r u u u r u u u r, 故选B . 【点睛】本题主要考查了平面向量的数量积和余弦定理的应用问题,属于基础题.. 4.设函数1()ln1xf x x x+=-,则函数的图像可能为( ) A . B . C . D .【答案】B 【解析】【分析】根据函数为偶函数排除,A C ,再计算11()22ln 30f =>排除D 得到答案. 【详解】1()ln1xf x x x +=-定义域为:(1,1)- 11()ln ln ()11x xf x x x f x x x-+-=-==+-,函数为偶函数,排除,A C11()22ln 30f => ,排除D 故选B 【点睛】本题考查了函数图像,通过函数的单调性,奇偶性,特殊值排除选项是常用的技巧.5.第24届冬奥会将于2022年2月4日至2月20日在北京市和张家口市举行,为了解奥运会会旗中五环所占面积与单独五个环面积之和的比值P ,某学生做如图所示的模拟实验:通过计算机模拟在长为10,宽为6的长方形奥运会旗内随机取N 个点,经统计落入五环内部及其边界上的点数为n 个,已知圆环半径为1,则比值P 的近似值为( )A .8Nnπ B .12nNπ C .8nNπ D .12Nnπ【答案】B 【解析】 【分析】根据比例关系求得会旗中五环所占面积,再计算比值P . 【详解】设会旗中五环所占面积为S ,由于S 60n N =,所以60n S N=, 故可得5S P π==12n Nπ. 故选:B. 【点睛】本题考查面积型几何概型的问题求解,属基础题.6.设1F ,2F 分别为双曲线22221x y a b-=(a >0,b >0)的左、右焦点,过点1F 作圆222x y b += 的切线与双曲线的左支交于点P ,若212PF PF =,则双曲线的离心率为( ) ABCD【答案】C 【解析】 【分析】设过点1F 作圆222x y b += 的切线的切点为T ,根据切线的性质可得1OT PF ⊥,且||OT a =,再由212PF PF =和双曲线的定义可得12||2,||4PF a PF a ==,得出T 为1F P 中点,则有2//OT PF ,得到21PF PF ⊥,即可求解.【详解】设过点1F 作圆222x y b += 的切线的切点为T ,11,||OT PF FT a ∴⊥== 2121212,2,4,2PF PF PF PF a PF a PF a =-===,所以T 是1F P 中点,212//,OTPF PF PF ∴∴⊥,22221212||||20||4PF PF a F F c ∴+===,225,c e a=∴=故选:C. 【点睛】本题考查双曲线的性质、双曲线定义、圆的切线性质,意在考查直观想象、逻辑推理和数学计算能力,属于中档题.7.已知函数()e x f x x =,关于x 的方程()()()2140(f x m f x m m ++++=∈R)有四个相异的实数根,则m 的取值范围是( )A .44,e e 1⎛⎫--- ⎪+⎝⎭B .()4,3--C .4e ,3e 1⎛⎫--- ⎪+⎝⎭ D .4e ,e 1∞⎛⎫--- ⎪+⎝⎭【答案】A 【解析】()e x f x x ==e ,0e ,0xx x x x x⎧>⎪⎪⎨⎪-<⎪⎩,当0x >时()()()‘2e 10,1,0,1x x f x x x x-===∈时,()f x 单调递减,()1,x ∞∈+时,()f x 单调递增,且当()()()0,1,e,x f x ∞∈∈+时,当()()()1,,e,x f x ∞∞∈+∈+时, 当0x <时,()()2e 10x xf x x-'-=>恒成立,(),0x ∞∈-时,()f x 单调递增且()()0,f x ∞∈+,方程()()()2140(f x m f x m m ++++=∈R)有四个相异的实数根.令()()2,14f x t t m t m =++++=0则()2120,,e 1e 40t e t e m m <<>∴++++<,()201040m m ++++>且,即44,e e 1m ⎛⎫∈---⎪+⎝⎭. 8.已知函数()ln f x x =,()()23g x m x n =++,若()0,x ∀∈+∞总有()()f x g x ≤恒成立.记()23m n +的最小值为(),F m n ,则(),F m n 的最大值为( )A .1B .1eC .21eD .31e【答案】C 【解析】 【分析】根据()0,x ∀∈+∞总有()()f x g x ≤恒成立可构造函数()()ln 23h x x m x n =-+-,求导后分情况讨论()h x 的最大值可得最大值最大值()1ln 23123h m n m ⎛⎫=-+-- ⎪+⎝⎭,即()ln 2310m n -+--≤.根据题意化简可得()()()2323ln 231m n m m +≥+-+-⎡⎤⎣⎦,求得()()(),23ln 231F m n m m =+-+-⎡⎤⎣⎦,再换元求导分析最大值即可.【详解】由题, ()0,x ∀∈+∞总有()ln 23x m x n ≤++即()ln 230x m x n -+-≤恒成立. 设()()ln 23h x x m x n =-+-,则()h x 的最大值小于等于0. 又()()1'23h x m x=-+, 若230m +≤则()'0h x >,()h x 在()0,∞+上单调递增, ()h x 无最大值. 若230m +>,则当123x m >+时,()'0h x <,()h x 在1,23m ⎛⎫+∞ ⎪+⎝⎭上单调递减,当1023x m <<+时,()'0h x >,()h x 在10,23m ⎛⎫ ⎪+⎝⎭上单调递增.故在123x m =+处()h x 取得最大值()11ln 1ln 2312323h n m n m m ⎛⎫=--=-+-- ⎪++⎝⎭. 故()ln 2310m n -+--≤,化简得()()()2323ln 231m n m m +≥+-+-⎡⎤⎣⎦.故()()(),23ln 231F m n m m =+-+-⎡⎤⎣⎦,令()23,0t m t =+>,可令()()ln 1k t t t =-+, 故()'ln 2k t t =--,当21t e >时, ()'0k t <,()k t 在21,e ⎛⎫+∞ ⎪⎝⎭递减; 当210t e <<时, ()'0k t >,()k t 在210,e ⎛⎫⎪⎝⎭递增. 故在21t e =处()h t 取得极大值,为22221111ln 1=k e e e e⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭. 故(),F m n 的最大值为21e . 故选:C 【点睛】本题主要考查了根据导数求解函数的最值问题,需要根据题意分析导数中参数的范围,再分析函数的最值,进而求导构造函数求解()23m n +的最大值.属于难题.9.若202031i iz i+=+,则z 的虚部是( )A .iB .2iC .1-D .1【答案】D 【解析】 【分析】通过复数的乘除运算法则化简求解复数为:a bi +的形式,即可得到复数的虚部. 【详解】由题可知()()()()202022131313123211111i i i i i i i z i i i i i i +-+++-=====++++--, 所以z 的虚部是1. 故选:D. 【点睛】本题考查复数的代数形式的混合运算,复数的基本概念,属于基础题. 10.已知52i 12ia =+-(a ∈R ),i 为虚数单位,则a =( )A B .3C .1D .5【答案】C 【解析】 【分析】利用复数代数形式的乘法运算化简得答案.【详解】由52i12ia=+-,得12i2ia+=+,解得1a=.故选:C.【点睛】本题考查复数代数形式的乘法运算,是基础题.11.某四棱锥的三视图如图所示,则该四棱锥的表面积为()A.8 B.83C.822+D.842+【答案】D【解析】【分析】根据三视图还原几何体为四棱锥,即可求出几何体的表面积.【详解】由三视图知几何体是四棱锥,如图,且四棱锥的一条侧棱与底面垂直,四棱锥的底面是正方形,边长为2,棱锥的高为2,所以1122222222284222S=⨯+⨯⨯⨯+⨯⨯⨯=+,故选:D【点睛】本题主要考查了由三视图还原几何体,棱锥表面积的计算,考查了学生的运算能力,属于中档题. 12.木匠师傅对一个圆锥形木件进行加工后得到一个三视图如图所示的新木件,则该木件的体积()A .2493π+B .4893π+C .483π+D .144183π+【答案】C 【解析】 【分析】由三视图知几何体是一个从圆锥中截出来的锥体,圆锥底面半径为22633()2r =+,圆锥的高22(35)3h =-截去的底面劣弧的圆心角为23π,底面剩余部分的面积为221412sin2323S r r ππ=⋅+,利用锥体的体积公式即可求得. 【详解】由已知中的三视图知圆锥底面半径为22633()62r =+=,圆锥的高22(35)36h =-=,圆锥母线226662l +=120°,底面剩余部分的面积为2222212212sin 66sin 2493323323S r r πππππ=+=⨯+⨯⨯=+11(2493)64818333V Sh ππ==⨯+⨯=+故选C. 【点睛】本题考查了三视图还原几何体及体积求解问题,考查了学生空间想象,数学运算能力,难度一般. 二、填空题:本题共4小题,每小题5分,共20分。
【数学】安徽省皖江名校高三第四次联考试题(理)(解析版)
安徽省皖江名校高三第四次联考数学试题(理)第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,,则等于()A. B. C. D.【答案】D【解析】解不等式得集合A,进而可得,求解函数定义域可得集合B,利用交集求解即可.因为集合,,所以,故选D.2.复数满足(为虚数单位),则复数在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】由题意得,,则复数在复平面内对应的点位于第一象限,故选A.3.已知向量,,若,则()A. B. C. -3 D. 3【答案】B【解析】利用两个向量平行的坐标表示列出方程求解即可.向量,若,则,解得.故选B.4.已知函数,则是()A. 奇函数,且在上是增函数B. 偶函数,且在上是增函数C. 奇函数,且在上是减函数D. 偶函数,且在上是减函数【答案】C【解析】定义域为R,关于原点对称,,有,所以是奇函数,函数,显然是减函数.故选C.5.已知一个四棱锥的三视图如图所示,则该四棱锥侧面的4个三角形面积的最大值为()A. B. C. D.【答案】A【解析】还原几何体得四棱锥,其中面,分别计算各侧面的面积即可得解.还原三视图可得几何体如图所示,四棱锥,其中面,.中有,由,所以.所以.所以面积最大值是的面积,等于2.6.已知等比数列的前项和为,且,则()A. B. C. D.【答案】D【解析】由等比数列的通项公式,利用基本量运算可得通项公式,进而可得前n项和,从而可得,令求解即可.由,可得;由.两式作比可得:可得,,所以,,,所以.故选D.7.把函数的图象上每个点的横坐标扩大到原来的2倍,再向左平移,得到函数的图象,则函数的一个单调递增区间为()A. B.C. D.【答案】B【解析】利用三角函数的图象变换可得函数,再由,,可解得单调增区间,即可得解.函数的图象上每个点的横坐标扩大到原来的2倍,可得的图象,再向左平移,得到函数的图象.由,,得,.当时,函数的一个单调递增区间,故选B.8.若实数,满足约束条件,则的最小值为()A. B. C. D.【答案】A【解析】作出不等式的可行域,的几何意义是可行域内的点与点连线的斜率的倒数,由斜率的最大值即可得解.作出不等式组构成的区域,的几何意义是可行域内的点与点连线的斜率的倒数,由图象知的斜率最大,由得,所以,此时.故选A.9.如图,在矩形中的曲线是,的一部分,点,,在矩形内随机取一点,则此点取自阴影部分的概率是()A. B. C. D.【答案】B【解析】由几何概型可知,再利用定积分求阴影面积即可.由几何概型,可得.10.的斜边等于4,点在以为圆心,1为半径的圆上,则的取值范围是()A. B. C. D.【答案】C【解析】结合三角形及圆的特征可得,进而利用数量积运算可得最值,从而得解..注意,,所以当与同向时取最大值5,反向时取小值-3.故选C.11.体积为的三棱锥的顶点都在球的球面上,平面,,,则球的表面积的最小值为()A. B. C. D.【答案】C【解析】把三棱锥放在长方体中,由面积公式及基本不等式可得,进而有,结合即可得最值.把三棱锥放在长方体中,由已知条件容易得到,所以,因此,注意,所以球的表面积的最小值是.故选C.12.设函数的导数为,且,,,则当时,()A. 有极大值,无极小值B. 无极大值,有极小值C. 既有极大值又有极小值D. 既无极大值又无极小值【答案】B【解析】由题设,结合条件可得存在使得,再由,可得在上单调递增,分析导数的正负,即可得原函数的极值情况.由题设,所以,,所以存在使得,又,所以在上单调递增.所以当时,,单调递减,当时,,单调递增.因此,当时,取极小值,但无极大值,故选B.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.13.已知,,若是的充分不必要条件,则的取值范围为__________.【答案】【解析】由是的充分不必要条件,可得是的充分不必要条件,从而得且,列不等式求解即可.,,由题意是的充分不必要条件,等价于是的充分不必要条件,即,于是且,得,经检验.故答案为:.14.已知函数在上恰有一个最大值点和最小值点,则的取值范围是__________.【答案】【解析】根据条件得的范围,由条件可知右端点应该在第一个最小值后第二个最大值前,即得,解不等式即可得解. 由题设,所以应该在第一个最小值后第二个最大值前,所以有,得,所以的取值范围是.故答案为:.15.已知正数,满足,则的最大值为__________.【答案】【解析】令,则,可得,再利用基本不等式求最值即可. 令,则, 所以,当且仅当可以取到最大值,此时. 故答案为:. 16.在四边形中,,,,,则的最大值为______. 【答案】 【解析】因为,所以由正弦定理可得,在以为直径的圆上,要使最大,就是到圆周上动点的最大值,为到圆圆心的距离加半径,即是,故答案为.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.解答应写在答题卡上的指定区域内. 17.如图,在梯形中,,,,四边形是正方形,且,点在线段上.(Ⅰ)求证:平面;(Ⅱ)当平面时,求四棱锥的体积.(Ⅰ)证明:由题设易得,所以,,,(第2问用)因此,又,和为平面内两条相交直线,所以平面(Ⅱ)解:设对角线,交于点,连接,则由平面可得,进而四边形是平行四边形,所以.四棱锥的底面积是.由(Ⅰ)知四棱锥的高是所以体积.18.如图,是的外角平分线,且.(Ⅰ)求;(Ⅱ)若,,求的长.解:(Ⅰ)由题设,,所以(Ⅱ)在中,由余弦定理,在中,又,所以,进而.19.已知数列的前项的和,是等差数列,且.(Ⅰ)求数列的通项公式;(Ⅱ)令,求数列的前项和.解:(Ⅰ),时,,也符合此式,所以.又,,可得,,所以(Ⅱ),所以,所以,错位相减得,所以20.在四棱锥中,侧面底面,,,,,.(Ⅰ)求与平面所成角的正弦值;(Ⅱ)求平面与平面所成的锐二面角的余弦值.解:在平面内作交于点,又侧面底面,所以平面,以点为原点,,,所在直线分别为,,轴,建立如图所示的空间直角坐标系.易得,,,.由已知条件,,得,所以点坐标为所以向量,,,(Ⅰ)设平面的法向量,则,设求与平面所成角为,则,(Ⅱ)设平面的法向量则,所以,.平面与平面所成的锐二面角的余弦值等于21.已知.(Ⅰ)求的最小值;(Ⅱ)若对任意都成立,求整数的最大值.解:(Ⅰ)的定义域是,令,所以在上单调递减,在上单调递增,在处取唯一的极小值,也是最小值(Ⅱ)(注意),记,则考查函数,,在定义域上单调递增.显然有,,所以存在唯一的使得.在上,,单调递减;在上,,单调递增.所以在取唯一的极小值也是最小值,注意此时,所以,所以整数的最大值可以取322.已知,,其中.(Ⅰ)当时,求函数的单调区间;(Ⅱ)若恒成立,求的最大值.解:(Ⅰ)时,,定义域是全体实数,求导得,令,所以在上单调递减,在上单调递增(Ⅱ)令在上恒成立,则在上恒成立求导得.若,显然可以任意小,不符合题意.若,则最大也只能取0.当时,令,于是在上单调递减,在单调递增,在取唯一的极小值也是最小值,令,则,令.所以在上单调递增,在单调递减,在取唯一极大值也是最大值,此时,,所以的最大值等于.备注一:结合图象,指数函数在直线的上方,斜率显然,再讨论的情况.备注二:考虑到在上恒成立,令即得.取,证明在上恒成立也给满分.。
2021年高三数学上学期第四次段考试卷 理(含解析)
2021年高三数学上学期第四次段考试卷理(含解析)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知+是实数,其中i为虚数单位,则实数a等于()A.1B.C.D.2.(5分)如图所示是一个几何体的三视图,则该几何体的体积为()A.2π+8B.8π+8C.4π+8D.6π+83.(5分)运行如图所示的程序框图后,输出的结果是()A.B.C.D.4.(5分)下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0”D.命题“若x=y,则sinx=siny”的逆否命题为真命题5.(5分)已知点A(3,),O为坐标原点,点P(x,y)的坐标x,y满足则向量在向量方向上的投影的取值范围是()A.B.C.D.6.(5分)已知点M是直线3x+4y﹣2=0上的动点,点N为圆(x+1)2+(y+1)2=1上的动点,则|MN|的最小值为()A.B.1 C.D.7.(5分)函数f(x)=cos(ωx+)(x∈R,ω>0)的最小正周期为π,为了得到f(x)的图象,只需将函数g(x)=sin(ωx+)的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度8.(5分)已知椭圆(a>b>0)与双曲线(m>0,n>0)有相同的焦点(﹣c,0)和(c,0),若c是a、m的等比中项,n2是2m2与c2的等差中项,则椭圆的离心率是()A.B.C.D.9.(5分)已知向量,满足,,(λ,μ∈R),若M为AB的中点,并且,则点(λ,μ)在()A.以(,)为圆心,半径为1的圆上B.以(,)为圆心,半径为1的圆上C.以(,)为圆心,半径为1的圆上D.以(,)为圆心,半径为1的圆上10.(5分)函数f(x)是定义在R上的偶函数,且满足f(x+2)=f(x),当x∈时,f(x)=2x,若方程ax﹣a﹣f(x)=0(a>0)恰有三个不相等的实数根,则实数a的取值范围是()A.(,1) B.C.(1,2)D.;②函数g(x)在上是增函数;③对任意a>0,方程f(x)=g(x)在内恒有解;④若存在x1,x2∈,使得f(x1)=g(x2)成立,则实数a的取值范围是.其中所有正确结论的序号是.三、本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.16.(12分)设函数f(x)=sin(ωx﹣)﹣2+1(ω>0).直线与函数y=f(x)图象相邻两交点的距离为π.(Ⅰ)求ω的值;(Ⅱ)在△ABC中,角A、B、C所对的边分别是a、b、c,若点是函数y=f(x)图象的一个对称中心,且b=3,求△ABC外接圆的面积.17.(12分)乒乓球赛规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;(Ⅱ)ξ表示开始第4次发球时乙的得分,求ξ的分布列与数学期望.18.(12分)如图1,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=,D是AP的中点,E,F,G分别为PC、PD、CB的中点,将△PCD沿CD折起,使得PD⊥平面ABCD,如图2.(Ⅰ)求三棱椎D﹣PAB的体积;(Ⅱ)求证:AP∥平面EFG;(Ⅲ)求二面角G﹣EF﹣D的大小.19.(13分)已知函数f(x)=ln(e x+a)(a为常数)是实数集R上的奇函数,函数g(x)=λf(x)+sinx是区间上的减函数.(1)求g(x)在x∈上的最大值;(2)若g(x)≤t2+λt+1对∀x∈及λ∈(﹣∞,﹣1]恒成立,求t的取值范围;(3)讨论关于x的方程=x2﹣2ex+m的根的个数.20.(13分)已知数列{d n}满足d n=n,等比数列{a n}为递增数列,且a52=a10,2(a n+a n+2)=5a n+1,n∈N*.(Ⅰ)求a n;(Ⅱ)令c n=1﹣(﹣1)n a n,不等式c k≥xx(1≤k≤100,k∈N*)的解集为M,求所有d k+a k (k∈M)的和.21.(13分)如图,已知椭圆=1(a>b>0)的离心率为,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为4(+1),一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明k1•k2=1;(Ⅲ)(此小题仅理科做)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.安徽省合肥八中xx届高三上学期第四次段考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知+是实数,其中i为虚数单位,则实数a等于()A.1 B.C.D.考点:复数的基本概念.专题:数系的扩充和复数.分析:直接由复数代数形式的除法运算化简+为a+bi(a、b∈R)的形式,再由已知复数是实数,得出虚部等于0,即可求出a的值.解答:解:+==,∵+是实数,∴,则a=1.故选:A.点评:本题考查了复数代数形式的除法运算,考查了复数的基本概念,是基础题.2.(5分)如图所示是一个几何体的三视图,则该几何体的体积为()A.2π+8B.8π+8C.4π+8D.6π+8考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:根据几何体的三视图,得出该几何体的结构特征,从而求出它的体积是多少.解答:解:根据几何体的三视图,得;该几何体底部为四棱柱,上部为平放的两个半圆柱的组合体,该几何体的体积为V几何体=V底部+V上部=2×(2+2)×1+π•12×2=8+2π.故选:A.点评:本题考查了几何体的三视图的应用问题,解题时根据几何体的三视图,得出该几何体是什么图形,从而解答问题.3.(5分)运行如图所示的程序框图后,输出的结果是()A.B.C.D.考点:程序框图.专题:算法和程序框图.分析:执行程序框图,依次写出每次循环得到的i,n,m的值,当i=4时不满足条件i <4,退出循环,输出n的值为.解答:解:执行程序框图,有i=1,m=0,n=0满足条件i<4,i=2,m=1,n=满足条件i<4,i=3,m=2,n=满足条件i<4,i=4,m=3,n=+=不满足条件i<4,退出循环,输出n的值为.故选:C.点评:本题主要考察了程序框图和算法,属于基本知识的考查.4.(5分)下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0”D.命题“若x=y,则sinx=siny”的逆否命题为真命题考点:命题的否定;必要条件、充分条件与充要条件的判断.分析:对于A:因为否命题是条件和结果都做否定,即“若x2≠1,则x≠1”,故错误.对于B:因为x=﹣1⇒x2﹣5x﹣6=0,应为充分条件,故错误.对于C:因为命题的否定形式只否定结果,应为∀x∈R,均有x2+x+1≥0.故错误.由排除法即可得到答案.解答:解:对于A:命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”.因为否命题应为“若x2≠1,则x≠1”,故错误.对于B:“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件.因为x=﹣1⇒x2﹣5x﹣6=0,应为充分条件,故错误.对于C:命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0”.因为命题的否定应为∀x∈R,均有x2+x+1≥0.故错误.由排除法得到D正确.故答案选择D.点评:此题主要考查命题的否定形式,以及必要条件、充分条件与充要条件的判断,对于命题的否命题和否定形式要注意区分,是易错点.5.(5分)已知点A(3,),O为坐标原点,点P(x,y)的坐标x,y满足则向量在向量方向上的投影的取值范围是()A.B.C.D.考点:平面向量数量积的含义与物理意义;简单线性规划的应用.专题:计算题;数形结合.分析:由题意由于O为坐标原点,点P(x,y)的坐标x,y满足,画出可行域,在利用.解答:解:画出可行域为:有图可知.故选A点评:此题考查了有不等式組准确画出可行域,还考查了一个向量在另外一个向量上的投影的概念及向量夹角的概念.6.(5分)已知点M是直线3x+4y﹣2=0上的动点,点N为圆(x+1)2+(y+1)2=1上的动点,则|MN|的最小值为()A.B.1 C.D.考点:直线与圆的位置关系.专题:解三角形.分析:求出圆心到直线的距离d,由d﹣r即可求出|MN|的最小值.解答:解:∵圆心(﹣1,﹣1)到直线3x+4y﹣2=0的距离d==,r=1,∴|MN|min=d﹣r=﹣1=.故选C.点评:此题考查了直线与圆相交的性质,涉及的知识有:圆的标准方程,点到直线的距离公式,根据题意得出d﹣r为|MN|最小值是解本题的关键.7.(5分)函数f(x)=cos(ωx+)(x∈R,ω>0)的最小正周期为π,为了得到f(x)的图象,只需将函数g(x)=sin(ωx+)的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:先由周期求得ω,再利用诱导公式、函数y=Acos(ωx+φ)的图象变换规律,可得结论.解答:解:由于函数f(x)=cos(ωx+)(x∈R,ω>0)的最小正周期为π=,∴ω=2,f(x)=cos(2x+),故g(x)=sin(ωx+)=sin(2x+)=cos(2x+﹣)=cos(2x﹣).把函数g(x)=cos(2x﹣)的图象向左平移个单位长度,可得y=cos=cos(2x+)=f(x)的图象,故选:C.点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,诱导公式、余弦函数的周期性,属于基础题.8.(5分)已知椭圆(a>b>0)与双曲线(m>0,n>0)有相同的焦点(﹣c,0)和(c,0),若c是a、m的等比中项,n2是2m2与c2的等差中项,则椭圆的离心率是()A.B.C.D.考点:椭圆的简单性质;等差数列的性质;等比数列的性质;圆锥曲线的共同特征.专题:计算题;压轴题.分析:根据是a、m的等比中项可得c2=am,根据椭圆与双曲线有相同的焦点可得a2﹣b2=m2+n2=c2,根据n2是2m2与c2的等差中项可得2n2=2m2+c2,联立方程即可求得a和c的关系,进而求得离心率e.解答:解:由题意:∴,∴,∴a2=4c2,∴.故选D.点评:本题主要考查了椭圆的性质,属基础题.9.(5分)已知向量,满足,,(λ,μ∈R),若M为AB的中点,并且,则点(λ,μ)在()A.以(,)为圆心,半径为1的圆上B.以(,)为圆心,半径为1的圆上C.以(,)为圆心,半径为1的圆上D.以(,)为圆心,半径为1的圆上考点:平面向量的正交分解及坐标表示;向量的模.专题:计算题.分析:由题意分别以OA、OB所在直线为x、y轴建立平面直角坐标系,则点M(,),C(λ,μ),故此题为求C点的轨迹问题,由知C点轨迹是以M(,)为圆心,以1为半径的圆.解答:解:分别以OA、OB所在直线为x、y轴建立平面直角坐标系,则点M(,).由得C(λ,μ)点的轨迹为以M(,)为圆心,以1为半径的圆故选D点评:本题考查向量的坐标运算、向量的模的含义及求轨迹问题.10.(5分)函数f(x)是定义在R上的偶函数,且满足f(x+2)=f(x),当x∈时,f(x)=2x,若方程ax﹣a﹣f(x)=0(a>0)恰有三个不相等的实数根,则实数a的取值范围是()A.(,1) B.C.(1,2)D.∴ax2+bx+c≥2ax+b恒成立,即ax2+(b﹣2a)x+(c﹣b)≥0恒成立,故△=(b﹣2a)2﹣4a(c﹣b)=b2+4a2﹣4ac≤0,且a>0,即b2≤4ac﹣4a2,∴4ac﹣4a2>0,∴c>a>0,∴,故≤===≤=2﹣2,故答案为:2﹣2点评:本题考查的知识点是二次函数的性质,导函数,恒成立问题,最值,基本不等式,是函数方程不等式导数的综合应用,难度大.15.(5分)已知函数f(x)=g(x)=asin(x+)﹣2a+2(a>0),给出下列结论:结论:①函数f(x)的值域为;②函数g(x)在上是增函数;③对任意a>0,方程f(x)=g(x)在内恒有解;④若存在x1,x2∈,使得f(x1)=g(x2)成立,则实数a的取值范围是.其中所有正确结论的序号是①②④.考点:分段函数的应用.专题:阅读型;函数的性质及应用.分析:求得f(x)的各段的值域,再求并集,即可判断①;化简g(x),判断g(x)的单调性即可判断②;求出g(x)在的值域,求出方程f(x)=g(x)在内无解的a的范围,即可判断③;由③得,有解的条件为:g(x)的最小值不大于f(x)的最大值且g(x)的最大值不小于f(x)的最小值,解出a的范围,即可判断④.解答:解:当x∈时,f(x)=﹣x是递减函数,则f(x)∈,当x∈(,1]时,f(x)==2(x+2)+﹣8,f′(x)=2﹣>0,则f(x)在(,1]上递增,则f(x)∈(,].则x∈时,f(x)∈,故①正确;当x∈时,g(x)=asin(x+)﹣2a+2(a>0)=﹣acosx﹣2a+2,由a>0,0≤x≤,则g(x)在上是递增函数,故②正确;由②知,a>0,x∈时g(x)∈,若2﹣3a>或2﹣<0,即0<a<或a>,方程f(x)=g(x)在内无解,故③错;故存在x1,x2∈,使得f(x1)=g(x2)成立,则解得≤a≤.故④正确.故答案为:①②④.点评:本题考查分段函数的运用,考查函数的值域和单调性及运用,考查存在性命题成立的条件,转化为最值之间的关系,属于易错题和中档题.三、本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.16.(12分)设函数f(x)=sin(ωx﹣)﹣2+1(ω>0).直线与函数y=f(x)图象相邻两交点的距离为π.(Ⅰ)求ω的值;(Ⅱ)在△ABC中,角A、B、C所对的边分别是a、b、c,若点是函数y=f(x)图象的一个对称中心,且b=3,求△ABC外接圆的面积.考点:正弦定理;三角函数中的恒等变换应用;正弦函数的奇偶性.专题:计算题;综合题.分析:(I)将函数表达式展开,再用辅助角公式合并,可得f(x)=,结合题意知它的周期是π,利用三角函数的周期公式,可得ω=2.(II)因为点是函数图象的一个对称中心,所以f()=0,结合三角形内角的范围,可得B=,最后用正弦定理可以算出外接圆半径R,从而得到△ABC外接圆的面积.解答:解:(Ⅰ)==…(4分)∴函数的最大值为∵直线与函数y=f(x)图象相邻两交点的距离为π∴,得ω=2…(6分)(Ⅱ)由(I),得∵点是函数y=f(x)图象的一个对称中心∴f()==0,可得,即因为0<B<π,所以取k=0,得…(9分)根据正弦定理,得△ABC外接圆直径,所以,∴△ABC外接圆的面积S=πR2=3π …(12分)点评:本题着重考查了两角差的正弦公式、三角函数的降次公式、三角函数的图象与性质和正弦定理等知识,属于中档题,是一道不错的综合题.17.(12分)乒乓球赛规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;(Ⅱ)ξ表示开始第4次发球时乙的得分,求ξ的分布列与数学期望.考点:离散型随机变量及其分布列;离散型随机变量的期望与方差.专题:概率与统计.分析:(1)记A i为事件“第i次发球,甲胜”,i=1,2,3,则P(A1)=P(A2)=,P(A3)=.“开始第4次发球时,甲、乙的比分为1比2”为事件+A2+,由此能求出开始第4次发球时,甲、乙的比分为1比2的概率.(2)由题意ξ=0,1,2,3.分别求出P(ξ=0),P(ξ=1),P(ξ=2),P(ξ=3),由此能求出Eξ.解答:解:(1)记A i为事件“第i次发球,甲胜”,i=1,2,3,则P(A1)=P(A2)=,P(A3)=.“开始第4次发球时,甲、乙的比分为1比2”为事件+A2+,其概率为P(+A2+)=2×××+××=,即开始第4次发球时,甲、乙的比分为1比2的概率为.…(6分)(2)由题意ξ=0,1,2,3.P(ξ=0)=××=,P(ξ=1)=2×××+()3=,P(ξ=2)=2×××+××=,P(ξ=3)==,∴ξ的分布列为:ξ 0 1 2 3P所以Eξ=0×+1×+2×+3×=.…(12分)点评:本题考查离散型随机变量的分布列和数学期望,是历年xx届高考的必考题型.解题时要认真审题,仔细解答,注意概率知识的合理运用.18.(12分)如图1,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=,D是AP的中点,E,F,G分别为PC、PD、CB的中点,将△PCD沿CD折起,使得PD⊥平面ABCD,如图2.(Ⅰ)求三棱椎D﹣PAB的体积;(Ⅱ)求证:AP∥平面EFG;(Ⅲ)求二面角G﹣EF﹣D的大小.考点:用空间向量求平面间的夹角;棱柱、棱锥、棱台的体积;直线与平面平行的判定.专题:计算题.分析:(Ⅰ)根据要求的三棱锥的体积与已知底面和高的三棱锥的体积相等,写出体积的表示式,得到结果.(Ⅱ)建立坐标系,写出要用的点的坐标,进而写出向量,设出平面的法向量,求出法向量,根据法向量与直线的方向向量垂直,得到线面平行.(Ⅲ)两个平面的法向量一个已经求出,另一个在图形中存在,这样根据两个平面的法向量所成的角,得到两个平面的二面角.解答:解:(Ⅰ).(Ⅱ)证明:如图以D为原点,以为方向向量建立空间直角坐标系D﹣xyz.则有关点及向量的坐标为:设平面EFG的法向量为∴.取.∵,∴,又AP⊄平面EFG.∴AP∥平面EFG(Ⅲ)由已知底面ABCD是正方形∴AD⊥DC,又∵PD⊥面ABCD∴AD⊥PD又PD∩CD=D∴AD⊥平面PCD,∴向量是平面PCD的一个法向量,=(2,0,0)平面EFG的法向量为∴.结合图知二面角G﹣EF﹣D的平面角为450.点评:本题考查立体几何的综合题目,本题解题的关键是建立坐标系,把一些理论性的证明转化成运算,降低了题目的难度.19.(13分)已知函数f(x)=ln(e x+a)(a为常数)是实数集R上的奇函数,函数g(x)=λf(x)+sinx是区间上的减函数.(1)求g(x)在x∈上的最大值;(2)若g(x)≤t2+λt+1对∀x∈及λ∈(﹣∞,﹣1]恒成立,求t的取值范围;(3)讨论关于x的方程=x2﹣2ex+m的根的个数.考点:根的存在性及根的个数判断;函数单调性的性质;函数的最值及其几何意义;奇函数;函数恒成立问题.专题:计算题;压轴题;数形结合.分析:(1)先利用f(x)是实数集R上的奇函数求出a,再利用g(x)=λf(x)+sinx 是区间上的减函数求出g(﹣1)即可.(2)利用(1)的结论把问题转化为(t+1)λ+t2+sin1+1≥0在λ∈(﹣∞,﹣1]恒成立,再利用图形找到t满足的条件即可.(3)把研究根的个数问题转化为两个函数图象的交点问题,借助于图形可得结论.解答:解:(1)∵函数f(x)=ln(e x+a)(a为常数)是实数集R上的奇函数,∴f(0)=ln(e0+a)=0,∴e0+a=1.∴a=0.又∵g(x)在上单调递减,∴g(x)max=g(﹣1)=﹣λ﹣sin1.(2)只需﹣λ﹣sin1≤t2+λt+1在λ∈(﹣∞,﹣1]上恒成立,∴(t+1)λ+t2+sin1+1≥0在λ∈(﹣∞,﹣1]恒成立.令h(λ)=(t+1)λ+t2+sin1+1(λ≤﹣1),则∴而t2﹣t+sin1≥0恒成立,∴t≤﹣1.(3)由(1)知f(x)=x,∴方程为,令,∵,当x∈(0,e)时,f′1(x)≥0,f1(x)在x∈(0,e]上为增函数;x∈专题:圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.分析:(Ⅰ)由题意知,椭圆离心率为=,及椭圆的定义得到又2a+2c=,解方程组即可求得椭圆的方程,等轴双曲线的顶点是该椭圆的焦点可求得该双曲线的方程;(Ⅱ)设点P(x0,y0),根据斜率公式求得k1、k2,把点P(x0,y0)在双曲线上,即可证明结果;(Ⅲ)设直线AB的方程为y=k(x+2),则可求出直线CD的方程为y=(x﹣2),联立直线和椭圆方程,利用韦达定理,即可求得|AB|,|CD|,代入|AB|+|CD|=λ|AB|•|CD|,求得λ的值.解答:解:(Ⅰ)由题意知,椭圆离心率为=,得,又2a+2c=,所以可解得,c=2,所以b2=a2﹣c2=4,所以椭圆的标准方程为;所以椭圆的焦点坐标为(±2,0),因为双曲线为等轴双曲线,且顶点是该椭圆的焦点,所以该双曲线的标准方程为.(Ⅱ)设点P(x0,y0),则k1=,k2=,∴k1•k2==,又点P(x0,y0)在双曲线上,∴,即y02=x02﹣4,∴k1•k2==1.(Ⅲ)假设存在常数λ,使得得|AB|+|CD|=λ|AB|•|CD|恒成立,则由(II)知k1•k2=1,∴设直线AB的方程为y=k(x+2),则直线CD的方程为y=(x﹣2),由方程组消y得:(2k2+1)x2+8k2x+8k2﹣8=0,设A(x1,y1),B(x2,y2),则由韦达定理得,,∴AB==,同理可得CD===,∵|AB|+|CD|=λ|AB|•|CD|,∴λ==﹣==,∴存在常数λ=,使得|AB|+|CD|=λ|AB|•|CD|恒成立.点评:本题考查了椭圆的定义、离心率、椭圆与双曲线的标准方程、直线与圆锥曲线的位置关系,是一道综合性的试题,考查了学生综合运用知识解决问题的能力.其中问题(III)是一个开放性问题,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力.( 30254 762E 瘮39462 9A26 騦^36059 8CDB 賛7R33742 83CE 菎LE29361 72B1 犱G3。
安徽省马鞍山市2021届新高考数学四模试卷含解析
安徽省马鞍山市2021届新高考数学四模试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.正三棱柱111ABC A B C -中,12AA AB =,D 是BC 的中点,则异面直线AD 与1A C 所成的角为( ) A .6πB .4π C .3π D .2π 【答案】C 【解析】 【分析】取11B C 中点E ,连接1A E ,CE ,根据正棱柱的结构性质,得出1A E //AD ,则1CA E ∠即为异面直线AD 与1A C 所成角,求出11tan CECA E A E∠=,即可得出结果. 【详解】解:如图,取11B C 中点E ,连接1A E ,CE ,由于正三棱柱111ABC A B C -,则1BB ⊥底面111A B C , 而1A E ⊂底面111A B C ,所以11BB A E ⊥, 由正三棱柱的性质可知,111A B C △为等边三角形, 所以111A E B C ⊥,且111A E B C E =I , 所以1A E ⊥平面11BB C C ,而EC ⊂平面11BB C C ,则1A E ⊥EC , 则1A E //AD ,190A EC ∠=︒,∴1CA E ∠即为异面直线AD 与1A C 所成角, 设2AB =,则122AA =13A E =,3CE =, 则11tan 33CE CA E A E ∠===∴13πCA E ∠=. 故选:C. 【点睛】本题考查通过几何法求异面直线的夹角,考查计算能力.2.设a ,b 都是不等于1的正数,则“22a b log log <”是“222a b >>”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】根据对数函数以及指数函数的性质求解a,b 的范围,再利用充分必要条件的定义判断即可. 【详解】由“l 22og log a b <”,得2211log log a b<,得22log 0log 0a b <⎧⎨>⎩或220log a log b >>或220log a log b >>,即011a b <<⎧⎨>⎩或1a b >>或01b a <<<,由222a b >>,得1a b >>,故“22log log a b <”是“222a b >>”的必要不充分条件,故选C . 【点睛】本题考查必要条件、充分条件及充分必要条件的判断方法,考查指数,对数不等式的解法,是基础题. 3.已知随机变量X 的分布列是则()2E X a +=( ) A .53B .73C .72D .236【答案】C 【解析】【分析】利用分布列求出a ,求出期望()E X ,再利用期望的性质可求得结果. 【详解】由分布列的性质可得11123a ++=,得16a =,所以,()11151232363E X =⨯+⨯+⨯=,因此,()()11517222266362E X a E X E X ⎛⎫+=+=+=⨯+= ⎪⎝⎭. 故选:C. 【点睛】本题考查离散型随机变量的分布列以及期望的求法,是基本知识的考查.4.已知定义在R 上的奇函数()f x 和偶函数()g x 满足()()2x x f x g x a a -+=-+(0a >且1a ≠),若(2)g a =,则函数()22f x x +的单调递增区间为( )A .(1,1)-B .(,1)-∞C .(1,)+∞D .(1,)-+∞【答案】D 【解析】 【分析】根据函数的奇偶性用方程法求出(),()f x g x 的解析式,进而求出a ,再根据复合函数的单调性,即可求出结论. 【详解】依题意有()()2xxf xg x a a-+=-+, ①()()2()()--+-=-+=-+x x f x g x a a f x g x , ②①-②得(),()2-=-=x x f x a a g x ,又因为(2)g a =,所以2,()22-==-x xa f x ,()f x 在R 上单调递增,所以函数()22f x x +的单调递增区间为(1,)-+∞. 故选:D. 【点睛】本题考查求函数的解析式、函数的性质,要熟记复合函数单调性判断方法,属于中档题.5.某人用随机模拟的方法估计无理数e 的值,做法如下:首先在平面直角坐标系中,过点()1,0A 作x 轴的垂线与曲线xy e =相交于点B ,过B 作y 轴的垂线与y 轴相交于点C (如图),然后向矩形OABC 内投入M 粒豆子,并统计出这些豆子在曲线xy e =上方的有N 粒()N M <,则无理数e 的估计值是( )A .NM N-B .MM N-C .M NN- D .M N【答案】D 【解析】 【分析】利用定积分计算出矩形OABC 中位于曲线xy e =上方区域的面积,进而利用几何概型的概率公式得出关于e 的等式,解出e 的表达式即可. 【详解】在函数xy e =的解析式中,令1x =,可得y e =,则点()1,B e ,直线BC 的方程为y e =,矩形OABC 中位于曲线xy e =上方区域的面积为()()1101xxS e e dx ex e =-=-=⎰,矩形OABC 的面积为1e e ⨯=, 由几何概型的概率公式得1N M e =,所以,M e N=. 故选:D. 【点睛】本题考查利用随机模拟的思想估算e 的值,考查了几何概型概率公式的应用,同时也考查了利用定积分计算平面区域的面积,考查计算能力,属于中等题.6.已知双曲线C :2222x y a b-=1(a >0,b >0)的焦距为8,一条渐近线方程为3y x =,则C 为( )A .221412x y -=B .221124x y -=C .2211648x y -=D .2214816x y -=【答案】A 【解析】 【分析】 由题意求得c 与ba的值,结合隐含条件列式求得a 2,b 2,则答案可求. 【详解】由题意,2c =8,则c =4,又ba=a 2+b 2=c 2, 解得a 2=4,b 2=12.∴双曲线C 的方程为221412x y -=.故选:A. 【点睛】本题考查双曲线的简单性质,属于基础题. 7.复数12ii--的共轭复数对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】 【分析】 【详解】试题分析:由题意可得:131255i i i -=--. 共轭复数为3155i +,故选A. 考点:1.复数的除法运算;2.以及复平面上的点与复数的关系8.在正方体1111ABCD A B C D -中,点P 、Q 分别为AB 、AD 的中点,过点D 作平面α使1//B P 平面α,1//A Q 平面α若直线11B D ⋂平面M α=,则11MD MB 的值为( ) A .14B .13C .12D .23【答案】B 【解析】 【分析】作出图形,设平面α分别交11A D 、11C D 于点E 、F ,连接DE 、DF 、EF ,取CD 的中点G ,连接PG 、1C G ,连接11A C 交11B D 于点N ,推导出11//B P C G ,由线面平行的性质定理可得出1//C G DF ,可得出点F 为11C D 的中点,同理可得出点E 为11A D 的中点,结合中位线的性质可求得11MD MB 的值.【详解】 如下图所示:设平面α分别交11A D 、11C D 于点E 、F ,连接DE 、DF 、EF ,取CD 的中点G ,连接PG 、1C G ,连接11A C 交11B D 于点N ,Q 四边形ABCD 为正方形,P 、G 分别为AB 、CD 的中点,则//BP CG 且BP CG =,∴四边形BCGP 为平行四边形,//PG BC ∴且PG BC =,11//B C BC Q 且11B C BC =,11//PG B C ∴且11PG B C =,则四边形11B C GP 为平行四边形, 11//B P C G ∴,1//B P Q 平面α,则存在直线a ⊂平面α,使得1//B P a ,若1C G ⊂平面α,则G ∈平面α,又D ∈平面α,则CD ⊂平面α, 此时,平面α为平面11CDD C ,直线1A Q 不可能与平面α平行, 所以,1C G ⊄平面α,1//C G a ∴,1//C G ∴平面α,1C G ⊂Q 平面11CDD C ,平面11CDD C I 平面DF α=,1//DF C G ∴,1//C F DG Q ,所以,四边形1C GDF 为平行四边形,可得1111122C E DG CD C D ===,F ∴为11C D 的中点,同理可证E 为11A D 的中点,11B D EF M =Q I ,11111124MD D N B D ∴==,因此,1113MD MB =. 故选:B. 【点睛】本题考查线段长度比值的计算,涉及线面平行性质的应用,解答的关键就是找出平面α与正方体各棱的交点位置,考查推理能力与计算能力,属于中等题.9.已知曲线24x y =,动点P 在直线3y =-上,过点P 作曲线的两条切线12,l l ,切点分别为,A B ,则直线AB 截圆22650x y y +-+=所得弦长为( ) AB .2C .4D.【答案】C 【解析】 【分析】设221212,,,,(,3)44x x A x B x P t ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,根据导数的几何意义,求出切线斜率,进而得到切线方程,将P 点坐标代入切线方程,抽象出直线AB 方程,且过定点为已知圆的圆心,即可求解. 【详解】圆22650x y y +-+=可化为22(3)4x y +-=.设221212,,,,(,3)44x x A x B x P t ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,则12,l l 的斜率分别为1212,22x xk k ==, 所以12,l l 的方程为()21111:24x x l y x x =-+,即112x y x y =-,()22222:24x x l y x x =-+,即222x y x y =-,由于12,l l 都过点(,3)P t -,所以11223232x t y x t y ⎧-=-⎪⎪⎨⎪-=-⎪⎩,即()()1122,,,A x y B x y 都在直线32xt y -=-上, 所以直线AB 的方程为32xt y -=-,恒过定点(0,3), 即直线AB 过圆心(0,3),则直线AB 截圆22650x y y +-+=所得弦长为4. 故选:C. 【点睛】本题考查直线与圆位置关系、直线与抛物线位置关系,抛物线两切点所在直线求解是解题的关键,属于中档题. 10.复数21iz i=-(i 为虚数单位),则z 等于( )A .3B .C .2 D【答案】D 【解析】 【分析】利用复数代数形式的乘除运算化简z ,从而求得z ,然后直接利用复数模的公式求解. 【详解】()()()()21211111i i iz i i i i i i +===+=-+--+,所以1z i =--,z =, 故选:D. 【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的乘除运算,复数的共轭复数,复数的模,属于基础题目.11.已知数列{}n a 满足()12347324n a a a n a n ++++-=L ,则23342122a a a a a a +++=L ( ) A .58B .34C .54D .52【答案】C 【解析】 【分析】利用()32n n a -的前n 项和求出数列(){}32nn a -的通项公式,可计算出na,然后利用裂项法可求出23342122a a a a a a +++L 的值.【详解】()12347324n a a a n a n ++++-=Q L .当1n =时,14a =;当2n ≥时,由()12347324n a a a n a n ++++-=L , 可得()()1231473541n a a a n a n -++++-⋅=-L ,两式相减,可得()324n n a -=,故432n a n =-,因为14a =也适合上式,所以432n a n =-.依题意,()()12161611313433134n n a a n n n n ++⎛⎫==- ⎪++++⎝⎭,故233421221611111111161153477101013616434644a a a a a a ⎛⎫⎛⎫+++=-+-+-++-=-=⎪ ⎪⎝⎭⎝⎭L L . 故选:C. 【点睛】本题考查利用n S 求n a ,同时也考查了裂项求和法,考查计算能力,属于中等题.12.已知集合{}|,A x x a a R =≤∈,{}|216xB x =<,若A B ,则实数a 的取值范围是( )A .∅B .RC .(],4-∞D .(),4-∞【答案】D 【解析】 【分析】先化简{}{}|216|4xB x x x =<=<,再根据{}|,A x x a a R =≤∈,且A B 求解.【详解】因为{}{}|216|4xB x x x =<=<,又因为{}|,A x x a a R =≤∈,且A B , 所以4a <. 故选:D 【点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。
安徽省马鞍山市2021届新第四次高考模拟考试数学试卷含解析
安徽省马鞍山市2021届新第四次高考模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.等比数列{}n a 的各项均为正数,且384718a a a a +=,则3132310log log log a a a +++=L ( ) A .12 B .10 C .8D .32log 5+【答案】B 【解析】 【分析】由等比数列的性质求得110a a ,再由对数运算法则可得结论. 【详解】∵数列{}n a 是等比数列,∴3847110218a a a a a a +==,1109a a =,∴53132310312103110log log log log ()log ()a a a a a a a a +++==L L 35log 910==.故选:B. 【点睛】本题考查等比数列的性质,考查对数的运算法则,掌握等比数列的性质是解题关键.2.已知()f x 为定义在R 上的奇函数,若当0x ≥时,()2xf x x m =++(m 为实数),则关于x 的不等式()212f x -<-<的解集是( ) A .()0,2 B .()2,2-C .()1,1-D .()1,3【答案】A 【解析】 【分析】先根据奇函数求出m 的值,然后结合单调性求解不等式. 【详解】据题意,得()010f m =+=,得1m =-,所以当0x ≥时,()21xf x x =+-.分析知,函数()f x 在R上为增函数.又()12f =,所以()12f -=-.又()212f x -<-<,所以111x -<-<,所以02x <<,故选A. 【点睛】本题主要考查函数的性质应用,侧重考查数学抽象和数学运算的核心素养.3.定义:{}()()N f x g x ⊗表示不等式()()f x g x <的解集中的整数解之和.若2()|log |f x x =,2()(1)2g x a x =-+,{}()()6N f x g x ⊗=,则实数a 的取值范围是A .(,1]-∞-B .2(log 32,0)-C .2(2log 6,0]-D .2log 32(,0]4- 【答案】D 【解析】 【分析】 【详解】由题意得,{}()()6N f x g x ⊗=表示不等式22|log |(1)2x a x <-+的解集中整数解之和为6.当0a >时,数形结合(如图)得22|log |(1)2x a x <-+的解集中的整数解有无数多个,22|log |(1)2x a x <-+解集中的整数解之和一定大于6.当0a =时,()2g x =,数形结合(如图),由()2f x <解得144x <<.在1(,4)4内有3个整数解,为1,2,3,满足{}()()6N f x g x ⊗=,所以0a =符合题意.当0a <时,作出函数2()|log |f x x =和2()(1)2g x a x =-+的图象,如图所示.若{}()()6N f x g x ⊗=,即22|log |(1)2x a x <-+的整数解只有1,2,3.只需满足(3)(3)(4)(4)f g f g <⎧⎨≥⎩,即2log 342292a a <+⎧⎨≥+⎩,解得2log 3204a -<≤,所以2log 3204a -<<. 综上,当{}()()6N f x g x ⊗=时,实数a 的取值范围是2log 32(,0]4-.故选D.4.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是( )A .3?i ≤B .4?i ≤C .5?i ≤D .6?i ≤【答案】C 【解析】 【分析】根据程序框图的运行,循环算出当31S =时,结束运行,总结分析即可得出答案. 【详解】由题可知,程序框图的运行结果为31, 当1S =时,9i =; 当1910S =+=时,8i =; 当19818S =++=时,7i =; 当198725S =+++=时,6i =; 当1987631S =++++=时,5i =. 此时输出31S =. 故选:C. 【点睛】本题考查根据程序框图的循环结构,已知输出结果求条件框,属于基础题. 5.某三棱锥的三视图如图所示,则该三棱锥的体积为A .23B .43C .2D .83【答案】A 【解析】由给定的三视图可知,该几何体表示一个底面为一个直角三角形,且两直角边分别为1和2,所以底面面积为11212S =⨯⨯= 高为2h =的三棱锥,所以三棱锥的体积为11212333V Sh ==⨯⨯=,故选A .6.设全集U=R ,集合2{|340}A x x x =-->,则U A =ð( ) A .{x|-1 <x<4} B .{x|-4<x<1} C .{x|-1≤x≤4} D .{x|-4≤x≤1}【答案】C 【解析】 【分析】解一元二次不等式求得集合A ,由此求得U A ð 【详解】由()()234410x x x x --=-+>,解得1x <-或4x >.因为{|1A x x =<-或4}x >,所以U {|14}x x A =-≤≤ð. 故选:C 【点睛】本小题主要考查一元二次不等式的解法,考查集合补集的概念和运算,属于基础题. 7.某几何体的三视图如图所示,则该几何体的体积为( )A .23B .13C .43D .56【答案】A 【解析】 【分析】利用已知条件画出几何体的直观图,然后求解几何体的体积. 【详解】几何体的三视图的直观图如图所示,则该几何体的体积为:1211233⨯⨯⨯=. 故选:A . 【点睛】本题考查三视图求解几何体的体积,判断几何体的形状是解题的关键.8.已知函数f (x )=e b ﹣x ﹣e x ﹣b +c (b ,c 均为常数)的图象关于点(2,1)对称,则f (5)+f (﹣1)=( ) A .﹣2 B .﹣1C .2D .4【答案】C 【解析】 【分析】根据对称性即可求出答案. 【详解】解:∵点(5,f (5))与点(﹣1,f (﹣1))满足(5﹣1)÷2=2, 故它们关于点(2,1)对称,所以f (5)+f (﹣1)=2, 故选:C . 【点睛】本题主要考查函数的对称性的应用,属于中档题. 9.231+=-ii ( ) A .15i 22-+ B .1522i -- C .5522i + D .5122i - 【答案】A 【解析】 【分析】分子分母同乘1i +,即根据复数的除法法则求解即可. 【详解】解:23(23)(1)151(1)(1)22i i i i i i i +++==-+--+, 故选:A 【点睛】本题考查复数的除法运算,属于基础题.10.已知双曲线()222210,0x y a b a b-=>>的焦距是虚轴长的2倍,则双曲线的渐近线方程为( )A .3y x =±B .y =C .12y x =±D .2y x =±【答案】A 【解析】 【分析】根据双曲线的焦距是虚轴长的2倍,可得出2c b =,结合22224c b a b ==+,得出223a b =,即可求出双曲线的渐近线方程. 【详解】解:由双曲线()222210,0x y a b a b-=>>可知,焦点在x 轴上,则双曲线的渐近线方程为:by x a=±, 由于焦距是虚轴长的2倍,可得:2c b =, ∴22224c b a b ==+,即:223a b =,b a =,所以双曲线的渐近线方程为:y x =. 故选:A. 【点睛】本题考查双曲线的简单几何性质,以及双曲线的渐近线方程.11.双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,过点F 且与x 轴垂直的直线交两渐近线于,M N 两点,与双曲线的其中一个交点为P ,若(,)OP OM ON R λμλμ=+∈u u u r u u u u r u u u r,且625λμ=,则该双曲线的离心率为( )A .4B .12C .12D .12【答案】D 【解析】 【分析】根据已知得本题首先求出直线与双曲线渐近线的交点,再利用OP OM ON λμ=+u u u r u u u u r u u u r,求出点()()bc P c a λμλμ⎛⎫+- ⎪⎝⎭,,因为点P 在双曲线上,及c e a =,代入整理及得241e λμ=,又已知625λμ=,即可求出离心率. 【详解】由题意可知bc bc M c N c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,,,代入OP OM ON λμ=+u u u r u u u u r u u u r 得:()()bc P c a λμλμ⎛⎫+- ⎪⎝⎭,, 代入双曲线方程22221x y a b -=整理得:241e λμ=,又因为625λμ=,即可得到e =,故选:D . 【点睛】本题主要考查的是双曲线的简单几何性质和向量的坐标运算,离心率问题关键寻求关于a ,b ,c 的方程或不等式,由此计算双曲线的离心率或范围,属于中档题.12.已知向量)a =r,)1b =-r ,则a r 与b r的夹角为( )A .6π B .3π C .23π D .56π 【答案】B 【解析】 【分析】由已知向量的坐标,利用平面向量的夹角公式,直接可求出结果. 【详解】解:由题意得,设a r与b r的夹角为θ,311cos 222a b a bθ⋅-∴===⨯r rr r ,由于向量夹角范围为:0θπ≤≤, ∴π3θ=. 故选:B. 【点睛】本题考查利用平面向量的数量积求两向量的夹角,注意向量夹角的范围. 二、填空题:本题共4小题,每小题5分,共20分。
安徽省马鞍山市2021届新高考四诊数学试题含解析
安徽省马鞍山市2021届新高考四诊数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()()614,7,7x a x x f x a x -⎧-+≤=⎨>⎩是R 上的减函数,当a 最小时,若函数()4y f x kx =--恰有两个零点,则实数k 的取值范围是( ) A .1(,0)2-B .1(2,)2- C .(1,1)- D .1(,1)2【答案】A 【解析】 【分析】首先根据()f x 为R 上的减函数,列出不等式组,求得112a ≤<,所以当a 最小时,12a =,之后将函数零点个数转化为函数图象与直线交点的个数问题,画出图形,数形结合得到结果. 【详解】由于()f x 为R 上的减函数,则有()1001714a a a a ⎧-<⎪<<⎨⎪≤-+⎩,可得112a ≤<, 所以当a 最小时,12a =, 函数()4y f x kx =--恰有两个零点等价于方程()4f x kx =+有两个实根, 等价于函数()y f x =与4y kx =+的图像有两个交点.画出函数()f x 的简图如下,而函数4y kx =+恒过定点()0,4,数形结合可得k 的取值范围为102k -<<.故选:A. 【点睛】该题考查的是有关函数的问题,涉及到的知识点有分段函数在定义域上单调减求参数的取值范围,根据函数零点个数求参数的取值范围,数形结合思想的应用,属于中档题目.2.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”意思为有一个人要走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了六天恰好到达目的地,请问第二天比第四天多走了( ) A .96里 B .72里C .48里D .24里【答案】B 【解析】 【分析】人每天走的路程构成公比为12的等比数列,设此人第一天走的路程为1a ,计算1192a =,代入得到答案. 【详解】由题意可知此人每天走的路程构成公比为12的等比数列,设此人第一天走的路程为1a , 则61112378112a ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=-,解得1192a =,从而可得3241119296,1922422a a ⎛⎫=⨯==⨯= ⎪⎝⎭,故24962472a a -=-=.故选:B . 【点睛】本题考查了等比数列的应用,意在考查学生的计算能力和应用能力. 3.已知函数()22cos sin 4f x x x π⎛⎫=++⎪⎝⎭,则()f x 的最小值为( ) A.12+B .12C.12-D.14-【答案】C 【解析】 【分析】由于()221cos 21cos 22cos sin 422x x f x x x ππ⎛⎫-+ ⎪+⎛⎫⎝⎭=++=+ ⎪⎝⎭ cos 2sin 2122x x=++1224x π⎛⎫=++ ⎪⎝⎭,故其最小值为:1. 故选:C. 【点睛】本题考查利用降幂扩角公式、辅助角公式化简三角函数,以及求三角函数的最值,属综合基础题. 4.集合{}2|30A x x x =-≤,(){}|lg 2B x y x ==-,则A B ⋂=( )A .{}|02x x ≤<B .{}|13x x ≤<C .{}|23x x <≤D .{}|02x x <≤【答案】A 【解析】 【分析】解一元二次不等式化简集合A ,再根据对数的真数大于零化简集合B ,求交集运算即可. 【详解】由230x x -≤可得03x ≤≤,所以{|03}A x x =≤≤,由20x ->可得2x <,所以{|2}B x x =<,所以{|02}A B x x ⋂=≤<,故选A .【点睛】本题主要考查了集合的交集运算,涉及一元二次不等式解法及对数的概念,属于中档题. 5.关于函数()cos cos 2f x x x =+,有下列三个结论:①π是()f x 的一个周期;②()f x 在35,44ππ⎡⎤⎢⎥⎣⎦上单调递增;③()f x 的值域为[]22-,.则上述结论中,正确的个数为() A .0 B .1C .2D .3【答案】B 【解析】 【分析】利用三角函数的性质,逐个判断即可求出.①因为()()f x f x π=+,所以π是()f x 的一个周期,①正确; ②因为()2fπ=,52242f π⎛⎫=< ⎪⎝⎭,所以()f x 在35,44ππ⎡⎤⎢⎥⎣⎦上不单调递增,②错误;③因为()()f x f x -=,所以()f x 是偶函数,又π是()f x 的一个周期,所以可以只考虑0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x 的值域.当0,2x π⎡⎤∈⎢⎥⎣⎦时,[]cos 0,1t x =∈, 22()cos cos 2cos cos22cos cos 121f x x x x x x x t t =+=+=+-=+-221y t t =+-在[]0,1上单调递增,所以[]()1,2f x ∈-,()f x 的值域为[]1,2-,③错误;综上,正确的个数只有一个,故选B . 【点睛】本题主要考查三角函数的性质应用.6.小张家订了一份报纸,送报人可能在早上6:307:30-之间把报送到小张家,小张离开家去工作的时间在早上7.008:00-之间.用A 表示事件:“小张在离开家前能得到报纸”,设送报人到达的时间为x ,小张离开家的时间为y ,(,)x y 看成平面中的点,则用几何概型的公式得到事件A 的概率()P A 等于( )A .58B .25C .35D .78【答案】D 【解析】 【分析】这是几何概型,画出图形,利用面积比即可求解. 【详解】解:事件A 发生,需满足x y ≤,即事件A 应位于五边形BCDEF 内,作图如下:()1111722218P A -⨯⨯==考查几何概型,是基础题.7.当输入的实数[]230x ∈,时,执行如图所示的程序框图,则输出的x 不小于103的概率是( )A .914B .514C .37D .928【答案】A 【解析】 【分析】根据循环结构的运行,直至不满足条件退出循环体,求出x 的范围,利用几何概型概率公式,即可求出结论. 【详解】程序框图共运行3次,输出的x 的范围是[]23247,, 所以输出的x 不小于103的概率为24710314492472322414-==-.故选:A. 【点睛】本题考查循环结构输出结果、几何概型的概率,模拟程序运行是解题的关键,属于基础题.8.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥则“αβ⊥”是“a b ⊥”的( ) A .充分不必要条件 B .必要不充分条件【解析】 【分析】 【详解】试题分析:α⊥β, b ⊥m 又直线a 在平面α内,所以a ⊥b ,但直线不一定相交,所以“α⊥β”是“a ⊥b”的充分不必要条件,故选A. 考点:充分条件、必要条件.9.点O 为ABC ∆的三条中线的交点,且OA OB ⊥,2AB =,则AC BC ⋅u u u r u u u r的值为( ) A .4 B .8C .6D .12【答案】B 【解析】 【分析】可画出图形,根据条件可得2323AC BC AO BC AC BO ⎧-=⎨-=⎩u u u v u u u v u u u v u u uv u u u v u u u v ,从而可解出22AC AO BOBC BO AO⎧=+⎨=+⎩u u u v u u u v u u u vu u u v u u u v u u u v ,然后根据OA OB ⊥,2AB =进行数量积的运算即可求出()()282AO BO BO AO AC BC ⋅=⋅++=u u u r u u u r u u u r u u u u u u r u u u rr .【详解】 如图:点O 为ABC ∆的三条中线的交点11()(2)33AO AB AC AC BC ∴=+=-u u u r u u u r u u u r u u u r u u u r ,11()(2)33BO BA BC BC AC =+=-u u u r u u u r u u u r u u u r u u u r∴由2323AC BC AO BC AC BO ⎧-=⎨-=⎩u u u v u u u v u u u v u u u v u u u v u u u v 可得:22AC AO BO BC BO AO⎧=+⎨=+⎩u u u v u u u v u u u v u u u v u u u v u u u v ,又因OA OB ⊥,2AB =,222(2)(2)2228AC BC AO BO BO AO AO BO AB ∴⋅=+⋅+=+==u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .本题考查三角形重心的定义及性质,向量加法的平行四边形法则,向量加法、减法和数乘的几何意义,向量的数乘运算及向量的数量积的运算,考查运算求解能力,属于中档题.10.在三棱锥P ABC -中,AB BP ⊥,AC PC ⊥,AB AC ⊥,22PB PC ==,点P 到底面ABC 的距离为2,则三棱锥P ABC -外接球的表面积为( ) A .3π B .32π C .12πD .24π【答案】C 【解析】 【分析】首先根据垂直关系可确定OP OA OB OC ===,由此可知O 为三棱锥外接球的球心,在PAB ∆中,可以算出AP 的一个表达式,在OAG ∆中,可以计算出AO 的一个表达式,根据长度关系可构造等式求得半径,进而求出球的表面积. 【详解】取AP 中点O ,由AB BP ⊥,AC PC ⊥可知:OP OA OB OC ===,O ∴为三棱锥P ABC -外接球球心,过P 作PH ⊥平面ABC ,交平面ABC 于H ,连接AH 交BC 于G ,连接OG ,HB ,HC ,PB PC =Q ,HB HC ∴=,AB AC ∴=,G ∴为BC 的中点由球的性质可知:OG ⊥平面ABC ,OG//PH ∴,且112OG PH ==. 设AB x =,22PB =Q 211822AO PA x ∴==+ 1222AG BC x ==Q ,∴在OAG ∆中,222AG OG OA +=, 即22221182x ⎫+=+⎪⎪⎝⎭,解得:2x =, ∴三棱锥P ABC -的外接球的半径为:()()2221122422322x AO +=+==,【点睛】本题考查三棱锥外接球的表面积的求解问题,求解几何体外接球相关问题的关键是能够利用球的性质确定外接球球心的位置.11.如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且2AE EO =u u u v u u u v,则ED =u u u v( )A .1233AD AB -u u uv u u u vB .2133AD AB +u u uv u u u vC .2133AD AB -u u uv u u u vD .1233AD AB +u u uv u u u v【答案】C 【解析】 【分析】画出图形,以,?AB AD u u u v u u u v 为基底将向量ED u u u v进行分解后可得结果.【详解】画出图形,如下图.选取,?AB AD u u u v u u u v 为基底,则()211333AE AO AC AB AD ===+u u u v u u u v u u u v u u u v u u u v ,∴()121 333ED AD AE AD AB AD AD AB u u u v u u u v u u u v u u u v u u u v u u u v u u uv u u u v =-=-+=-. 故选C . 【点睛】应用平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面的一组基底,基底可以有无穷多组,在解决具体问题时,合理选择基底会给解题带来方便.12.设α为锐角,若3cos 45πα⎛⎫+= ⎪⎝⎭,则sin 2α的值为( ) A .1725B . 725-C . 1725-D .725【答案】D 【解析】 【分析】用诱导公式和二倍角公式计算. 【详解】2237sin 2cos(2)cos 2()[2cos ()1][2()1]244525ππααααπ=-+=-+=-+-=-⨯-=.故选:D . 【点睛】本题考查诱导公式、余弦的二倍角公式,解题关键是找出已知角和未知角之间的联系. 二、填空题:本题共4小题,每小题5分,共20分。
安徽省马鞍山市2021届新高考数学仿真第四次备考试题含解析
安徽省马鞍山市2021届新高考数学仿真第四次备考试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知x,y 满足不等式组2202100x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,则点(),P x y 所在区域的面积是( )A .1B .2C .54D .45【答案】C 【解析】 【分析】画出不等式表示的平面区域,计算面积即可. 【详解】不等式表示的平面区域如图:直线220x y +-=的斜率为2-,直线21x y --的斜率为12,所以两直线垂直,故BCD ∆为直角三角形,易得(1,0)B ,1(0,)2D -,(0,2)C ,5BD =,5BC =11555224BCD S BD BC ∆=⋅==. 故选:C. 【点睛】本题考查不等式组表示的平面区域面积的求法,考查数形结合思想和运算能力,属于常考题. 2.在正项等比数列{a n }中,a 5-a 1=15,a 4-a 2 =6,则a 3=( ) A .2B .4C .12D .8【答案】B 【解析】 【分析】根据题意得到4511115a a a q a -=-=,342116a a a q a q -=-=,解得答案.【详解】4511115a a a q a -=-=,342116a a a q a q -=-=,解得112a q =⎧⎨=⎩或11612a q =-⎧⎪⎨=⎪⎩(舍去).故2314a a q ==.故选:B . 【点睛】本题考查了等比数列的计算,意在考查学生的计算能力.3.已知[]2240a b a b +=⋅∈-r r r r ,,,则a r的取值范围是( ) A .[0,1] B .112⎡⎤⎢⎥⎣⎦,C .[1,2]D .[0,2]【答案】D 【解析】 【分析】设2m a b =+r r r ,可得[]2240a b a m a ⋅=⋅-∈-r r r r r ,,构造(14a m -r r )2≤22116m +r ,结合2m =r ,可得113422a m ⎡⎤-∈⎢⎥⎣⎦r r ,,根据向量减法的模长不等式可得解.【详解】设2m a b =+r r r,则2m =r,[]22240b m a a b a m a =-⋅=⋅-∈-r r r r r r r r,,,∴(14a m -rr )2212a a =-r r •2116m m +≤r r 22116m +r|m r |2m r =2=4,所以可得:2182m =r,配方可得222111192()428482m a m m =≤-≤+=r r rr , 所以113422a m ⎡⎤-∈⎢⎥⎣⎦r r ,,又111||||||||||||444a m a m a m -≤-≤+rr r r rr 则a ∈r[0,2]. 故选:D . 【点睛】本题考查了向量的运算综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.4.已知双曲线C :22221x y a b-=()0,0a b >>的左右焦点分别为1F ,2F ,P 为双曲线C 上一点,Q 为双曲线C 渐近线上一点,P ,Q 均位于第一象限,且22QP PF =u u u u v u u u v ,120QF QF ⋅=u u u u vu u u v ,则双曲线C 的离心率为( )A 1B .1C 2D 2【答案】D 【解析】由双曲线的方程22221x y a b-=的左右焦点分别为12,F F ,P 为双曲线C 上的一点,Q 为双曲线C 的渐近线上的一点,且,P Q 都位于第一象限,且2122,0QP PF QF QF =⋅=u u u u v u u u u vu u u v u u u v , 可知P 为2QF 的三等分点,且12QF QF ⊥u u u ru u u u r,点Q 在直线0bx ay -=上,并且OQ c =,则(,)Q a b ,2(,0)F c , 设11(,)P x y ,则11112(,)(,)x a y b c x y --=--, 解得1122,33a c b x y +==,即22(,)33a c bP +,代入双曲线的方程可得22(2)1144a c a +-=,解得2c e a ==,故选D . 点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).5.如图,正方体的底面与正四面体的底面在同一平面α上,且//AB CD ,若正方体的六个面所在的平面与直线CE EF ,相交的平面个数分别记为m n ,,则下列结论正确的是( )A .m n =B .2m n =+C .m n <D .8m n +<【答案】A 【解析】 【分析】根据题意,画出几何位置图形,由图形的位置关系分别求得,m n 的值,即可比较各选项. 【详解】如下图所示,CE ⊂平面ABPQ ,从而//CE 平面1111A B PQ ,易知CE 与正方体的其余四个面所在平面均相交, ∴4m =,∵//EF 平面11BPPB ,//EF 平面11AQQ A ,且EF 与正方体的其余四个面所在平面均相交, ∴4n =,∴结合四个选项可知,只有m n =正确. 故选:A. 【点睛】本题考查了空间几何体中直线与平面位置关系的判断与综合应用,对空间想象能力要求较高,属于中档题. 6.双曲线﹣y 2=1的渐近线方程是( )A .x±2y=0B .2x±y=0C .4x±y=0D .x±4y=0【答案】A 【解析】试题分析:渐近线方程是﹣y 2=1,整理后就得到双曲线的渐近线.解:双曲线 其渐近线方程是﹣y 2=1整理得x±2y=1.故选A .点评:本题考查了双曲线的渐进方程,把双曲线的标准方程中的“1”转化成“1”即可求出渐进方程.属于基础题.7.已知命题:0p x ∀>,ln(1)0x +>;命题:q 若a b >,则22a b >,下列命题为真命题的是( ) A .p q ∧ B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝【答案】B 【解析】解:命题p :∀x >0,ln (x+1)>0,则命题p 为真命题,则¬p 为假命题; 取a=﹣1,b=﹣2,a >b ,但a 2<b 2,则命题q 是假命题,则¬q 是真命题. ∴p ∧q 是假命题,p ∧¬q 是真命题,¬p ∧q 是假命题,¬p ∧¬q 是假命题. 故选B .8.已知平面ABCD ⊥平面,,ADEF AB AD CD AD ⊥⊥,且3,6,AB AD CD ADEF ===是正方形,在正方形ADEF 内部有一点M ,满足,MB MC 与平面ADEF 所成的角相等,则点M 的轨迹长度为( ) A .43B .16C .43π D .8π【答案】C 【解析】 【分析】根据,MB MC 与平面ADEF 所成的角相等,判断出2MD AM =,建立平面直角坐标系,求得M 点的轨迹方程,由此求得点M 的轨迹长度. 【详解】由于平面ABCD ⊥平面ADEF ,且交线为AD ,,AB AD CD AD ⊥⊥,所以AB ⊥平面ADEF ,CD ⊥平面ADEF .所以BMA ∠和CMD ∠分别是直线,MB MC 与平面ADEF 所成的角,所以BMA CMD ∠=∠,所以tan tan BMA CMD ∠=∠,即AB CDAM MD=,所以2MD AM =.以A 为原点建立平面直角坐标系如下图所示,则()0,0A ,()6,0D ,设(),M x y (点M 在第一象限内),由2MD AM =得224MD AM =,即()()222264x y x y-+=+,化简得()22224x y ++=,由于点M 在第一象限内,所以M 点的轨迹是以()2,0G-为圆心,半径为4的圆在第一象限的部分.令0x =代入原的方程,解得y =±,故(H ,由于2GA =,所以3HGA π∠=,所以点M 的轨迹长度为4433ππ⨯=. 故选:C【点睛】本小题主要考查线面角的概念和运用,考查动点轨迹方程的求法,考查空间想象能力和逻辑推理能力,考查数形结合的数学思想方法,属于难题.9.3本不同的语文书,2本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率是( ) A .12B .14C .15D .110【答案】D 【解析】 【分析】把5本书编号,然后用列举法列出所有基本事件.计数后可求得概率. 【详解】3本不同的语文书编号为,,A B C ,2本不同的数学书编号为,a b ,从中任意取出2本,所有的可能为:,,,,,,,,,AB AC Aa Ab BC Ba Bb Ca Cb ab 共10个,恰好都是数学书的只有ab 一种,∴所求概率为110P =. 故选:D. 【点睛】本题考查古典概型,解题方法是列举法,用列举法写出所有的基本事件,然后计数计算概率. 10.设等差数列{}n a 的前n 项和为n S ,且80S =,33a =-,则9S =( ) A .9 B .12C .15-D .18-【答案】A 【解析】 【分析】由80S =,33a =-可得1,a d 以及9a ,而989S S a =+,代入即可得到答案.【详解】设公差为d ,则1123,8780,2a d a d +=-⎧⎪⎨⨯+=⎪⎩解得17,2,a d =-⎧⎨=⎩ 9189a a d =+=,所以9899S S a =+=.故选:A. 【点睛】本题考查等差数列基本量的计算,考查学生运算求解能力,是一道基础题.11.已知函数()2943,02log 9,0x x x f x x x ⎧+≤=⎨+->⎩,则函数()()y f f x =的零点所在区间为( ) A .73,2⎛⎫ ⎪⎝⎭B .()1,0-C .7,42⎛⎫ ⎪⎝⎭D .()4,5【答案】A 【解析】 【分析】首先求得0x ≤时,()f x 的取值范围.然后求得0x >时,()f x 的单调性和零点,令()()0ff x =,根据“0x ≤时,()f x 的取值范围”得到()32log 93xf x x =+-=,利用零点存在性定理,求得函数()()y f f x =的零点所在区间.【详解】当0x ≤时,()34f x <≤.当0x ≥时,()2932log 92log 9xxx f x x =+-=+-为增函数,且()30f =,则3x =是()f x 唯一零点.由于“当0x ≤时,()34f x <≤.”,所以 令()()0ff x =,得()32log 93xf x x =+-=,因为()303f =<,3377log 98 1.414log 39 3.312322f ⎛⎫=->⨯+-=> ⎪⎝⎭,所以函数()()y f f x =的零点所在区间为73,2⎛⎫⎪⎝⎭. 故选:A 【点睛】本小题主要考查分段函数的性质,考查符合函数零点,考查零点存在性定理,考查函数的单调性,考查化归与转化的数学思想方法,属于中档题.12.《九章算术》勾股章有一“引葭赴岸”问题“今有饼池径丈,葭生其中,出水两尺,引葭赴岸,适与岸齐,问水深,葭各几何?”,其意思是:有一个直径为一丈的圆柱形水池,池中心生有一颗类似芦苇的植物,露出水面两尺,若把它引向岸边,正好与岸边齐,问水有多深,该植物有多高?其中一丈等于十尺,如图若从该葭上随机取一点,则该点取自水下的概率为( )A .1213B .1314C .2129D .1415【答案】C 【解析】 【分析】由题意知:2BC =,'5B C =,设AC x =,则2AB AB x '==+,在Rt ACB 'V 中,列勾股方程可解得x ,然后由P 2xx =+得出答案. 【详解】解:由题意知:2BC =,'5B C =,设AC x =,则2AB AB x '==+ 在Rt ACB 'V 中,列勾股方程得:()22252x x +=+,解得214x =所以从该葭上随机取一点,则该点取自水下的概率为21214P 2122924x x ===++ 故选C. 【点睛】本题考查了几何概型中的长度型,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。
安徽省马鞍山市2019-2020学年中考第四次大联考数学试卷含解析
安徽省马鞍山市2019-2020学年中考第四次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.小丽只带2元和5元的两种面额的钞票(数量足够多),她要买27元的商品,而商店不找零钱,要她刚好付27元,她的付款方式有()种.A.1 B.2 C.3 D.42.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8关于以上数据,说法正确的是()A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差3.下列判断错误的是()A.两组对边分别相等的四边形是平行四边形 B.四个内角都相等的四边形是矩形C.两条对角线垂直且平分的四边形是正方形 D.四条边都相等的四边形是菱形4.如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6 米,CD=4 米,∠BCD=150°,在D 处测得电线杆顶端A 的仰角为30°,则电线杆AB 的高度为()A.2+23B.4+23C.2+32D.4+325.1903年、英国物理学家卢瑟福通过实验证实,放射性物质在放出射线后,这种物质的质量将减少,减少的速度开始较快,后来较慢,实际上,放射性物质的质量减为原来的一半所用的时间是一个不变的量,我们把这个时间称为此种放射性物质的半衰期,如图是表示镭的放射规律的函数图象,根据图象可以判断,镭的半衰期为()A .810 年B .1620 年C .3240 年D .4860 年6.为了纪念物理学家费米,物理学界以费米(飞米)作为长度单位.已知1飞米等于0.000000000000001米,把0.000000000000001这个数用科学记数法表示为( ) A .1×10﹣15 B .0.1×10﹣14C .0.01×10﹣13D .0.01×10﹣127.一、单选题如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是( )A .B .C .D .8.宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价比定价180元增加x 元,则有( )A .(x ﹣20)(50﹣18010x -)=10890 B .x (50﹣18010x -)﹣50×20=10890 C .(180+x ﹣20)(50﹣10x)=10890D .(x+180)(50﹣10x)﹣50×20=10890 9.下列命题是真命题的是( )A .过一点有且只有一条直线与已知直线平行B .对角线相等且互相垂直的四边形是正方形C .平分弦的直径垂直于弦,并且平分弦所对的弧D .若三角形的三边a ,b ,c 满足a 2+b 2+c 2=ac +bc +ab ,则该三角形是正三角形 10.已知,如图,AB//CD,∠DCF=100°,则∠AEF 的度数为 ( )A .120°B .110°C .100°D .80°11.用配方法解下列方程时,配方有错误的是( ) A .22990x x --=化为()21100x -=B .2890x x ++=化为()2425x +=C .22740t t --=化为2781416t ⎛⎫-=⎪⎝⎭D .23420x x --=化为221039x ⎛⎫-= ⎪⎝⎭ 12.如图,在▱ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,若BG=42,则△CEF 的面积是( )A .22B .2C .32D .42二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.计算3274-=________.14.已知线段a =4,线段b =9,则a ,b 的比例中项是_____.15.以矩形ABCD 两条对角线的交点O 为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE ⊥AC ,垂足为E .若双曲线y=(x >0)经过点D ,则OB•BE 的值为_____.16.若反比例函数y =1k x+的图象与一次函数y =x+k 的图象有一个交点为(m ,﹣4),则这个反比例函数的表达式为_____. 17.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题: 已知:ABC.V 求作:ABC V 的内切圆. 小明的作法如下:如图2,()1作ABC ∠,ACB ∠的平分线BE 和CF ,两线相交于点O ; ()2过点O 作OD BC ⊥,垂足为点D ;()3点O 为圆心,OD 长为半径作O.e 所以,O e 即为所求作的圆.请回答:该尺规作图的依据是______.18.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平行四边形ABCD 中,BD 是对角线,∠ADB=90°,E 、F 分别为边AB 、CD 的中点. (1)求证:四边形DEBF 是菱形;(2)若BE=4,∠DEB=120°,点M 为BF 的中点,当点P 在BD 边上运动时,则PF+PM 的最小值为 ,并在图上标出此时点P 的位置.20.(6分)(1)如图①已知四边形ABCD 中,AB a =,BC=b ,90B D ∠=∠=︒,求: ①对角线BD 长度的最大值;②四边形ABCD 的最大面积;(用含a ,b 的代数式表示)(2)如图②,四边形ABCD 是某市规划用地的示意图,经测量得到如下数据:20cm AB =,30cm BC =,120B ∠=︒,195A C ∠+∠=︒,请你利用所学知识探索它的最大面积(结果保留根号)21.(6分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:请补全条形统计图和扇形统计图;在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?22.(8分)如图,数轴上的点A、B、C、D、E表示连续的五个整数,对应数分别为a、b、c、d、e.(1)若a+e=0,则代数式b+c+d=;(2)若a是最小的正整数,先化简,再求值:;(3)若a+b+c+d=2,数轴上的点M表示的实数为m(m与a、b、c、d、e不同),且满足MA+MD=3,则m的范围是.23.(8分)如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.求该抛物线的表达式;点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.24.(10分)如图,矩形ABCD 的两边AD 、AB 的长分别为3、8,E 是DC 的中点,反比例函数my x=的图象经过点E ,与AB 交于点F .若点B 坐标为(6,0)-,求m 的值及图象经过A 、E 两点的一次函数的表达式;若2AF AE -=,求反比例函数的表达式.25.(10分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:此次共调查了 名学生;将条形统计图1补充完整;图2中“小说类”所在扇形的圆心角为 度;若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.26.(12分)已知,抛物线L :y=x 2+bx+c 与x 轴交于点A 和点B (-3,0),与y 轴交于点C (0,3). (1)求抛物线L 的顶点坐标和A 点坐标.(2)如何平移抛物线L 得到抛物线L 1,使得平移后的抛物线L 1的顶点与抛物线L 的顶点关于原点对称?(3)将抛物线L平移,使其经过点C得到抛物线L2,点P(m,n)(m>0)是抛物线L2上的一点,是否存在点P,使得△PAC为等腰直角三角形,若存在,请直接写出抛物线L2的表达式,若不存在,请说明理由.27.(12分)在以“关爱学生、安全第一”为主题的安全教育宣传月活动中,某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:A:结伴步行、B:自行乘车、C:家人接送、D:其他方式,并将收集的数据整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题:(1)本次抽查的学生人数是多少人?(2)请补全条形统计图;请补全扇形统计图;(3)“自行乘车”对应扇形的圆心角的度数是度;(4)如果该校学生有2000人,请你估计该校“家人接送”上学的学生约有多少人?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】分析:先根据题意列出二元一次方程,再根据x,y都是非负整数可求得x,y的值.详解:解:设2元的共有x张,5元的共有y张,由题意,2x+5y=27∴x=12(27-5y)∵x,y是非负整数,∴15x y ⎧⎨⎩==或111x y ⎧⎨⎩==或63x y ⎧⎨⎩==,∴付款的方式共有3种. 故选C.点睛:本题考查二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再根据实际意义求解. 2.D 【解析】 【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得. 【详解】甲:数据7出现了2次,次数最多,所以众数为7, 排序后最中间的数是7,所以中位数是7,26778==65x ++++甲,()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4,乙:数据8出现了2次,次数最多,所以众数为8, 排序后最中间的数是4,所以中位数是4,23488==55x 乙++++,()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4,所以只有D 选项正确, 故选D. 【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键. 3.C 【解析】 【分析】根据平行四边形的判定,矩形的判定,菱形的判定,正方形的判定,对选项进行判断即可 【详解】解:A 、两组对边分别相等的四边形是平行四边形,故本选项正确; B 、四个内角都相等的四边形是矩形,故本选项正确;C 、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误;D 、四条边都相等的四边形是菱形,故本选项正确.此题综合考查了平行四边形的判定,矩形的判定,菱形的判定,正方形的判定,熟练掌握判定法则才是解题关键 4.B 【解析】 【分析】 【详解】延长AD 交BC 的延长线于E ,作DF ⊥BE 于F ,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,22CD DF -3 由题意得∠E=30°, ∴EF=23tan DFE= , ∴3∴AB=BE×tanE=(3×3(3+4)米, 即电线杆的高度为(3+4)米.点睛:本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键. 5.B 【解析】 【分析】根据半衰期的定义,函数图象的横坐标,可得答案. 【详解】由横坐标看出1620年时,镭质量减为原来的一半, 故镭的半衰期为1620年,本题考查了函数图象,利用函数图象的意义及放射性物质的半衰期是解题关键. 6.A 【解析】 【分析】根据科学记数法的表示方法解答. 【详解】解:把0.000?000?000?000?001这个数用科学记数法表示为15110-⨯. 故选:A . 【点睛】此题重点考查学生对科学记数法的应用,熟练掌握小于0的数用科学记数法表示法是解题的关键. 7.D 【解析】试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.考点:简单几何体的三视图. 8.C 【解析】 【分析】设房价比定价180元増加x 元,根据利润=房价的净利润×入住的房同数可得. 【详解】解:设房价比定价180元增加x 元, 根据题意,得(180+x ﹣20)(50﹣x10)=1. 故选:C . 【点睛】此题考查一元二次方程的应用问题,主要在于找到等量关系求解. 9.D 【解析】 【分析】根据真假命题的定义及有关性质逐项判断即可.【详解】A 、真命题为:过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B 、真命题为:对角线相等且互相垂直的四边形是正方形或等腰梯形,故本选项错误;C 、真命题为:平分弦的直径垂直于弦(非直径),并且平分弦所对的弧,故本选项错误;D 、∵a 2+b 2+c 2=ac +bc +ab ,∴2a 2+2b 2+2c 2-2ac-2bc-2ab=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴a=b=c ,故本选项正确.故选D.【点睛】本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.熟练掌握所学性质是解答本题的关键.10.D【解析】【分析】先利用邻补角得到∠DCE=80°,然后根据平行线的性质求解.【详解】∵∠DCF=100°,∴∠DCE=80°,∵AB ∥CD ,∴∠AEF=∠DCE=80°.故选D .【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.11.B【解析】【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】解:A 、22990x x --=Q ,2299x x ∴-=,221991x x ∴-+=+,2(1)100x ∴-=,故A 选项正确.B 、2890x x ++=Q ,289x x ∴+=-,2816916x x ∴++=-+,2(4)7x ∴+=,故B 选项错误.C 、22740t t --=Q ,2274t t ∴-=,2722t t ∴-=,274949221616t t ∴-+=+,2781()416t ∴-=,故C 选项正确.D 、23420x x --=Q ,2342x x ∴-=,24233x x ∴-=,244243939x x ∴-+=+,2210()39x ∴-=.故D 选项正确.故选:B .【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.12.A【解析】【分析】【详解】解:∵AE 平分∠BAD ,∴∠DAE=∠BAE ;又∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠BEA=∠DAE=∠BAE ,∴AB=BE=6,∵BG ⊥AE ,垂足为G ,∴AE=2AG .在Rt △ABG 中,∵∠AGB=90°,AB=6,BG=∴,∴AE=2AG=4;∴S △ABE =12AE•BG=142⨯⨯= ∵BE=6,BC=AD=9,∴CE=BC ﹣BE=9﹣6=3,∴BE :CE=6:3=2:1,∵AB ∥FC ,∴△ABE ∽△FCE ,∴S △ABE :S △CEF =(BE :CE )2=4:1,则S △CEF =14S △ABE =故选A.【点睛】本题考查1.相似三角形的判定与性质;2.平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】试题解析:3274-=3-2=1.14.6【解析】【分析】根据已知线段a=4,b=9,设线段x是a,b的比例中项,列出等式,利用两内项之积等于两外项之积即可得出答案.【详解】解:∵a=4,b=9,设线段x是a,b的比例中项,∴a xx b =,∴x2=ab=4×9=36,∴x=6,x=﹣6(舍去).故答案为6【点睛】本题主要考查比例线段问题,解题关键是利用两内项之积等于两外项之积解答.15.1【解析】【分析】由双曲线y=(x>0)经过点D知S△ODF=k=,由矩形性质知S△AOB=2S△ODF=,据此可得OA•BE=1,根据OA=OB可得答案.【详解】如图,∵双曲线y=(x>0)经过点D,∴S△ODF=k=,则S△AOB=2S△ODF=,即OA•BE=,∴OA•BE=1,∵四边形ABCD是矩形,∴OA=OB,∴OB•BE=1,故答案为:1.【点睛】本题主要考查反比例函数图象上的点的坐标特征,解题的关键是掌握反比例函数系数k的几何意义及矩形的性质.16.y=﹣4x.【解析】【分析】把交点坐标代入两个解析式组成方程组,解方程组求得k,即可求得反比例函数的解析式.【详解】解:∵反比例函数y=1kx+的图象与一次函数y=x+k的图象有一个交点为(m,﹣4),∴144k m m k+=-⎧⎨+=-⎩,解得k=﹣5,∴反比例函数的表达式为y=﹣4x,故答案为y=﹣4x.【点睛】本题考查了反比例函数与一次函数的交点问题,根据图象上点的坐标特征得出方程组是解题的关键.17.到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.【解析】【分析】根据三角形的内切圆,三角形的内心的定义,角平分线的性质即可解答.【详解】解:该尺规作图的依据是到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线;故答案为到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.【点睛】此题主要考查了复杂作图,三角形的内切圆与内心,关键是掌握角平分线的性质.18.35°【解析】分析:先根据两直线平行,内错角相等求出∠3,再根据直角三角形的性质用∠2=60°-∠3代入数据进行计算即可得解.详解:∵直尺的两边互相平行,∠1=25°,∴∠3=∠1=25°,∴∠2=60°-∠3=60°-25°=35°.故答案为35°.点睛:本题考查了平行线的性质,三角板的知识,熟记平行线的性质是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)详见解析;(2)3【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半,以及平行四边形的对边相等证明四边形DEBF的四边相等即可证得;(2)连接EM,EM与BD的交点就是P,FF+PM的最小值就是EM的长,证明△BEF是等边三角形,利用三角函数求解.【详解】(1)∵平行四边形ABCD中,AD∥BC,∴∠DBC=∠ADB=90°.∵△ABD中,∠ADB=90°,E时AB的中点,∴DE=12AB=AE=BE.同理,BF=DF.∵平行四边形ABCD中,AB=CD,∴DE=BE=BF=DF,∴四边形DEBF是菱形;(2)连接BF.∵菱形DEBF中,∠DEB=120°,∴∠EFB=60°,∴△BEF是等边三角形.∵M是BF的中点,∴EM⊥BF.则EM=BE•sin60°=4×3=23.即PF+PM的最小值是23.故答案为:23.【点睛】本题考查了菱形的判定与性质以及图形的对称,根据菱形的对称性,理解PF+PM的最小值就是EM的长是关键.20.(122a+b22+2ab4a b;(2)3+2475.【解析】【分析】(1)①由条件可知AC为直径,可知BD长度的最大值为AC的长,可求得答案;②连接AC,求得AD2+CD2,利用不等式的性质可求得AD•CD的最大值,从而可求得四边形ABCD面积的最大值;(2)连接AC,延长CB,过点A做AE⊥CB交CB的延长线于E,可先求得△ABC的面积,结合条件可求得∠D=45°,且A、C、D三点共圆,作AC、CD中垂线,交点即为圆心O,当点D与AC的距离最大时,△ACD的面积最大,AC的中垂线交圆O于点D',交AC于F,FD'即为所求最大值,再求得△ACD′的面积即可.【详解】(1)①因为∠B=∠D=90°,所以四边形ABCD是圆内接四边形,AC为圆的直径,则BD长度的最大值为AC,此时BD22a+b②连接AC ,则AC 2=AB 2+BC 2=a 2+b 2=AD 2+CD 2,S △ACD =12AD ⋅CD≤14(AD 2+CD 2)=14(a 2+b 2),所以四边形ABCD 的最大面积=14(a 2+b 2)+12ab =22+2ab 4a b +; (2)如图,连接AC ,延长CB ,过点A 作AE ⊥CB 交CB 的延长线于E ,因为AB =20,∠ABE =180°-∠ABC =60°,所以AE =AB ⋅sin60°=103,EB =AB ⋅cos60°=10,S △ABC =12AE ⋅BC =1503,因为BC =30,所以EC =EB +BC =40,AC =22+AE EC =1019,因为∠ABC =120°,∠BAD +∠BCD =195°,所以∠D =45°,则△ACD 中,∠D 为定角,对边AC 为定边,所以,A 、C 、D 点在同一个圆上,做AC 、CD 中垂线,交点即为圆O ,如图,当点D 与AC 的距离最大时,△ACD 的面积最大,AC 的中垂线交圆O 于点D’,交AC 于F ,FD’即为所求最大值,连接OA 、OC ,∠AOC =2∠AD’C =90°,OA =OC ,所以△AOC ,△AOF 等腰直角三角形,AO =OD’=38OF =AF =2AC =19=3819S △ACD’=12AC ⋅D’F =19(38192475,所以S max =S △ABC +S △ACD =32+475.【点睛】本题为圆的综合应用,涉及知识点有圆周角定理、不等式的性质、解直角三角形及转化思想等.在(1)中注意直径是最长的弦,在(2)中确定出四边形ABCD 面积最大时,D 点的位置是解题的关键.本题考查知识点较多,综合性很强,计算量很大,难度适中.21.(1)详见解析;(2)40%;(3)105;(4)516. 【解析】【分析】(1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;(2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;(3)根据样本估计总体的方法计算即可;(4)利用概率公式即可得出结论.【详解】(1)由条形图知,男生共有:10+20+13+9=52人,∴女生人数为100-52=48人,∴参加武术的女生为48-15-8-15=10人,∴参加武术的人数为20+10=30人,∴30÷100=30%,参加器乐的人数为9+15=24人,∴24÷100=24%,补全条形统计图和扇形统计图如图所示:(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是1010+15100%=40%.答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.(3)500×21%=105(人).答:估计其中参加“书法”项目活动的有105人.(4)15155 151******** +++==.答:正好抽到参加“器乐”活动项目的女生的概率为5 16.【点睛】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(1)0;(1),;(3) ﹣1<x<1.【解析】【分析】(1)根据a+e=0,可知a与e互为相反数,则c=0,可得b=-1,d=1,代入可得代数式b+c+d的值;(1)根据题意可得:a=1,将分式计算并代入可得结论即可;(3)先根据A、B、C、D、E为连续整数,即可求出a的值,再根据MA+MD=3,列不等式可得结论.【详解】解:(1)∵a+e=0,即a、e互为相反数,∴点C表示原点,∴b、d也互为相反数,则a+b+c+d+e=0,故答案为:0;(1)∵a是最小的正整数,∴a=1,则原式=÷[+]=÷=•=,当a=1时,原式==;(3)∵A、B、C、D、E为连续整数,∴b=a+1,c=a+1,d=a+3,e=a+4,∵a+b+c+d=1,∴a+a+1+a+1+a+3=1,4a=﹣4,a=﹣1,∵MA+MD=3,∴点M再A、D两点之间,∴﹣1<x<1,故答案为:﹣1<x<1.【点睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的相关知识点.23.(1)y=x2+6x+5;(2)①S△PBC的最大值为278;②存在,点P的坐标为P(﹣32,﹣74)或(0,5).【解析】【分析】(1)将点A、B坐标代入二次函数表达式,即可求出二次函数解析式;(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1,设点G(t,t+1),则点P(t,t2+6t+5),利用三角形面积公式求出最大值即可;②设直线BP与CD交于点H,当点P在直线BC下方时,求出线段BC的中点坐标为(﹣52,﹣32),过该点与BC垂直的直线的k值为﹣1,求出直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD 的表达式为:y=2x+2…④,、联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=12x﹣1…⑤,联立⑤和y=x2+6x+5并解得:x=﹣32,即可求出P点;当点P(P′)在直线BC上方时,根据∠PBC=∠BCD求出BP′∥CD,求出直线BP′的表达式为:y=2x+5,联立y=x2+6x+5和y=2x+5,求出x,即可求出P.【详解】解:(1)将点A、B坐标代入二次函数表达式得:25550 16453a ba b-+=⎧⎨-+=-⎩,解得:16 ab=⎧⎨=⎩,故抛物线的表达式为:y=x2+6x+5…①,令y=0,则x=﹣1或﹣5,即点C(﹣1,0);(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1…②,设点G(t,t+1),则点P(t,t2+6t+5),S△PBC=12PG(x C﹣x B)=32(t+1﹣t2﹣6t﹣5)=﹣32t2﹣152t﹣6,∵-32<0,∴S△PBC有最大值,当t=﹣52时,其最大值为278;②设直线BP与CD交于点H,当点P 在直线BC 下方时,∵∠PBC =∠BCD ,∴点H 在BC 的中垂线上,线段BC 的中点坐标为(﹣52,﹣32), 过该点与BC 垂直的直线的k 值为﹣1, 设BC 中垂线的表达式为:y =﹣x+m ,将点(﹣52,﹣32)代入上式并解得: 直线BC 中垂线的表达式为:y =﹣x ﹣4…③,同理直线CD 的表达式为:y =2x+2…④,联立③④并解得:x =﹣2,即点H(﹣2,﹣2),同理可得直线BH 的表达式为:y =12x ﹣1…⑤, 联立①⑤并解得:x =﹣32或﹣4(舍去﹣4), 故点P(﹣32,﹣74); 当点P(P′)在直线BC 上方时,∵∠PBC =∠BCD ,∴BP′∥CD , 则直线BP′的表达式为:y =2x+s ,将点B 坐标代入上式并解得:s =5,即直线BP′的表达式为:y =2x+5…⑥,联立①⑥并解得:x =0或﹣4(舍去﹣4),故点P(0,5);故点P 的坐标为P(﹣32,﹣74)或(0,5). 【点睛】本题考查的是二次函数,熟练掌握抛物线的性质是解题的关键.24.(1)12=-m ,43y x =-;(2)4y x =-. 【解析】分析:(1)由已知求出A 、E 的坐标,即可得出m 的值和一次函数函数的解析式;(2)由34AD DE ==,,得到5AE =,由2AF AE -=,得到71AF BF ,==.设E 点坐标为()4a ,,则点F 坐标为()31a -,,代入反比例函数解析式即可得到结论.详解:(1)∵()6038B AD AB E -==,,,,为CD 的中点, ∴()()3468E A --,,,. ∵反比例函数图象过点()34E ,-, ∴3412m =-⨯=-.设图象经过A 、E 两点的一次函数表达式为:y kx b =+,∴6834k b k b -+=⎧⎨-+=⎩, 解得430k b ⎧=-⎪⎨⎪=⎩:, ∴43y x =-. (2)∵34AD DE ==,,∴5AE =.∵2AF AE -=,∴7AF =,∴1BF =.设E 点坐标为()4a ,,则点F 坐标为()31a -,.∵E F ,两点在m y x=图象上, ∴43a a =-,解得:1a =-, ∴()14E -,, ∴4m =-, ∴4y x=-.点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式.解题的关键是求出点A、E、F 的坐标.25.(1)200;(2)见解析;(3)126°;(4)240人.【解析】【分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数【详解】(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,故答案为200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示:(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:24100×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.【点睛】此题考查扇形统计图和条形统计图,看懂图中数据是解题关键26.(1)顶点(-2,-1) A (-1,0); (2)y=(x-2)2+1; (3) y=x 2-103x+3, 2239y x x =++,y=x 2-4x+3, 2833y x x =++. 【解析】【分析】(1)将点B 和点C 代入求出抛物线L 即可求解.(2)将抛物线L 化顶点式求出顶点再根据关于原点对称求出即可求解.(3)将使得△PAC 为等腰直角三角形,作出所有点P 的可能性,求出代入23y x dx =++即可求解.【详解】(1)将点B (-3,0),C (0,3)代入抛物线得: {0=9-3b+cc=3,解得{b=4c=3,则抛物线243y x x =++. Q 抛物线与x 轴交于点A,∴ 2043x x =++,12x =-3x =-1,,A (-1,0),抛物线L 化顶点式可得()2y=x+2-1,由此可得顶点坐标顶点(-2,-1).(2)抛物线L 化顶点式可得()2y=x+2-1,由此可得顶点坐标顶点(-2,-1) Q 抛物线L 1的顶点与抛物线L 的顶点关于原点对称,1L ∴对称顶点坐标为(2,1),即将抛物线向右移4个单位,向上移2个单位.(3) 使得△PAC 为等腰直角三角形,作出所有点P 的可能性.1P AC ∆Q 是等腰直角三角形1P A CA ∴=,190,90CAO ACO CAO P AE ∠+∠=︒∠+∠=︒Q ,1CAO P AE ∴∠=,190PEA COA =∠=︒Q , ()1CAO APE AAS ∴∆≅∆,∴求得()14,1P -.,同理得()22,1P -,()33,4P -,()43,2P ,由题意知抛物线23y x dx =++并将点代入得:222228103,43,3,3933y x x y x x y x x y x x =++=-+=++=-+. 【点睛】本题主要考查抛物线综合题,讨论出P 点的所有可能性是解题关键.27.(1)本次抽查的学生人数是120人;(2)见解析;(3)126;(4)该校“家人接送”上学的学生约有500人.【解析】【分析】(1)本次抽查的学生人数:18÷15%=120(人);(2)A :结伴步行人数120﹣42﹣30﹣18=30(人),据此补全条形统计图;(3)“自行乘车”对应扇形的圆心角的度数360°×42120=126°;(4)估计该校“家人接送”上学的学生约有:2000×25%=500(人).【详解】解:(1)本次抽查的学生人数:18÷15%=120(人),答:本次抽查的学生人数是120人;(2)A:结伴步行人数120﹣42﹣30﹣18=30(人),补全条形统计图如下:“结伴步行”所占的百分比为30120×100%=25%;“自行乘车”所占的百分比为42120×100%=35%,“自行乘车”在扇形统计图中占的度数为360°×35%=126°,补全扇形统计图,如图所示;(3)“自行乘车”对应扇形的圆心角的度数360°×42120=126°,故答案为126;(4)估计该校“家人接送”上学的学生约有:2000×25%=500(人),答:该校“家人接送”上学的学生约有500人.【点睛】本题主要考查条形统计图及扇形统计图及相关计算,用样本估计总体.解题的关键是读懂统计图,从条形统计图中得到必要的信息是解决问题的关键.。
安徽省马鞍山市2021届新高考数学最后模拟卷含解析
安徽省马鞍山市2021届新高考数学最后模拟卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某三棱锥的三视图如图所示,网格纸上小正方形的边长为1,则该三棱锥外接球的表面积为( )A .27πB .28πC .29πD .30π【答案】C 【解析】 【分析】作出三棱锥的实物图P ACD -,然后补成直四棱锥P ABCD -,且底面为矩形,可得知三棱锥P ACD -的外接球和直四棱锥P ABCD -的外接球为同一个球,然后计算出矩形ABCD 的外接圆直径AC ,利用公式222R PB AC =+可计算出外接球的直径2R ,再利用球体的表面积公式即可得出该三棱锥的外接球的表面积. 【详解】三棱锥P ACD -的实物图如下图所示:将其补成直四棱锥P ABCD -,PB ⊥底面ABCD , 可知四边形ABCD 为矩形,且3AB =,4BC =.矩形ABCD 的外接圆直径225AC =AB +BC ,且2PB =. 所以,三棱锥P ACD -外接球的直径为22229R PB AC =+因此,该三棱锥的外接球的表面积为()224229R R πππ=⨯=. 故选:C. 【点睛】本题考查三棱锥外接球的表面积,解题时要结合三视图作出三棱锥的实物图,并分析三棱锥的结构,选择合适的模型进行计算,考查推理能力与计算能力,属于中等题.2.已知a,b是两条不同的直线,α,β是两个不同的平面,且a⊂α,b⊂β,a//β,b//α,则“a//b“是“α//β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D【解析】【分析】根据面面平行的判定及性质求解即可.【详解】解:a⊂α,b⊂β,a∥β,b∥α,由a∥b,不一定有α∥β,α与β可能相交;反之,由α∥β,可得a∥b或a与b异面,∴a,b是两条不同的直线,α,β是两个不同的平面,且a⊂α,b⊂β,a∥β,b∥α,则“a∥b“是“α∥β”的既不充分也不必要条件.故选:D.【点睛】本题主要考查充分条件与必要条件的判断,考查面面平行的判定与性质,属于基础题.t=,则输出的i=( )3.执行如图所示的程序框图,若输入的3A .9B .31C .15D .63【答案】B 【解析】 【分析】根据程序框图中的循环结构的运算,直至满足条件退出循环体,即可得出结果. 【详解】执行程序框3,t =0i =;8,t =1i =;23,t =3i =;68,t =7i =;203,t =15i =;608,t =31i =,满足606t >,退出循环,因此输出31i =, 故选:B. 【点睛】本题考查循环结构输出结果,模拟程序运行是解题的关键,属于基础题.4.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且cos sin a B b A c +=.若2a =,ABC V 的面积为21),则b c +=( ) A .5B .2C .4D .16【答案】C 【解析】 【分析】根据正弦定理边化角以及三角函数公式可得4A π=,再根据面积公式可求得6(2bc =,再代入余弦定理求解即可. 【详解】ABC V 中,cos sin a B b A c +=,由正弦定理得sin cos sin sin sin A B B A C +=,又sin sin()sin cos cos sin C A B A B A B =+=+,∴sin sin cos sin B A A B =,又sin 0B ≠,∴sin A cos A =,∴tan 1A =,又(0,)A π∈,∴4A π=.∵1sin 1)24ABC S bc A ===-V ,∴bc =6(2,∵2a =,∴由余弦定理可得22()22cos a b c bc bc A =+--,∴2()4(2b c bc +=++4(26(216=++⨯-=,可得4b c +=.故选:C 【点睛】本题主要考查了解三角形中正余弦定理与面积公式的运用,属于中档题.5.泰山有“五岳之首”“天下第一山”之称,登泰山的路线有四条:红门盘道徒步线路,桃花峪登山线路,天外村汽车登山线路,天烛峰登山线路.甲、乙、丙三人在聊起自己登泰山的线路时,发现三人走的线路均不同,且均没有走天外村汽车登山线路,三人向其他旅友进行如下陈述: 甲:我走红门盘道徒步线路,乙走桃花峪登山线路; 乙:甲走桃花峪登山线路,丙走红门盘道徒步线路; 丙:甲走天烛峰登山线路,乙走红门盘道徒步线路;事实上,甲、乙、丙三人的陈述都只对一半,根据以上信息,可判断下面说法正确的是( ) A .甲走桃花峪登山线路 B .乙走红门盘道徒步线路 C .丙走桃花峪登山线路 D .甲走天烛峰登山线路【答案】D 【解析】 【分析】甲乙丙三人陈述中都提到了甲的路线,由题意知这三句中一定有一个是正确另外两个错误的,再分情况讨论即可. 【详解】若甲走的红门盘道徒步线路,则乙,丙描述中的甲的去向均错误,又三人的陈述都只对一半,则乙丙的另外两句话“丙走红门盘道徒步线路”,“乙走红门盘道徒步线路”正确,与“三人走的线路均不同”矛盾.故甲的另一句“乙走桃花峪登山线路”正确,故丙的“乙走红门盘道徒步线路”错误,“甲走天烛峰登山线路”正确.乙的话中“甲走桃花峪登山线路”错误,“丙走红门盘道徒步线路”正确. 综上所述,甲走天烛峰登山线路,乙走桃花峪登山线路, 丙走红门盘道徒步线路 故选:D 【点睛】本题主要考查了判断与推理的问题,重点是找到三人中都提到的内容进行分类讨论,属于基础题型. 6.若P 是q ⌝的充分不必要条件,则⌝p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 【答案】B 【解析】 【分析】 【详解】试题分析:通过逆否命题的同真同假,结合充要条件的判断方法判定即可.由p 是q ⌝的充分不必要条件知“若p 则q ⌝”为真,“若q ⌝则p”为假,根据互为逆否命题的等价性知,“若q 则p ⌝”为真,“若p ⌝则q”为假,故选B . 考点:逻辑命题7.若各项均为正数的等比数列{}n a 满足31232a a a =+,则公比q =( ) A .1 B .2 C .3 D .4【答案】C 【解析】 【分析】由正项等比数列满足31232a a a =+,即211132a q a a q =+,又10a ≠,即2230q q --=,运算即可得解.【详解】解:因为31232a a a =+,所以211132a q a a q =+,又10a ≠,所以2230q q --=,又0q >,解得3q =. 故选:C. 【点睛】本题考查了等比数列基本量的求法,属基础题.8.已知函数()cos()f x A x ωϕ=+(0A >,0>ω,||2ϕπ<),将函数()f x 的图象向左平移34π个单位长度,得到函数()g x 的部分图象如图所示,则1()3f x =是3212x g π⎛⎫+= ⎪⎝⎭的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B 【解析】 【分析】先根据图象求出函数()g x 的解析式,再由平移知识得到()f x 的解析式,然后分别找出1()3f x =和32123x g π⎛⎫+= ⎪⎝⎭的等价条件,即可根据充分条件,必要条件的定义求出. 【详解】设()()sin g x A x ωμ=+,根据图象可知,371,24612A T T πππω⎛⎫==--⇒=⇒= ⎪⎝⎭,再由77sin 211212g ππμ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 取3πμ=-, ∴()sin 23g x x π⎛⎫=-⎪⎝⎭. 将函数()g x 的图象向右平移34π个单位长度,得到函数()f x 的图象, ∴33()sin 2cos 24433f x g x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫=-=--=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 11()cos 2333f x x π⎛⎫=⇔-= ⎪⎝⎭,3sin 2126x g x ππ⎛⎫⎛⎫+=-= ⎪ ⎪⎝⎭⎝⎭, 令6x πθ=-,则231sin cos 212sin 3θθθ=⇒=-=,显然,13cos 2sin 3θθ=⇒=∴1()3f x =是2123x g π⎛⎫+= ⎪⎝⎭的必要不充分条件. 故选:B . 【点睛】本题主要考查利用图象求正(余)弦型函数的解析式,三角函数的图形变换, 二倍角公式的应用,充分条件,必要条件的定义的应用,意在考查学生的数学运算能力和逻辑推理能力,属于中档题. 9. “1cos 22α=-”是“3k παπ=+,k Z ∈”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件【答案】B 【解析】 【分析】先求出满足1cos 22α=-的α值,然后根据充分必要条件的定义判断. 【详解】 由1cos 22α=-得2223k παπ=±,即3k παπ=±,k Z ∈ ,因此“1cos 22α=-”是“3k παπ=+,k Z ∈”的必要不充分条件.故选:B . 【点睛】本题考查充分必要条件,掌握充分必要条件的定义是解题基础.解题时可根据条件与结论中参数的取值范围进行判断.10.已知函数2,()5,x x x af x x x a⎧-≤=⎨->⎩(0a >),若函数()()4g x f x x =-有三个零点,则a 的取值范围是( ) A .(0,1)[5,)+∞U B .6(0,)[5,)5+∞U C .(1,5] D .6(,5]5【答案】A 【解析】 【分析】分段求解函数零点,数形结合,分类讨论即可求得结果. 【详解】作出2y x x =-和5y x =-,4y x =的图像如下所示:函数()()4g x f x x =-有三个零点, 等价于()y f x =与4y x =有三个交点, 又因为0a >,且由图可知,当0x ≤时()y f x =与4y x =有两个交点,A O , 故只需当0x >时,()y f x =与4y x =有一个交点即可. 若当0x >时,()0,1a ∈时,显然y =y (y )与y =4|y |有一个交点y ,故满足题意; 1a =时,显然y =y (y )与y =4|y |没有交点,故不满足题意;()1,5a ∈时,显然y =y (y )与y =4|y |也没有交点,故不满足题意; [)5,a ∈+∞时,显然()y f x =与4y x =有一个交点C ,故满足题意.综上所述,要满足题意,只需a ∈(0,1)[5,)+∞U . 故选:A. 【点睛】本题考查由函数零点的个数求参数范围,属中档题.11.设12,F F 分别是双线2221(0)x y a a-=>的左、右焦点,O 为坐标原点,以12F F 为直径的圆与该双曲线的两条渐近线分别交于,A B 两点(,A B 位于y 轴右侧),且四边形2OAF B 为菱形,则该双曲线的渐近线方程为( ) A .0x y ±= B .30x y ±=C .30x ±=D .30x y ±=【答案】B 【解析】【分析】由于四边形2OAF B 为菱形,且2OF OA =,所以2AOF ∆为等边三角形,从而可得渐近线的倾斜角,求出其斜率. 【详解】如图,因为四边形2OAF B 为菱形,2OF OA OB ==,所以2AOF △为等边三角形,260AOF ︒∠=,两渐近线的斜率分别为3和3-. 故选:B【点睛】此题考查的是求双曲线的渐近线方程,利用了数形结合的思想,属于基础题.12.设a r ,b r是非零向量,若对于任意的R λ∈,都有a b a b λ-≤-r r r r 成立,则A .//a bB .a b ⊥v vC .()-⊥r r r a b aD .()-⊥a b b rr r【答案】D 【解析】 【分析】画出a r ,b r ,根据向量的加减法,分别画出()a b λ-r r的几种情况,由数形结合可得结果.【详解】由题意,得向量()a b -r r 是所有向量()a b λ-r r中模长最小的向量,如图,当AC BC ⊥,即()-⊥a b b r r r 时,||AC 最小,满足a b a b λ-≤-r r r r,对于任意的R λ∈,所以本题答案为D. 【点睛】本题主要考查了空间向量的加减法,以及点到直线的距离最短问题,解题的关键在于用有向线段正确表示向量,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。
安徽省马鞍山市2021届新高考第四次大联考物理试卷含解析
安徽省马鞍山市2021届新高考第四次大联考物理试卷一、单项选择题:本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.如图所示,固定在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上磁感应强度大小为B 的匀强磁场中。
一质量为m (质量分布均匀)的导体杆ab 垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为μ。
现杆受到水平向左、垂直于杆的恒力F 作用,从静止开始沿导轨运动,当运动距离L 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。
设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g 。
对于此过程,下列说法中正确的是( )A .当杆的速度达到最大时,a 、b 两端的电压为()F R r BL+ B .杆的速度最大值为22()F R r B L + C .恒力F 做的功与安培力做的功之和等于杆动能的变化量D .安倍力做功的绝对值等于回路中产生的焦耳热【答案】D【解析】【分析】【详解】AB . 当杆匀速运动时速度最大,由平衡条件得:22m B L v F mg F mg R rμμ=+=++安 得最大速度为22()()m F mg R v r B L μ+=- 当杆的速度达到最大时,杆产生的感应电动势为:()()m F mg R r E BLv BLμ-+== a 、b 两端的电压为:()R F mg R U E R r BLμ-==+ 故AB 错误;C . 根据动能定理知,恒力F 做的功、摩擦力做的功与安培力做的功之和等于杆动能的变化量,故C 错误;D . 根据功能关系知,安倍力做功的绝对值等于回路中产生的焦耳热,故D 正确。
故选:D 。
2.1897年汤姆孙发现电子后,许多科学家为测量电子的电荷量做了大量的探索。
1907-1916密立根用带电油滴进行实验,发现油滴所带的电荷量是某一数值e 的整数倍,于是称这数值为基本电荷,如图所示,两块完全相同的金属极板止对若水平放置,板间的距离为d ,当质量为m 的微小带电油滴在两板间运动时,所受它气阻力的大小与速度大小成正比。
安徽省马鞍山市2021届第四次新高考模拟考试物理试卷含解析
安徽省马鞍山市2021届第四次新高考模拟考试物理试卷一、单项选择题:本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.将长为L 的导线弯成六分之一圆弧,固定于垂直于纸面向外、大小为B 的匀强磁场中,两端点A 、C 连线竖直,如图所示.若给导线通以由A 到C 、大小为I 的恒定电流,则导线所受安培力的大小和方向是( )A .ILB ,水平向左B .ILB ,水平向右C .3ILBπ,水平向右 D .3ILBπ,水平向左【答案】D【解析】【详解】弧长为L ,圆心角为60°,则弦长:3LAC π=,导线受到的安培力:F=BI•AC=3 ILBπ,由左手定则可知,导线受到的安培力方向:水平向左;故D ,ABC 错误.2.2020年初,在抗击2019-nCoV ,红外线体温计发挥了重要作用。
下列关于红外线的说法中正确的是( ) A .红外线的波长比红光短B .利用红外线的热效应可以加热物体C .红外遥感是利用红外线的穿透能力强D .高温物体辐射红外线,低温物体不辐射红外线【答案】B【解析】【分析】【详解】A .红外线的波长比红光的波长更长,故A 错误;B .红外线是一种看不见的光,通过红外线的照射,可以使物体的温度升高,故B 正确;C .人们利用红外线来实行遥控和遥感,是因为红外线波长长,更容易发生衍射,故C 错误;D .一切物体都向外辐射红外线,故D 错误。
故选B 。
3.如图所示,A 、B 两个质量相等的小球,分别从同一高度、倾角分别为α、()βαβ<的光滑斜面顶端A .A 球和B 球到达斜面底端的速度大小不相等B .A 球重力做功的平均功率比B 球重力做功的平均功率小C .A 球运动的加速度比B 球运动的加速度大D .A 球所受重力的冲量大小比B 球所受重力的冲量大小小【答案】B【解析】【分析】【详解】A .根据机械能守恒定律可得212mgh mv = 解得2v gh 两个小球达到底部的速度大小相等,故A 错误;BC .小球的加速度大小为sin sin mg a g mθθ== 运动时间212sin x h t a gθ== 则运动过程中A 斜面斜角小,则A 运动的时间比B 的大,由于高度相同,重力做功相等,所以A 球重力做功的平均功率比B 球重力做功的平均功率小,故B 正确,C 错误;C .由于A 运动的时间比B 的大,由公式I mgt =可知,A 球所受重力的冲量大小比B 球所受重力的冲量大小大,故D 错误。
辽宁省鞍山市2021届新高考第四次大联考数学试卷含解析
辽宁省鞍山市2021届新高考第四次大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合3{|0}2xA x Z x -=∈≥+,B ={y ∈N|y =x ﹣1,x ∈A},则A ∪B =( ) A .{﹣1,0,1,2,3} B .{﹣1,0,1,2}C .{0,1,2}D .{x ﹣1≤x≤2}【答案】A 【解析】 【分析】解出集合A 和B 即可求得两个集合的并集. 【详解】∵集合3{|0}2xA x Z x -=∈≥=+{x ∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B ={y ∈N|y =x ﹣1,x ∈A}={﹣2,﹣1,0,1,2}, ∴A ∪B ={﹣2,﹣1,0,1,2,3}. 故选:A . 【点睛】此题考查求集合的并集,关键在于准确求解不等式,根据描述法表示的集合,准确写出集合中的元素. 2.已知数列{}n a 的前n 项和为n S ,且()()()212*111N ()n n n S S S n ++++=+∈,121,2a a ==,则n S =( )A .()12n n + B .12n + C .21n - D .121n ++【答案】C 【解析】 【分析】根据已知条件判断出数列{}1n S +是等比数列,求得其通项公式,由此求得n S . 【详解】由于()()()212*111N ()n n n S S S n ++++=+∈,所以数列{}1n S +是等比数列,其首项为11112S a +=+=,第二项为212114S a a +=++=,所以公比为422=.所以12n n S +=,所以21n n S =-. 故选:C 【点睛】本小题主要考查等比数列的证明,考查等比数列通项公式,属于基础题.3.在区间[1,1]-上随机取一个数k ,使直线(3)y k x =+与圆221x y +=相交的概率为( )A .12B .13C .4D .3【答案】C 【解析】 【分析】根据直线与圆相交,可求出k 的取值范围,根据几何概型可求出相交的概率. 【详解】因为圆心(0,0),半径1r =,直线与圆相交,所以1d =≤,解得44k -≤≤所以相交的概率224P ==,故选C.【点睛】本题主要考查了直线与圆的位置关系,几何概型,属于中档题.4.已知函数()sin()f x x ωθ=+,其中0>ω,0,2πθ⎛⎫∈ ⎪⎝⎭,其图象关于直线6x π=对称,对满足()()122f x f x -=的1x ,2x ,有12min 2x x π-=,将函数()f x 的图象向左平移6π个单位长度得到函数()g x 的图象,则函数()g x 的单调递减区间是()A .()2,6k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ B .(),2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦ C .()5,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦D .()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【答案】B 【解析】 【分析】根据已知得到函数()f x 两个对称轴的距离也即是半周期,由此求得ω的值,结合其对称轴,求得θ的值,进而求得()f x 解析式.根据图像变换的知识求得()g x 的解析式,再利用三角函数求单调区间的方法,求得()g x 的单调递减区间. 【详解】解:已知函数()sin()f x x ωθ=+,其中0>ω,00,2π⎛⎫∈ ⎪⎝⎭,其图像关于直线6x π=对称,对满足()()122f x f x -=的1x ,2x ,有12min1222x x ππω-==⋅,∴2ω=. 再根据其图像关于直线6x π=对称,可得262k ππθπ⨯+=+,k ∈Z .∴6πθ=,∴()sin 26f x x π⎛⎫=+⎪⎝⎭. 将函数()f x 的图像向左平移6π个单位长度得到函数()sin 2cos 236g x x x ππ⎛⎫=++= ⎪⎝⎭的图像. 令222k x k πππ≤≤+,求得2k x k πππ≤≤+,则函数()g x 的单调递减区间是,2k k πππ⎡⎤+⎢⎥⎣⎦,k ∈Z ,故选B. 【点睛】本小题主要考查三角函数图像与性质求函数解析式,考查三角函数图像变换,考查三角函数单调区间的求法,属于中档题.5.棱长为2的正方体1111ABCD A B C D -内有一个内切球O ,过正方体中两条异面直线AB ,11A D 的中点,P Q 作直线,则该直线被球面截在球内的线段的长为( )A .2B 1 CD .1【答案】C 【解析】 【分析】连结并延长PO ,交对棱C 1D 1于R ,则R 为对棱的中点,取MN 的中点H ,则OH ⊥MN ,推导出OH ∥RQ ,且OH =12RQ =2,由此能求出该直线被球面截在球内的线段的长. 【详解】 如图,MN 为该直线被球面截在球内的线段 连结并延长PO ,交对棱C 1D 1于R ,则R 为对棱的中点,取MN 的中点H ,则OH ⊥MN , ∴OH ∥RQ ,且OH =12RQ =22, ∴MH 22OM OH -22212⎛⎫- ⎪ ⎪⎝⎭22,∴MN =22MH =故选:C . 【点睛】本题主要考查该直线被球面截在球内的线段的长的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.6.若向量(0,2)m =-,(3,1)n =,则与2m n +共线的向量可以是( ) A .3,1)- B .(3)-C .(3,1)-D .(1,3)-【答案】B 【解析】 【分析】先利用向量坐标运算求出向量2m n +,然后利用向量平行的条件判断即可. 【详解】()()0,2,3,1m n =-=()23,3m n ∴+=-()()333,33-=-故选B 【点睛】本题考查向量的坐标运算和向量平行的判定,属于基础题,在解题中要注意横坐标与横坐标对应,纵坐标与纵坐标对应,切不可错位.7.已知平面ABCD ⊥平面,,ADEF AB AD CD AD ⊥⊥,且3,6,AB AD CD ADEF ===是正方形,在正方形ADEF 内部有一点M ,满足,MB MC 与平面ADEF 所成的角相等,则点M 的轨迹长度为( ) A .43B .16C .43π D .8π【答案】C 【解析】 【分析】根据,MB MC 与平面ADEF 所成的角相等,判断出2MD AM =,建立平面直角坐标系,求得M 点的轨迹方程,由此求得点M 的轨迹长度. 【详解】由于平面ABCD ⊥平面ADEF ,且交线为AD ,,AB AD CD AD ⊥⊥,所以AB ⊥平面ADEF ,CD ⊥平面ADEF .所以BMA ∠和CMD ∠分别是直线,MB MC 与平面ADEF 所成的角,所以BMA CMD ∠=∠,所以tan tan BMA CMD ∠=∠,即AB CDAM MD=,所以2MD AM =.以A 为原点建立平面直角坐标系如下图所示,则()0,0A ,()6,0D ,设(),M x y (点M 在第一象限内),由2MD AM =得224MD AM =,即()()222264x y x y-+=+,化简得()22224x y ++=,由于点M 在第一象限内,所以M 点的轨迹是以()2,0G-为圆心,半径为4的圆在第一象限的部分.令0x =代入原的方程,解得23y =±,故()0,23H ,由于2GA =,所以3HGA π∠=,所以点M 的轨迹长度为4433ππ⨯=. 故选:C本小题主要考查线面角的概念和运用,考查动点轨迹方程的求法,考查空间想象能力和逻辑推理能力,考查数形结合的数学思想方法,属于难题.8.在直角坐标系中,已知A (1,0),B (4,0),若直线x+my ﹣1=0上存在点P ,使得|PA|=2|PB|,则正实数m 的最小值是( )A .13B .3C D【答案】D 【解析】 【分析】设点()1,P my y -,由2PA PB =,得关于y 的方程.由题意,该方程有解,则0∆≥,求出正实数m 的取值范围,即求正实数m 的最小值. 【详解】由题意,设点()1,P my y -.222,4PA PB PA PB =∴=,即()()222211414my y my y ⎡⎤--+=--+⎣⎦,整理得()2218120m y my +++=,则()()22841120m m ∆=-+⨯≥,解得m ≥或m ≤.min 0,m m m >∴∴=.故选:D . 【点睛】本题考查直线与方程,考查平面内两点间距离公式,属于中档题.9.把满足条件(1)x R ∀∈,()()f x f x -=,(2)1x R ∀∈,2x R ∃∈,使得()()12f x f x =-的函数称为“D 函数”,下列函数是“D 函数”的个数为( )①2||y x x =+ ②3y x = ③x x y e e -=+ ④cos y x = ⑤sin y x x =A .1个B .2个C .3个D .4个【答案】B 【解析】 【分析】满足(1)(2)的函数是偶函数且值域关于原点对称,分别对所给函数进行验证.满足(1)(2)的函数是偶函数且值域关于原点对称,①不满足(2);②不满足(1); ③不满足(2);④⑤均满足(1)(2). 故选:B. 【点睛】本题考查新定义函数的问题,涉及到函数的性质,考查学生逻辑推理与分析能力,是一道容易题. 10.如图,已知直线:l ()()10y k x k =+>与抛物线2:4C y x =相交于A ,B 两点,且A 、B 两点在抛物线准线上的投影分别是M ,N ,若2AM BN =,则k 的值是( )A .13B .23C .23D .2【答案】C 【解析】 【分析】直线()()10y k x k =+>恒过定点()10P -,,由此推导出12OB AF =,由此能求出点B 的坐标,从而能求出k 的值. 【详解】设抛物线2:4C y x =的准线为:1l x =-,直线()()10y k x k =+>恒过定点()10P -,, 如图过A 、B 分别作AM l ⊥于M ,BN l ⊥于N , 由2AM BN =,则2FA FB =, 点B 为AP 的中点、连接OB ,则12OB AF =, ∴OB BF =,点B 的横坐标为12, ∴点B 的坐标为122B ⎛ ⎝,把122B ⎛ ⎝代入直线()()10y k x k =+>,解得223k=,故选:C.【点睛】本题考查直线与圆锥曲线中参数的求法,考查抛物线的性质,是中档题,解题时要注意等价转化思想的合理运用,属于中档题.11.若x,y满足约束条件-0210x yx yx≤⎧⎪+≤⎨⎪+≥⎩,,,则z=32xy++的取值范围为()A.[2453,] B.[25,3] C.[43,2] D.[25,2]【答案】D 【解析】【分析】由题意作出可行域,转化目标函数32xzy+=+为连接点()3,2D--和可行域内的点(),x y的直线斜率的倒数,数形结合即可得解. 【详解】由题意作出可行域,如图,目标函数32xzy+=+可表示连接点()3,2D--和可行域内的点(),x y的直线斜率的倒数,由图可知,直线DA的斜率最小,直线DB的斜率最大,由10x yx-=⎧⎨+=⎩可得()1,1A--,由210x yx+=⎧⎨+=⎩可得()1,3B-,所以121132DAk-+==-+,325132DBk+==-+,所以225z≤≤.故选:D.【点睛】本题考查了非线性规划的应用,属于基础题.12.《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“- ”当作数字“1”,把阴爻“--”当作数字“0”,则八卦所代表的数表示如下:卦名符号表示的二进制数表示的十进制数坤000 0震001 1坎010 2兑011 3依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18 B.17 C.16 D.15【答案】B【解析】【分析】由题意可知“屯”卦符号“”表示二进制数字010001,将其转化为十进制数即可.【详解】由题意类推,可知六十四卦中的“屯”卦符号“”表示二进制数字010001,转化为十进制数的计算为1×20+1×24=1.故选:B.【点睛】本题主要考查数制是转化,新定义知识的应用等,意在考查学生的转化能力和计算求解能力.二、填空题:本题共4小题,每小题5分,共20分。
安徽省马鞍山市(新版)2024高考数学统编版质量检测(综合卷)完整试卷
安徽省马鞍山市(新版)2024高考数学统编版质量检测(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题四棱锥的底面为正方形,,动点在线段上,则下列结论正确的是()A.四棱锥的体积为B.四棱锥的表面积为C.在中,当时,D.四棱锥的外接球表面积为第(2)题设,则的一个可能值是()A.B.1C.D.第(3)题已知抛物线的焦点为,准线与轴的交点为,点为抛物线上任意一点的平分线与轴交于,则的最大值为A.B.C.D.第(4)题已知一组数据丢失了其中一个,另外六个数据分别是10,8,8,11,16,8,若这组数据的平均数、中位数、众数依次成等差数列,则丢失数据的所有可能值的和为A.12B.20C.25D.27第(5)题若关于x的方程在区间内有解,则实数a的取值范围是A.B.C.D.第(6)题已知集合,下列选项中均为A的元素的是()(1)(2)(3)(4)A.(1)(2)B.(1)(3)C.(2)(3)D.(2)(4)第(7)题已知内接于半径为2的,内角A,B,C的角平分线分别与相交于D,E,F三点,若,则A.1B.2C.3D.4第(8)题已知集合,,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知实数满足,则下列说法正确的是()A.B.C.D.第(2)题如图,两个正四棱锥和的底面重合,顶点位于底面两侧,且平面平面.设直线与平面所成角为,直线与平面所成角为,直线与所成角为,则()A.B.C.D.第(3)题已知,下列说法正确的有( )A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知集合M={},N={},则M N =第(2)题若函数是偶函数,则实数的值为_____.第(3)题若存在直线既是曲线的切线,也是曲线的切线,则实数的最大值为___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题我国上是世界严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准(吨),用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解全市民月用水量的分布情况,通过抽样,获得了100位居民某年的月用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.(1)求直方图中的值;(2)已知该市有80万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)若该市政府希望使的居民每月的用水量不超过标准(吨),估计的值,并说明理由.第(2)题李先生是一名上班族,为了比较上下班的通勤时间,记录了20天个工作日内,家里到单位的上班时间以及同路线返程的下班时间(单位:分钟),如下茎叶图显示两类时间的共40个记录:(1)求出这40个通勤记录的中位数M ,并完成下列2×2列联表:超过M 不超过M上班时间下班时间(2)根据列联表中的数据,请问上下班的通勤时间是否有显著差异?并说明理由.附:,,第(3)题已知函数.(1)判断的奇偶性;(2)若,判断在的单调性,并用定义法证明;(3)若,,判断函数的零点个数,并说明理由.第(4)题已知、分别为椭圆左右焦点,为椭圆上一点,满足轴,,且椭圆上的点到左焦点的距离的最大值为.(1)求椭圆的方程;(2)若过点的直线交椭圆于,两点,(其中为坐标原点),与直线平行且与椭圆相切的两条直线分别为、,若与两直线间的距离为,求直线的方程.第(5)题已知函数,图像的相邻两对称轴之间的距离为.(1)求的值;(2)若,求的值.。
安徽省马鞍山市(新版)2024高考数学统编版(五四制)考试(拓展卷)完整试卷
安徽省马鞍山市(新版)2024高考数学统编版(五四制)考试(拓展卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题若直线上仅存在一点,使得过点的直线与圆切于点,且,则的值为()A.B.C.D.第(2)题设,则有()A.B.C.D.第(3)题已知抛物线,过其焦点且斜率为1的直线交抛物线于两点,若线段的中点的纵坐标为2,则该抛物线的准线方程为A.B.C.D.第(4)题函数在上的最大值和最小值分别是()A.B.C.D.第(5)题已知全集,集合满足,则()A.B.C.D.第(6)题已知函数.若,,且在上恰有3个极值点,则实数的取值范围为()A.B.C.D.第(7)题如图,网格纸上用粗实线绘制了一个几何体的三视图,每一个小正方形的边长为1,则该几何体的体积为()A.B.C.D.第(8)题下列四个命题中,不正确的是()A.若函数在处连续,则B.函数的不连续点是和C.若函数,满足,则D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题直线:与的图象交于、两点,在A、B两点的切线交于,的中点为,则()A.B.点的横坐标大于1C.D.的斜率大于0第(2)题下列各组集合不表示同一集合的是()A.B.C.D.第(3)题已知抛物线,F为抛物线C的焦点,下列说法正确的是()A.若抛物线C上一点P到焦点F的距离是4,则P的坐标为、B.抛物线C在点处的切线方程为C.一个顶点在原点O的正三角形与抛物线相交于A、B两点,的周长为D.点H为抛物线C的上任意一点,点,,当t取最大值时,的面积为2三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知函数,则不等式的解集为___________.第(2)题公比不为1的等比数列的前n项和为,若,且成等差数列,则_________,________.第(3)题已知函数,(其中).对于不相等的实数,设,.现有如下命题:(1)对于任意不相等的实数,都有;(2)对于任意的a及任意不相等的实数,都有;(3)对于任意的a,存在不相等的实数,使得;(4)对于任意的a,存在不相等的实数,使得.其中的真命题有____________(写出所有真命题的序号).四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题如图,在四棱锥中,平面,底面是平行四边形,,,,分别为,的中点,点在上.(1)确定点G的位置,使得;(2)当二面角与的大小相等时,求的长.第(2)题已知函数.(1)判断并证明的零点个数(2)记在上的零点为,求证;(i)是一个递减数列(ii).第(3)题近年来我国电子商务行业迎来蓬勃发展的新机遇,特别在疫情期间,电子商务更被群众广泛认可,2020年双11期间,某平台的销售业绩高达3568亿人民币.与此同时,相关管理部门也推出了针对电商的商品和服务评价体系,现从评价系统中随机选出200次成功的交易,并对其评价结果进行统计,对商品的好评率为,对服务的好评率为,其中对商品和服务都作出好评的交易为80次.(1)是否可以在犯错误概率不超过0.1%的前提下,认为商品和服务的好评率有关?(2)若针对商品的好评率,采用分层抽样的方式从这200次交易中取出5次交易,并从中选择两次交易进行客户回访,求只有一次好评的概率.0.150.100.050.0250.0100.0050.0012.072 2.7063.841 5.024 6.6357.87910.828(,其中n=a+b+c+d)第(4)题如图,在四棱柱中,底面是边长为2的正方形,,E分别为的中点,.(1)证明:平面;(2)求四棱柱的体积.第(5)题已知数列中,,.(1)证明:数列为等比数列;(2)设,求数列的前n项和.。
安徽省马鞍山市(新版)2024高考数学统编版(五四制)真题(拓展卷)完整试卷
安徽省马鞍山市(新版)2024高考数学统编版(五四制)真题(拓展卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知点分别是椭圆的左、右焦点,过的直线与圆相切,切点为,直线与椭圆交于点,且点在与之间,若的面积为,则椭圆的离心率为()A.B.C.D.第(2)题已知集合,,则()A.B.C.D.第(3)题若点为抛物线上一点,是抛物线的焦点,,点为直线上的动点,则的最小值为()A.8B.C.D.第(4)题在中,,,,为线段上的动点(不包括端点),且,则的最小值为()A.B.C.D.第(5)题下列命题中,真命题的是()A.若回归方程,则变量与正相关B.线性回归分析中相关指数用来刻画回归的效果,若值越小,则模型的拟合效果越好C.若样本数据的方差为2,则数据的标准差为4D.一个人连续射击三次,若事件“至少击中两次”的概率为0.7,则事件“至多击中一次”的概率为0.3第(6)题已知抛物线上有三点,,,点的纵坐标为2,,且,,则面积的最大值为()A.B.C.D.第(7)题已知,则()A.B.C.D.第(8)题若,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知,,,下列命题为真命题的是()A.若,则B.若,则C.若,则D.若,则第(2)题已知为坐标原点,抛物线的焦点为F,A,B是抛物线上两个不同的点,为线段AB的中点,则()A.若,则到准线距离的最小值为3B.若,且,则到准线的距离为C.若AB过焦点,,为直线AB左侧抛物线上一点,则面积的最大值为D.若,则到直线AB距离的最大值为4第(3)题已知函数,,()A.存在实数使得在单调递减B .若的图象关于点成中心对称,则的最小值为2C .若,将的图象向右平移个单位可以得到的图象D.若,的最大值为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题在中,已知是斜边上一动点,点满足,若,若点在边所在的直线上,则的值为__________;的最大值为__________.第(2)题已知椭圆E:(),F是E的左焦点,过E的上顶点A作AF的垂线交E于点B.若直线AB的斜率为,的面积为,则E的标准方程为______.第(3)题曲线C是平面内与两个定点F1(-1,0)和F2(1,0)的距离的积等于常数 a2 (a >1)的点的轨迹.给出下列三个结论:①曲线C过坐标原点;②曲线C关于坐标原点对称;③若点P在曲线C上,则△F PF的面积不大于a.其中,所有正确结论的序号是 _________ .四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数.(1)当时,,求a的取值范围;(2)若在时有两个极值点,证明:①;②.第(2)题如图,已知四棱锥的底面为菱形,且,,,M是棱PD上的点,且PB与平面MAC平行.(1)求证:;(2)若Q为棱PC上的动点,求MQ与平面PBC所成角的余弦值的最小值.第(3)题已知椭圆()的上、下顶点分别为,,左、右顶点分别为,,,四边形的面积为4.(1)求椭圆的标准方程;(2)若点,,是椭圆上两个不重合的点(均不同于点,),且直线与的斜率,满足,证明:,,三点共线.第(4)题为迎接2022年冬奥会,某地区高一、高二年级学生参加了冬奥知识竞赛.为了解知识竞赛成绩优秀不低于85分.学生的得分情况,从高一、高二这两个年级知识竞赛成绩优秀的学生中分别随机抽取容量为15、20的样本,得分情况统计如下图所示满分100分,得分均为整数.,其中高二年级学生得分按分组.(1)从抽取的高二年级学生样本中随机抽取一人,求其得分不低于90分的概率;(2)从该地区高二年级参加知识竞赛成绩优秀的学生中随机抽取3人,用频率估计概率,记为取出的3人中得分不低于90分的人数,求的分布列及数学期望;(3)由于高二年级学生样本原始数据丢失,请根据统计图信息,判断高二年级学生样本得分的最高分至少为多少分时,高二年级学生样本得分的平均分一定超过高一年级学生样本得分的平均分,并说明理由.第(5)题如图,在三棱台中,,,点D在棱上,且.(1)求证:D为的中点;(2)记二面角的大小为,直线与平面所成的角为,若,求的取值范围.。
皖江名校联盟2021高三数学上学期12月第四次联考试题理
安徽省皖江名校联盟2021届高三数学上学期12月第四次联考试题 理本试卷共4页,全卷满分150分,考试时间120分钟. 考生注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效. 4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数132i z i +=-,则||z =( )A .3B .2 C .2 D2.设全集U =R ,集合{}{|(1)(3)0},|24xA x x xB x =--≤=<,则集合(),U A B ⋂等于( )A .(1,2)B .(2.3]C .(1,3)D .(2,3)3.已知命题p :x ∀∈R ,|1|0x x +->;命题q :“a b >”是“ln ln a b >”的充要条件,则( )A .()p q ⌝∨为真命题B .p q ∨为真命题C .p q ∧为真命题D .()p q ∧⌝为假命题4.已知单位向量a ,b 满足|2||2|a b a b +=-,则(4)()a b a b +⋅-=( )A .1B .2C .3D .45.定义在R 上的偶函数()1()22x m f x -⎛⎫=- ⎪⎝⎭,设31211log ,,()33a f b f c f m ⎛⎫⎛⎫⎛⎫⎪=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则( )A .c a b <<B .a c b <<C .a b c <<D .b a c << 6.两千多年前,古希腊著名数学家欧几里得把素数(即质数)看作数学中的原子.长期以来,人们在研究素数的过程中取得了及其丰硕的成果,如哥德巴赫猜想、梅森素数等.对于如何判断一个大于1的自然数0n 是否为素数,某数学爱好者设计了如图所示的程序框图,则空白的判断框内应填入的最优判断条件为( )A .?i k ≤B .1?i k ≤-C .?i k ≥D .1?i k ≥- 7.设等比数列{}na 中,前n 项和为nS ,已知368,7SS ==,则789a a a ++,等于( )A .18B .18-C .578D .5588.函数()2()2x f x xx e =-的图象大致是()A .B .C .D .9.已知关于x 的不等式2240ax x a -+<在(0,2]上有解,则实数a 的取值范围是( )A .1,2⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .(2,)+∞ 10.已知0ω>,函数()cos 4f x x πω⎛⎫=- ⎪⎝⎭在区间,2ππ⎛⎫ ⎪⎝⎭上单调递减,则ω的取值范围是( )A .1,22⎡⎤⎢⎥⎣⎦B .13,24⎡⎤⎢⎥⎣⎦C .15,24⎡⎤⎢⎥⎣⎦D .37,24⎡⎤⎢⎥⎣⎦11.在棱长为4的正方体1111ABCD A B C D -中,P 为线段11C D 的中点,若三棱锥P ABC -的四个顶点都在球O 的球面上,则球O 的表面积为( )A .40πB .41πC .42πD .48π 12.已知函数12()ln x e f x x a x x-=+,当1x >时,()0f x ≥恒成立,则实数a的取值范围为( ) A .[1,)e -+∞ B .)22,e⎡-+∞⎣C .[,)e +∞D .[2,)+∞二、填空题:本题共4小题,每小题5分,共20分.13.已知角α的顶点与坐标原点重合,始边与x 轴的非负半轴重合,若点(3,4)P -在角α的终边上,则sin2α=_________.14.已知实数x ,y 满足约束条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩,则22x yz -=的最大值为_________.15.已知函数()f x 的图象经过点(0,2)-,若函数(1)1009y f x =+-为奇函数,则(2)f =___________. 16.已知ABC 中,,3,62A AB AC π∠===.如图,点D 为斜边BC 上一个动点,将ABD 沿AD 翻折,使得平面AB D '⊥平面ACD .当BD =___________时,B C '取到最小值___________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)设数列{}na 的前n 项和为nS ,若511,25S a==,且11211n n n S S S n n n -+=+-+,(2n ≥且*n ∈N ).(1)求nS ,并求出数列{}na 的通项公式;(2)设12123111n nn Ta a a a a a +=+++,求2021T 的值.18.(12分)ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且cos cos cos 3sin cos BA Ca B Cb+=.(1)求角C 的大小;(2)若6c =,且AB 边上的中线4CD =,求ABC 的面积.如图,在棱柱ABCD EFGH -中,AE ⊥平面ABCD ,底面ABCD 为平行四边形且222,3AB AD AE BAD π===∠=.(1)证明:平面BDH ⊥平面BCH ; (2)求二面角C AH D --的余弦值. 20.(12分) 已知函数()1xx xf x aee=--(其中0a >,e 是自然对数的底数).(1)当2a =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (2)若函数()f x 恰好有两个零点,求实数a 的取值范围. 21.(12分)如图,在四棱锥P ABCD -中,底面ABCD 为菱形,3BAD π∠=,Q 为AD 的中点,2PA PD AD ===.(1)点M 在线段PC 上,PM tPC =,试确定t 的值,使得//PA 平面MQB ; (2)在(1)的条件下,若3PB =,求直线PD 和平面МQB 所成角的正弦值.已知函数ln ()1x f x x =-.(1)求()f x 的单调区间;(2)证明:2()xxf x e>(其中e 是自然对数的底数, 2.71828e =⋅⋅⋅)2021届高三第四次联考理数参考答案1.【解析】13(13)(2)171725555i i i i z i i +++-+====-+-,||z == 2.【解析】因为{|(1)(3)0}{|13}UA x x x x x =-->=<<,又因为{|2}B x x =<.所以(){|12}UA B x x ⋂=<<,,故选A .3.【解析】|1|0|1|x x x x +->⇔+>,0x <时右边负数显然成立,0x ≥时1x x+>也成立,所以命题p 是真命题,对于命题q ,当0a =时ln a 没有意义,命题q 是假命题.所以()p q ⌝∨为假命题,A 错误;p q ∨为真命题,B 正确;p q ∧为假命题,C 错误;()p q ∧⌝为真命题,D 错误.故选B . 4.【解析】由|2||2|a b a b +=-得a b ⋅=,又||1,||1a b ==,∴22(4)()43a b a b a b +⋅-=-=.5.【解析】由()f x 是偶函数得||10,()22x m f x ⎛⎫==- ⎪⎝⎭,在(0,)+∞上单调递减.又1231101,log 133⎛⎫<<=- ⎪⎝⎭,所以121(0)(1)(1)3c f b f a f f ⎛⎫⎛⎫⎪=>=>=-= ⎪ ⎪⎝⎭⎝⎭.6.【解析】假如n 是合数,它必有一个约数a ,使得a b n ⨯=,且a 、b 两个数中必有一个大于或者等于n ,另一个小于或者等于n ,所以只要小于或者等于n 的数(1除外),不能整除n ,则n必是素数,应填入1?i k ≤-,故选B . 7.【解析】33363318878S S q S q q =+=+=⇒=-,267897891231118648a a a q a a a a a a ++⎛⎫==-=⇒++= ⎪++⎝⎭.8.【解析】函数有且只有2个零点,排除AC ,求导可得函数有极大值和极小值,故选B .9.【解析】(0,2]x ∈时,不等式可化为22244xa x x x<=++;令2()4f x x x=+,则max 21()224a f x <==,综上所述,实数a 的取值范围是1,2⎛⎫-∞ ⎪⎝⎭.10.【解析】由题意210222πππωω-≤⨯⇒<≤,()cos sin 44f x x x ππωω⎛⎫⎛⎫=-=+ ⎪ ⎪⎝⎭⎝⎭,求导()cos 4f x x πωω⎛⎫=⋅+ ⎪⎝⎭',于是cos 04x πω⎛⎫+≤ ⎪⎝⎭在区间,2ππ⎛⎫⎪⎝⎭上恒成立,注意2424444x ππππππωωπωπ<+<+<+≤+,所以3,,24422πππππωπω⎛⎫⎡⎤++⊆⎪⎢⎥⎝⎭⎣⎦,因此12242πππωω≤+⇒≥且35424πππωω+≤⇒≤,所以ω的取值范围是15,24⎡⎤⎢⎥⎣⎦. 11.【解析】分别以1,,AB AD AA 的方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系A xyz -,则(0,0,0)A ,(4,0,0)B ,(4,4,0)C ,(2,4,4)P ,设ABC的外心为M ,则(2,2,0)M ,设球O 的球心为(2,2,)O h ,半径为R ,则||||OA OP R ==,所以222444(4)R h h =++=+-,解得32h =,所以2414R=,所以球O 的表面积为2441Rππ=,故选B .12.【解析】因为112ln 2()ln ln 2ln ln (2)ln 0x x x e f x x a x e x a x x x x a x a x x---=-+=-+≥--+=-≥在(1,)+∞上恒成立,因此202a a -≥⇒≥,故选D .注意不等式12ln 2ln x x e x x --≥-等号可以成立.13.【答案】2425-【解析】由题设43sin ,cos 55αα==-,所以4324sin 225525α⎛⎫=⨯⨯-=- ⎪⎝⎭. 14.【答案】32【解析】约束条件表示的区域是以(1,1),(2,2),(3,1)为顶点的三角形,目标函数在(3,1)处取最大值. 15.【答案】2020【解析】函数(1)1009y f x =+-为奇函数,所以函数()f x 得图像关于(1,1009)对称,故有()(2)2018f x f x +-=,由已知(0)2f =-,则(2)2020f =.16.【答案】5,33(第一问3分,第二问2分)【解析】设,0,2BAD παα⎛⎫∠=∈ ⎪⎝⎭,作BE AD ⊥或AD 的延长线于E 点,作CF AD ⊥或AD 的延长线于F 点,则ACF BAD α∠=∠=,3sin BE α=,3cos AE α=,6cos CF α=,6sin AF α=∴|||6sin 3cos |EF AF AE αα=-=-,∴2224518sin2B C BE CF EF α=-'=++∴当sin21α=,即4πα=时,min33B C '=,此时AD 是角平分线.由角平分线定理或者面积比可得31563AB DB BD BD BC ACDC DC =⇒=⇒==.17.【解析】(1)151,515S S ==,又n S n ⎧⎫⎨⎬⎩⎭是等差数列,所以首项是1,公差是1,nSn n =即2nSn =,所以121n n n a S S n -=-=-(1n >时),显然1n =也符合.所以()21na n n N *=-∈.5分(2)122311111111335(21)(21)nn n Ta a a a a a n n +=+++=+++⨯⨯-+11111111112335212122121n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 所以2021202120212202114043T==⨯+10分18.【解析】(1)因为cos cos cos sin cos B A C B C +=,由正弦定理,得cos cos cos sin cos B A CB C +=,所以cos()cos cos sin cos A C A C B C -++=.所以sin sin cos A C A C =.又因为sin 0A ≠,所以tan C =.因为(0,)C π∈,所以3C π=6分(2)因为cos cos 0BDC ADC ∠+∠=,所以22222234340234234a b +-+-+=⨯⨯⨯⨯,得2250a b +=;又因为22262cos3a b ab abπ+-==,所以14ab =,所以11sin 14222S ab C ==⨯⨯= 12分19.【解析】(1)在ABD 中,2,1,3AB AD BAD π==∠=,222241212cos33BD BD AD AB π=+-⨯⨯=⇒+=, 3分AD BD ⇒⊥,由AE ⊥平面ABCD DH ⇒⊥平面ABCD DH AD ⇒⊥,所以AD ⊥平面BDH ,又//AD BC ,所以BC ⊥平面BDH ,而BC ⊆平面BCH ,所以平面BDH ⊥平面BCH . 6分(2)由(1)知,,DA DC DH 两两互相垂直,建立如图所示空间直角坐标系,(0,0,0),(1,0,0),(3,0),(0,0,1)D A C H -易知(0,3,0)DB =是平面ADH 的法向量;(2,3,0),(1,0,1)AC AH =-=-,设平面ACH 的法向量(,,)n x y z =,则023000n AC x x z n AH ⎧⎧⋅=-+=⎪⎪⇒⎨⎨-+=⎪⋅=⎪⎩⎩,令3x =得2,3y z ==,于是(3,2,3)n = 设二面角C AH D--的平面角为θ(由图知为锐角),则2310cos cos ,5310DB n θ=〈〉==⨯. 12分20.【解析】(1)当2a =时,()21xx x f x e e =--,所以1()2xxx f x e e --'=,所以(0)211f =-='.又(0)211f =-=, 所以曲线()y f x =在点(0,(0))f 处的切线方程为1y x-=,即10x y -+=.4分(2)问题等价于1()1xxx g x e e⎛⎫=+ ⎪⎝⎭的图象和直线y a =恰好有2个交点,求a 的取值范围. 令1()1x x x g x e e ⎛⎫=+ ⎪⎝⎭,则212()xxx e g x e '--=.令()12xh x x e =--, 6分11则()20xh x e=--<',∴()h x 在(,)-∞+∞上单调递减.又(0)0h =,∴当(,0)x ∈-∞时,()0h x >,()0g x '>,∴()g x 在(,0)-∞上单调递增. 当(0,)x ∈+∞时,()0h x <,()0g x '<,∴()g x 在(0,)+∞上单调递减, ∴()g x 的极大值即最大值为(0)1g =. 10分∴当(,0]x ∈-∞时,()(,1]g x ∈-∞;当(0,)x ∈+∞时,()(0,1)g x ∈.∴当(0,1)a ∈时,1()1xxx g x e e⎛⎫=+ ⎪⎝⎭的图象和直线y a =恰好有2个交点,函数()f x 恰好有两个零点. 12分 21.【解析】(1)当13t =时,//PA 平面MQB .连接AC 交BQ 于点N ,连接MN ,由题设1//,2AQ BC AQ BC =,得13AN AC =. 若//PA 平面MQB ,由平面PAC ⋂平面MQB MN =,得//PA MN ,于是11,33PM PC t ==.当1,////3PM AN t PA MN PA PC AC==⇒⇒平面MQB .(这一步没有扣2分) 4分(2)连接BD ,由题设,ABD PAD 都是等边三角形,Q 是AD 中点,,,PQ AD BQ AD AD ⊥⊥⊥平面PQB .123,3PQ BQ PB ===,在PQB 中,33912cos 23233PQB PQB π+-∠==-⇒∠=⨯⨯. 6分在平面PQB内作PT QB⊥于T ,则3PQT π∠=,3313sin3,cos 3322322PT PQ QT PQ ππ==⨯===⨯=.由AD ⊥平面PQB AD PT ⇒⊥,可得PT ⊥平面ABCD .以点Q 为原点,建立如图所示的空间直角坐标系, 可得各点坐标如下33(0,0,0),(1,0,0),(0,3,0),(2,3,0),(1,0,0),0,,22Q A B C D P ⎛⎫--- ⎪⎝⎭,由13PM PC=可得2,0,13M ⎛⎫- ⎪⎝⎭,所以2,0,1,(0,3,0)3QM QB ⎛⎫=-= ⎪⎝⎭,8分设平面MQB 的法向量(,,)e x y z =,则20,303QM e x z QB e y ⋅=-+=⋅==,可取3,0,2x y z ===,法向量(3,0,2)e =直线PD 的方向向量332PD ⎛⎫=-- ⎪⎝⎭, 直线PD和平面MQB所成角为θ,则333sin |cos ,|1313||||213PD e PD e PD e θ⋅--=〈〉===⨯⨯13所以直线PD和平面MQB所成角的正弦值等于12分22.【解析】(1)定义域是(0,1)(1,)⋃+∞,211ln ()(1)x x f x x ---'=,令1()1ln u x x x =--,则21()xu x x-=', 所以()u x 在(0,1)递增,在(1,)+∞递减,故(0,1)(1,)x ∈⋃+∞时,()(1)0u x u <=,也即()0f x '<, 因此()f x 在()0,1上单调递减;在(1,)+∞上也单调递减;4分(2)先证xeex ≥,令()()01x x h x e ex h x e e x =-⇒=-=⇒=',在(,1)-∞上()0h x '<,在(1,)+∞上()0h x '>,因此1x =是()h x 唯一的极小值点,(1)0h =,所以()(1)0xh x eex h =-≥=,故x e ex ≥.6分记2(1)()ln xx x g x x e -=-,则()222235352223112622222()0xx x x x xx x x e x x e x e x x x x x g x x e xe xe xe⎛⎫⎛⎫⎛⎫--+-+- ⎪ ⎪ ⎪+'-+-+⎝⎭⎝⎭⎝⎭=+==>>,9分()g x 在(0,)+∞上单调递增,(1)0g =.在区间(0,1)上2(1)2(1)ln 2()ln (1)0ln 1xxxx x x x x xg x x g x e e x e--=-<=⇒<⇒>-;在区间(1,)+∞上2(1)2(1)ln 2()ln (1)0ln 1xxxx x x x x xg x x g x e e x e--=->=⇒>⇒>-;综上所述,ln 2()1xx xf x x e=>-成立. 12分。
安徽省淮南市2021届新高考第四次大联考数学试卷含解析
安徽省淮南市2021届新高考第四次大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在三棱锥S ABC -中,4SB SA AB BC AC =====,26SC =,则三棱锥S ABC -外接球的表面积是( )A .403πB .803πC .409πD .809π 【答案】B【解析】【分析】取AB 的中点D ,连接SD 、CD ,推导出90SDC ∠=o ,设设球心为O ,ABC ∆和SAB ∆的中心分别为E 、F ,可得出OE ⊥平面ABC ,OF ⊥平面SAB ,利用勾股定理计算出球O 的半径,再利用球体的表面积公式可得出结果.【详解】取AB 的中点D ,连接SD 、CD ,由SAB ∆和ABC ∆都是正三角形,得SD AB ⊥,CD AB ⊥,则3423SD CD ===,则(((222222336SD CD SC +=+==,由勾股定理的逆定理,得90SDC ∠=o . 设球心为O ,ABC ∆和SAB ∆的中心分别为E 、F .由球的性质可知:OE ⊥平面ABC ,OF ⊥平面SAB , 又312343OE DF OE OF =====,由勾股定理得2226OD OE DE =+=所以外接球半径为22222660233R OD BD ⎛⎫=+=+= ⎪ ⎪⎝⎭. 所以外接球的表面积为226080443S R πππ===⎝⎭.故选:B.【点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,找出球心的位置,并以此计算出球的半径长,考查推理能力与计算能力,属于中等题.2.双曲线2212y x -=的渐近线方程为( )A .3y x =± B .y x =± C .2y x =± D .3y x =±【答案】C【解析】【分析】根据双曲线的标准方程,即可写出渐近线方程.【详解】Q 双曲线2212yx -=,∴双曲线的渐近线方程为2y x =±,故选:C【点睛】本题主要考查了双曲线的简单几何性质,属于容易题.3.已知集合{}|,A x x a a R =≤∈,{}|216x B x =<,若A B ,则实数a 的取值范围是() A .∅ B .R C .(],4-∞ D .(),4-∞【答案】D【解析】【分析】先化简{}{}|216|4x B x x x =<=<,再根据{}|,A x x a a R =≤∈,且A B 求解.【详解】因为{}{}|216|4x B x x x =<=<,又因为{}|,A x x a a R =≤∈,且A B ,所以4a <.故选:D【点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.4.已知x,y满足不等式224xyx y tx y≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩,且目标函数z=9x+6y最大值的变化范围[20,22],则t的取值范围()A.[2,4] B.[4,6] C.[5,8] D.[6,7] 【答案】B【解析】【分析】作出可行域,对t进行分类讨论分析目标函数的最大值,即可求解.【详解】画出不等式组24xyx y≥⎧⎪≥⎨⎪+=⎩所表示的可行域如图△AOB当t≤2时,可行域即为如图中的△OAM,此时目标函数z=9x+6y 在A(2,0)取得最大值Z=18不符合题意t>2时可知目标函数Z=9x+6y在224x y tx y+=⎧⎨+=⎩的交点(82433t t--,)处取得最大值,此时Z=t+16由题意可得,20≤t+16≤22解可得4≤t≤6故选:B.【点睛】此题考查线性规划,根据可行域结合目标函数的最大值的取值范围求参数的取值范围,涉及分类讨论思想,关键在于熟练掌握截距型目标函数的最大值最优解的处理办法.5.i 是虚数单位,21i z i =-则||z =( ) A .1B .2C .2D .22【答案】C【解析】【分析】 由复数除法的运算法则求出z ,再由模长公式,即可求解.【详解】由22(1)1,||21i i z i z i +==-+=-. 故选:C.【点睛】本题考查复数的除法和模,属于基础题.6.赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,又称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的,如图(1)),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由6个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设A F F A 2'''=,若在大正六边形中随机取一点,则此点取自小正六边形的概率为( )A 213B .413C .277D .47【答案】D【解析】【分析】设AF a '=,则2A F a ''=,小正六边形的边长为2A F a ''=,利用余弦定理可得大正六边形的边长为7AB a =,再利用面积之比可得结论.【详解】由题意,设AF a '=,则2A F a ''=,即小正六边形的边长为2A F a ''=,所以,3FF a '=,3AF F π'∠=,在AF F '∆中,由余弦定理得2222cos AF AF FF AF FF AF F '''''=+-⋅⋅∠,即()222323cos 3AF a a a a π=+-⋅⋅,解得AF =,所以,大正六边形的边长为AF =,所以,小正六边形的面积为21122222S a a a =⨯⨯+⨯=,大正六边形的面积为22122S =+=, 所以,此点取自小正六边形的概率1247S P S ==. 故选:D.【点睛】本题考查概率的求法,考查余弦定理、几何概型等基础知识,考查运算求解能力,属于基础题. 7.某大学计算机学院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲从人工智能领域的语音识别、人脸识别,数据分析、机器学习、服务器开发五个方向展开研究,且每个方向均有研究生学习,其中刘泽同学学习人脸识别,则这6名研究生不同的分配方向共有( )A .480种B .360种C .240种D .120种【答案】B【解析】【分析】将人脸识别方向的人数分成:有2人、有1人两种情况进行分类讨论,结合捆绑计算出不同的分配方法数.【详解】当人脸识别方向有2人时,有55120A =种,当人脸识别方向有1人时,有2454240C A =种,∴共有360种. 故选:B【点睛】本小题主要考查简单排列组合问题,考查分类讨论的数学思想方法,属于基础题.8.已知函数()cos f x x =与()sin(2)(0)g x x ϕϕπ=+<…的图象有一个横坐标为3π的交点,若函数()g x 的图象的纵坐标不变,横坐标变为原来的1ω倍后,得到的函数在[0,2]π有且仅有5个零点,则ω的取值范围是( )A .2935,2424⎡⎫⎪⎢⎣⎭B .2935,2424⎡⎤⎢⎥⎣⎦C .2935,2424⎛⎫ ⎪⎝⎭D .2935,2424⎛⎤ ⎥⎝⎦ 【答案】A【解析】【分析】根据题意,2cos sin 33ππϕ⎛⎫=+ ⎪⎝⎭,求出6π=ϕ,所以()sin 26g x x π⎛⎫=+ ⎪⎝⎭,根据三角函数图像平移伸缩,即可求出ω的取值范围.【详解】已知()cos f x x =与()sin(2)(0)g x x ϕϕπ=+<„的图象有一个横坐标为3π的交点, 则2cos sin 33ππϕ⎛⎫=+ ⎪⎝⎭, 225,333πππϕ⎡⎤+∈⎢⎥⎣⎦Q , 2536ππϕ∴+=,6πϕ∴=, ()sin 26g x x π⎛⎫∴=+ ⎪⎝⎭, 若函数()g x 图象的纵坐标不变,横坐标变为原来的1ω倍, 则sin 26y x πω⎛⎫=+ ⎪⎝⎭, 所以当[0,2]x πÎ时,2,4666x πππωπω⎡⎤+∈+⎢⎥⎣⎦, ()f x Q 在[0,2]π有且仅有5个零点,5466πππωπ∴+<„,29352424ω∴<„. 故选:A.【点睛】本题考查三角函数图象的性质、三角函数的平移伸缩以及零点个数问题,考查转化思想和计算能力. 9.函数的图象可能是下面的图象( )A .B .C .D .【答案】C【解析】 因为,所以函数的图象关于点(2,0)对称,排除A ,B .当时,,所以,排除D .选C .10.已知实数,x y 满足,10,1,xy x y y ≥⎧⎪+-≤⎨⎪≥-⎩则2z x y =+的最大值为() A .2 B .32 C .1D .0 【答案】B 【解析】【分析】作出可行域,平移目标直线即可求解.【详解】解:作出可行域:由2z x y =+得,1122y x z =-+由图形知,1122y x z =-+经过点时,其截距最大,此z 时最大10y x x y =⎧⎨+-=⎩得1212x y ⎧=⎪⎪⎨⎪=⎪⎩,11,22C ⎛⎫⎪⎝⎭当1212x y ⎧=⎪⎪⎨⎪=⎪⎩时,max 1232222z =+⨯= 故选:B【点睛】考查线性规划,是基础题.11.下列说法正确的是( )A .“若1a >,则21a >”的否命题是“若1a >,则21a ≤”B .“若22am bm <,则a b <”的逆命题为真命题C .0(0,)x ∃∈+∞,使0034x x >成立D .“若1sin 2α≠,则6πα≠”是真命题 【答案】D【解析】选项A ,否命题为“若1a ≤,则21a ≤”,故A 不正确.选项B ,逆命题为“若a b <,则22am bm <”,为假命题,故B 不正确.选项C ,由题意知对x ∀()0,∈+∞,都有34x x <,故C 不正确.选项D ,命题的逆否命题“若6πα=,则1sin 2α=”为真命题,故“若1sin 2α≠,则6πα≠”是真命题,所以D 正确.选D .12.a 为正实数,i 为虚数单位,2a i i+=,则a=( ) A .2BCD .1 【答案】B【解析】【分析】【详解】||220,a i a a a i+==∴=>∴=Q B. 二、填空题:本题共4小题,每小题5分,共20分。
安徽省滁州市2021届新高考第四次大联考数学试卷含解析
安徽省滁州市2021届新高考第四次大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若a >b >0,0<c <1,则 A .log a c <log b c B .log c a <log c bC .a c <b cD .c a >c b【答案】B 【解析】试题分析:对于选项A ,a b 1gc 1gclog c ,log c lg a lg b==,01c <<,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用cy x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.2.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为 ( )A .B .C .D .【答案】A 【解析】 【分析】设球心为,三棱柱的上底面的内切圆的圆心为,该圆与边切于点,根据球的几何性质可得为直角三角形,然后根据题中数据求出圆半径,进而求得球的半径,最后可求出球的体积.【详解】 如图,设三棱柱为,且,高. 所以底面为斜边是的直角三角形,设该三角形的内切圆为圆,圆与边切于点,则圆的半径为.设球心为,则由球的几何知识得为直角三角形,且,所以,即球的半径为,所以球的体积为.故选A . 【点睛】本题考查与球有关的组合体的问题,解答本题的关键有两个:(1)构造以球半径、球心到小圆圆心的距离和小圆半径为三边的直角三角形,并在此三角形内求出球的半径,这是解决与球有关的问题时常用的方法. (2)若直角三角形的两直角边为,斜边为,则该直角三角形内切圆的半径,合理利用中间结论可提高解题的效率.3.已知数列{}n a 满足()*331log 1log n n a a n N ++=∈,且2469aa a ++=,则()13573log a a a ++的值是( ) A .5 B .3-C .4D .991【答案】B 【解析】由331log 1log n n a a ++=,可得13n n a a +=,所以数列{}n a 是公比为3的等比数列,所以2462222981919a a a a a a a ++=++==,则2991a =, 则3135712221333log ()log (327243)log 33a a a a a a ++=++==-,故选B. 点睛:本题考查了等比数列的概念,等比数列的通项公式及等比数列的性质的应用,试题有一定的技巧,属于中档试题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,等比数列的性质和在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.4.已知非零向量,a b 满足0a b ⋅=,||3a =,且a 与a b +的夹角为4π,则||b =( )A .6B .C .D .3【答案】D 【解析】 【分析】利用向量的加法的平行四边形法则,判断四边形的形状,推出结果即可. 【详解】解:非零向量a ,b 满足0a b =,可知两个向量垂直,||3a =,且a 与a b +的夹角为4π, 说明以向量a ,b 为邻边,a b +为对角线的平行四边形是正方形,所以则||3b =. 故选:D . 【点睛】本题考查向量的几何意义,向量加法的平行四边形法则的应用,考查分析问题解决问题的能力,属于基础题.5.空间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂足之间的距离叫做这个点到这个平面的距离.已知平面α,β,λ两两互相垂直,点A α∈,点A 到β,γ的距离都是3,点P 是α上的动点,满足P 到β的距离与P 到点A 的距离相等,则点P 的轨迹上的点到β的距离的最小值是( )A .3B .3C D .32【答案】D 【解析】 【分析】建立平面直角坐标系,将问题转化为点P 的轨迹上的点到x 轴的距离的最小值,利用P 到x 轴的距离等于P 到点A 的距离得到P 点轨迹方程,得到()26399y x =-+≥,进而得到所求最小值.【详解】如图,原题等价于在直角坐标系xOy 中,点()3,3A ,P 是第一象限内的动点,满足P 到x 轴的距离等于点P 到点A 的距离,求点P 的轨迹上的点到x 轴的距离的最小值. 设(),P x y ,则()()2233y x y =-+-,化简得:()23690x y --+=,则()26399y x =-+≥,解得:32y ≥, 即点P 的轨迹上的点到β的距离的最小值是32. 故选:D . 【点睛】本题考查立体几何中点面距离最值的求解,关键是能够准确求得动点轨迹方程,进而根据轨迹方程构造不等关系求得最值.6.阿波罗尼斯(约公元前262~190年)证明过这样的命题:平面内到两定点距离之比为常数()0,1k k k >≠的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 与A ,B 的距离2,当P ,A ,B 不共线时,PAB ∆的面积的最大值是( ) A .2B .2C .23D .23【答案】A 【解析】 【分析】根据平面内两定点A ,B 间的距离为2,动点P 与A ,B 的距离之比为22,利用直接法求得轨迹,然后利用数形结合求解. 【详解】 如图所示:设()1,0A -,()10B ,,(),P x y ()()22221221x y x y ++=-+, 化简得()2238x y ++=,当点P 到AB (x 轴)距离最大时,PAB ∆的面积最大, ∴PAB ∆面积的最大值是1222222⨯⨯=故选:A. 【点睛】本题主要考查轨迹的求法和圆的应用,还考查了数形结合的思想和运算求解的能力,属于中档题. 7.已知a b ,满足23a =,3b =,6a b ⋅=-,则a 在b 上的投影为( ) A .2- B .1-C .3-D .2【答案】A 【解析】 【分析】根据向量投影的定义,即可求解. 【详解】a 在b 上的投影为6cos 23a b a bθ⋅-===-. 故选:A 【点睛】本题考查向量的投影,属于基础题.8.已知i 为虚数单位,则()2312ii i +=-( ) A .7455i + B .7455i - C .4755i + D .4755i - 【答案】A【分析】根据复数乘除运算法则,即可求解. 【详解】()()()()()2322323741222255i i i i i i i i i i +-++===+-++-.故选:A. 【点睛】本题考查复数代数运算,属于基础题题. 9.要得到函数()sin(3)3f x x π=+的导函数()f x '的图像,只需将()f x 的图像( )A .向右平移3π个单位长度,再把各点的纵坐标伸长到原来的3倍 B .向右平移6π个单位长度,再把各点的纵坐标缩短到原来的13倍 C .向左平移3π个单位长度,再把各点的纵坐标缩短到原来的13倍 D .向左平移6π个单位长度,再把各点的纵坐标伸长到原来的3倍 【答案】D 【解析】 【分析】 先求得()'fx ,再根据三角函数图像变换的知识,选出正确选项.【详解】 依题意()'553cos 33cos 33sin 33626fx x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫=+=+-=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦3sin 363x ππ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦,所以由()sin(3)3f x x π=+向左平移6π个单位长度,再把各点的纵坐标伸长到原来的3倍得到()'f x 的图像.故选:D 【点睛】本小题主要考查复合函数导数的计算,考查诱导公式,考查三角函数图像变换,属于基础题. 10.设复数z 满足2z iz i -=+(i 为虚数单位),则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】 【分析】由复数的除法运算可整理得到z ,由此得到对应的点的坐标,从而确定所处象限.由2z iz i -=+得:()()()()2121313111222i i i i z i i i i ++++====+--+, z ∴对应的点的坐标为13,22⎛⎫⎪⎝⎭,位于第一象限.故选:A . 【点睛】本题考查复数对应的点所在象限的求解,涉及到复数的除法运算,属于基础题. 11.已知集合2{|1}A x x =<,{|ln 1}B x x =<,则 A .{|0e}A B x x =<< B .{|e}A B x x =< C .{|0e}A B x x =<< D .{|1e}AB x x =-<<【答案】D 【解析】 【分析】 【详解】因为2{|1}{|11}A x x x x =<=-<<,{|ln 1}{|0e}B x x x x =<=<<, 所以{|01}AB x x =<<,{|1e}A B x x =-<<,故选D .12.设命题p:n ∃>1,n 2>2n ,则⌝p 为( ) A .21,2n n n ∀>> B .21,2n n n ∃≤≤ C .21,2n n n ∀>≤ D .21,2n n n ∃>≤【答案】C 【解析】根据命题的否定,可以写出p ⌝:21,2nn n ∀>≤,所以选C.二、填空题:本题共4小题,每小题5分,共20分。
安徽省马鞍山市2021届新高考第四次质量检测物理试题含解析
安徽省马鞍山市2021届新高考第四次质量检测物理试题一、单项选择题:本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.如图所示,空间有一正三棱锥P ABC -,D 点是BC 边上的中点,O 点是底面ABC 的中心,现在顶点P 点固定一正的点电荷,在O 点固定一个电荷量与之相等的负点电荷。
下列说法正确的是( )A .A 、B 、C 三点的电场强度相同B .底面ABC 为等势面C .将一正的试探电荷从B 点沿直线BC 经过D 点移到C 点,静电力对该试探电荷先做正功再做负功 D .将一负的试探电荷从P 点沿直线PO 移动到O 点,电势能先增大后减少【答案】C【解析】【详解】A .A 、B 、C 三点到P 点和O 点的距离都相等,根据场强的叠加法则可知A 、B 、C 三点的电场强度大小相等,但方向不同,A 错误;BC .处于O 点的负电荷周围的等势面为包裹该负电荷的椭球面,本题O 为等边三角形ABC 的中心,即A 、B 、C 三点电势相等,但是该平面不是等势面,沿着电场线方向电势降低,越靠近负电荷,电势越低,即B C 、电势高于D 点电势,B 经D 到C ,电势先减小后增大,根据电势能的计算公式p E q ϕ=可知正试探电荷电势能先减小后增大,电场力先做正功再做负功,B 错误,C 正确;D .沿着电场线方向电势降低,负试探电荷从高电势P 点移到低电势O 点,根据电势能的计算公式可知电势能一直增大,D 错误。
故选C 。
2.一个质点做简谐运动的图象如图所示,下列说法不正确的是( )A.质点振动的频率为4 HzB.在10s内质点经过的路程是20 cmC.在5s末,质点的速度为零,加速度最大D.t=1.5 s和t=4.5 s cm 【答案】A【解析】【详解】A.由题图图象可知,质点振动的周期为T=4s,故频率f=1T=0.25Hz故A符合题意;B.在10 s内质点振动了2.5个周期,经过的路程是10A=20cm故B不符合题意;C.在5s末,质点处于正向最大位移处,速度为零,加速度最大,故C不符合题意;D.由题图图象可得振动方程是x=2sin2tπ⎛⎫⎪⎝⎭cm将t=1.5s和t=4.5s代入振动方程得x cm故D不符合题意。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽省马鞍山市2021届新高考第四次大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数z 满足12z zz +=+,z 在复平面内对应的点的坐标为(),x y 则( ) A .221x y =+ B .221y x =+ C .221x y =- D .221y x =-【答案】B 【解析】 【分析】根据共轭复数定义及复数模的求法,代入化简即可求解. 【详解】z 在复平面内对应的点的坐标为(),x y ,则z x yi =+,z x yi =-,∵12z zz +=+,1x =+, 解得221y x =+. 故选:B. 【点睛】本题考查复数对应点坐标的几何意义,复数模的求法及共轭复数的概念,属于基础题.2.已知斜率为k 的直线l 与抛物线2:4C y x =交于A ,B 两点,线段AB 的中点为()()1,0M m m >,则斜率k 的取值范围是( ) A .(,1)-∞ B .(,1]-∞C .(1,)+∞D .[1,)+∞【答案】C 【解析】 【分析】设1(A x ,1)y ,2(B x ,2)y ,设直线l 的方程为:y kx b =+,与抛物线方程联立,由△0>得1kb <,利用韦达定理结合已知条件得22k b k -=,2m k=,代入上式即可求出k 的取值范围.【详解】设直线l 的方程为:y kx b =+, 1(A x ,1)y ,2(B x ,2)y ,联立方程24y kx b y x=+⎧⎨=⎩,消去y 得:222(24)0k x kb x b +-+=, ∴△222(24)40kb k b =-->,1kb ∴<,且12242kb x x k -+=,2122b x x k=, 12124()2y y k x x b k+=++=, Q 线段AB 的中点为(1M ,)(0)m m >,∴122422kb x x k -+==,1242y y m k+==, 22k b k -∴=,2m k=,0m >Q ,0k ∴>,把22k b k-= 代入1kb <,得221k -<, 21k ∴>,1k ∴>,故选:C 【点睛】本题主要考查了直线与抛物线的位置关系,考查了韦达定理的应用,属于中档题.3.秦九韶是我国南宁时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n 、x 的值分别为3、1,则输出v 的值为( )A .7B .8C .9D .10【答案】B 【解析】 【分析】列出循环的每一步,由此可得出输出的v 值. 【详解】由题意可得:输入3n =,1x =,2v =,3m =;第一次循环,2135v =⨯+=,312m =-=,312n =-=,继续循环; 第二次循环,5127v =⨯+=,211m =-=,211n =-=,继续循环; 第三次循环,7118v =⨯+=,110m =-=,110n =-=,跳出循环; 输出8v =. 故选:B. 【点睛】本题考查根据算法框图计算输出值,一般要列举出算法的每一步,考查计算能力,属于基础题. 4.执行如图所示的程序框图,若输出的,则输入的整数的最大值为( )A .7B .15C .31D .63【答案】B 【解析】试题分析:由程序框图可知:①,;②,;③,;④,;⑤,. 第⑤步后输出,此时,则的最大值为15,故选B.考点:程序框图.5.某三棱锥的三视图如图所示,网格纸上小正方形的边长为1,则该三棱锥外接球的表面积为( )A .27πB .28πC .29πD .30π【答案】C 【解析】 【分析】作出三棱锥的实物图P ACD -,然后补成直四棱锥P ABCD -,且底面为矩形,可得知三棱锥P ACD -的外接球和直四棱锥P ABCD -的外接球为同一个球,然后计算出矩形ABCD 的外接圆直径AC ,利用公式222R PB AC =+2R ,再利用球体的表面积公式即可得出该三棱锥的外接球的表面积. 【详解】三棱锥P ACD -的实物图如下图所示:将其补成直四棱锥P ABCD -,PB ⊥底面ABCD , 可知四边形ABCD 为矩形,且3AB =,4BC =.矩形ABCD 的外接圆直径225AC =AB +BC ,且2PB =. 所以,三棱锥P ACD -外接球的直径为22229R PB AC =+因此,该三棱锥的外接球的表面积为()224229R R πππ=⨯=. 故选:C. 【点睛】本题考查三棱锥外接球的表面积,解题时要结合三视图作出三棱锥的实物图,并分析三棱锥的结构,选择合适的模型进行计算,考查推理能力与计算能力,属于中等题.6.一个超级斐波那契数列是一列具有以下性质的正整数:从第三项起,每一项都等于前面所有项之和(例如:1,3,4,8,16…).则首项为2,某一项为2020的超级斐波那契数列的个数为( ) A .3 B .4C .5D .6【答案】A 【解析】 【分析】根据定义,表示出数列的通项并等于2020.结合n 的正整数性质即可确定解的个数. 【详解】由题意可知首项为2,设第二项为t ,则第三项为2t +,第四项为()22t +,第五项为()222t +⋅⋅⋅第n项为()322,*,n t n t N -+∈、且3n ≥, 则()3222020n t -+=, 因为2202025101=⨯⨯, 当3n -的值可以为0,1,2; 即有3个这种超级斐波那契数列, 故选:A. 【点睛】本题考查了数列新定义的应用,注意自变量的取值范围,对题意理解要准确,属于中档题.7.已知F 为抛物线2:8C y x =的焦点,点()1,A m 在C 上,若直线AF 与C 的另一个交点为B ,则AB =( )A .12B .10C .9D .8【答案】C 【解析】 【分析】求得A 点坐标,由此求得直线AF 的方程,联立直线AF 的方程和抛物线的方程,求得B 点坐标,进而求得AB 【详解】抛物线焦点为()2,0F ,令1x =,28y =,解得y =±(A ,则直线AF 的方程为))2212y x x =-=---,由)228y x y x⎧=--⎪⎨=⎪⎩,解得((,4,A B -,所以9AB ==.故选:C 【点睛】本小题主要考查抛物线的弦长的求法,属于基础题.8.已知全集U =R ,集合{|lg(1)}A x y x ==-,|B x y⎧==⎨⎩则()U A B =I ð( ) A .(1,)+∞ B .(0,1) C .(0,)+∞D .[1,)+∞【答案】D 【解析】 【分析】根据函数定义域的求解方法可分别求得集合,A B ,由补集和交集定义可求得结果. 【详解】{}()10,1A x x =->=-∞Q ,()0,B =+∞,[)1,U A ∴=+∞ð, ()[)1,U A B ∴=+∞I ð. 故选:D . 【点睛】本题考查集合运算中的补集和交集运算问题,涉及到函数定义域的求解,属于基础题. 9.若函数2()x f x x e a =-恰有3个零点,则实数a 的取值范围是( )A .24(,)e+∞ B .24(0,)eC .2(0,4)eD .(0,)+∞【答案】B 【解析】 【分析】求导函数,求出函数的极值,利用函数2()xf x x e a =-恰有三个零点,即可求实数a 的取值范围.【详解】函数2xy x e =的导数为2'2(2)x x xy xe x e xe x =+=+,令'0y =,则0x =或2-,20x -<<上单调递减,(,2),(0,)-∞-+∞上单调递增,所以0或2-是函数y 的极值点, 函数的极值为:224(0)0,(2)4f f ee -=-==, 函数2()xf x x e a =-恰有三个零点,则实数的取值范围是:24(0,)e. 故选B. 【点睛】该题考查的是有关结合函数零点个数,来确定参数的取值范围的问题,在解题的过程中,注意应用导数研究函数图象的走向,利用数形结合思想,转化为函数图象间交点个数的问题,难度不大. 10.已知集合{}1A x x =<,{}1xB x e =<,则( ) A .{}1A B x x ⋂=< B .{}A B x x e ⋃=< C .{}1A B x x ⋃=< D .{}01A B x x ⋂=<<【答案】C 【解析】 【分析】求出集合B ,计算出A B I 和A B U ,即可得出结论. 【详解】{}1A x x =<Q ,{}{}10x B x e x x =<=<,{}0A B x x ∴⋂=<,{}1A B x x ⋃=<.故选:C. 【点睛】本题考查交集和并集的计算,考查计算能力,属于基础题. 11.i 是虚数单位,21iz i=-则||z =( )A .1B .2C .2D .22【答案】C 【解析】 【分析】由复数除法的运算法则求出z ,再由模长公式,即可求解. 【详解】 由22(1)1,||21i i z i z i +==-+=-.故选:C. 【点睛】本题考查复数的除法和模,属于基础题.12.已知集合{}2|3100M x x x =--<,{}29N x y x ==-,且M 、N 都是全集R (R 为实数集)的子集,则如图所示韦恩图中阴影部分所表示的集合为( )A .{}35x x <≤ B .{3x x <-或}5x >C .{}32x x -≤≤- D .{}35x x -≤≤【答案】C 【解析】 【分析】根据韦恩图可确定所表示集合为()R N M I ð,根据一元二次不等式解法和定义域的求法可求得集合,M N ,根据补集和交集定义可求得结果.【详解】由韦恩图可知:阴影部分表示()R N M I ð,()(){}{}52025M x x x x x =-+<=-<<Q ,{}{}29033N x x x x =-≥=-≤≤, (){}32R N M x x ∴⋂=-≤≤-ð.故选:C . 【点睛】本题考查集合运算中的补集和交集运算,涉及到一元二次不等式和函数定义域的求解;关键是能够根据韦恩图确定所求集合.二、填空题:本题共4小题,每小题5分,共20分。
13.5(2)()x y x y +-展开式中33x y 的系数为_______________. 【答案】10 【解析】 【分析】把5()x y -按照二项式定理展开,可得5(2)()x y x y +-的展开式中33x y 的系数.【详解】解:()5051423455555555233241(2)()(2)x y x y x y C x C x y C x y C x y C x y C y +-=+⋅+-+--g g g g g g ,故它的展开式中33x y 的系数为3255210C C -+=, 故答案为:10. 【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.14.某校13名学生参加军事冬令营活动,活动期间各自扮演一名角色进行分组游戏,角色按级别从小到大共9种,分别为士兵、排长、连长、营长、团长、旅长、师长、军长和司令.游戏分组有两种方式,可以2人一组或者3人一组.如果2人一组,则必须角色相同;如果3人一组,则3人角色相同或者3人为级别连续的3个不同角色.已知这13名学生扮演的角色有3名士兵和3名司令,其余角色各1人,现在新加入1名学生,将这14名学生分成5组进行游戏,则新加入的学生可以扮演的角色的种数为________. 【答案】9 【解析】 【分析】对新加入的学生所扮演的角色进行分类讨论,分析各种情况下14个学生所扮演的角色的分组,综合可得出结论. 【详解】依题意,14名学生分成5组,则一定是4个3人组和1个2人组.①若新加入的学生是士兵,则可以将这14个人分组如下;3名士兵;士兵、排长、连长各1名;营长、团长、旅长各1名;师长、军长、司令各1名;2名司令.所以新加入的学生可以是士兵,由对称性可知也可以是司令;②若新加入的学生是排长,则可以将这14个人分组如下:3名士兵;连长、营长、团长各1名;旅长、师长、军长各1名;3名司令;2名排长.所以新加入的学生可以是排长,由对称性可知也可以是军长; ③若新加入的学生是连长,则可以将这14个人分组如下:2名士兵;士兵、排长、连长各1名;连长、营长、团长各1名;旅长、师长、军长各1名;3名司令.所以新加入的学生可以是连长,由对称性可知也可以是师长;④若新加入的学生是营长,则可以将这14个人分组如下:3名士兵;排长、连长、营长各1名;营长、团长、旅长各1名;师长、军长、司令各1名;2名司令.所以新加入的学生可以是营长,由对称性可知也可以是旅长;⑤若新加入的学生是团长,则可以将这14个人分组如下:3名士兵;排长、连长、营长各1名;旅长、师长、军长各1名;3名司令;2名团长.所以新加入的学生可以是团长. 综上所述,新加入学生可以扮演9种角色. 故答案为:9. 【点睛】本题考查分类计数原理的应用,解答的关键就是对新加入的学生所扮演的角色进行分类讨论,属于中等题.15.若实数x ,y 满足约束条件32020440x y x y x y --≥⎧⎪+-≤⎨⎪++≥⎩,则2z x y =+的最大值为________.【答案】3 【解析】 【分析】作出可行域,可得当直线2z x y =+经过点(1,1)A 时,z 取得最大值,求解即可. 【详解】作出可行域(如下图阴影部分),联立32020x y x y --=⎧⎨+-=⎩,可求得点()1,1A ,当直线2z x y =+经过点(1,1)A 时,max 1213z =+⨯=. 故答案为:3.【点睛】本题考查线性规划,考查数形结合的数学思想,属于基础题.16.在一次医疗救助活动中,需要从A 医院某科室的6名男医生、4名女医生中分别抽调3名男医生、2名女医生,且男医生中唯一的主任医师必须参加,则不同的选派案共有________种.(用数字作答) 【答案】60【解析】【分析】首先选派男医生中唯一的主任医师,由题意利用排列组合公式即可确定不同的选派案方法种数. 【详解】首先选派男医生中唯一的主任医师,然后从5名男医生、4名女医生中分别抽调2名男医生、2名女医生,故选派的方法为:225410660C C=⨯=.故答案为60.【点睛】解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).三、解答题:共70分。