高考物理复习电磁感应现象的两类情况专项易错题附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理复习电磁感应现象的两类情况专项易错题附答案
一、电磁感应现象的两类情况
1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=︒,间距为d =0.2m ,且电阻不计。
导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。
空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。
质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求:
(1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。
【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】
(1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。
由平衡条件
sin mg BId θ=①
导体棒切割磁感线产生的电动势为
E =Bdv ②
由闭合电路欧姆定律得
E
I R r
=
+③ 联立①②③得
v =20m/s ④
由欧姆定律得
U =IR ⑤
联立①⑤得
U =7V ⑥
(2)由电流定义式得
Q It =⑦
由法拉第电磁感应定律得
E t
∆Φ
=
∆⑧
B ld ∆Φ=⋅⑨
由欧姆定律得
E
I R r
=
+⑩ 由⑦⑧⑨⑩得
Q =0.02C ⑪
2.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰)
(1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离;
(3)在两根杆相互作用的过程中,求回路中产生的电能.
【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】
(1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v
设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有
2h x v g =2h x s v g
+=根据动量守恒
012mv mv mv =+
求得:
210m/s v =
(2)ab 杆运动距离为d ,对ab 杆应用动量定理
1BIL t BLq mv ==V
设cd 杆运动距离为d x +∆
22BL x
q r r
∆Φ∆=
= 解得
1
22
2rmv x B L ∆=
cd 杆运动距离为
1
22
27m rmv d x d B L
+∆=+
= (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能
222
012111100J 222
Q mv mv mv =--=
3.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ = 30°角固定,M 、P 之间接电阻箱R ,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 1T .质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻值为r ,现从静止释放杆ab ,测得最大速度为v m .改变电阻箱的阻值R ,得到v m 与R 的关系如图乙所示.已知轨距为L = 2m ,重力加速度g 取l0m/s 2,轨道足够长且电阻不计.求:
(1)杆ab 下滑过程中流过R 的感应电流的方向及R =0时最大感应电动势E 的大小; (2)金属杆的质量m 和阻值r ;
(3)当R =4Ω时,求回路瞬时电功率每增加2W 的过程中合外力对杆做的功W . 【答案】(1)电流方向从M 流到P ,E =4V (2)m =0.8kg ,r =2Ω (3)W =1.2J 【解析】
本题考查电磁感应中的单棒问题,涉及动生电动势、闭合电路欧姆定律、动能定理等知识.
(1)由右手定则可得,流过R 的电流方向从M 流到P 据乙图可得,R=0时,最大速度为2m/s ,则E m = BLv = 4V (2)设最大速度为v ,杆切割磁感线产生的感应电动势 E = BLv 由闭合电路的欧姆定律E
I R r
=
+ 杆达到最大速度时0mgsin BIL θ-=
得 2222
sin sin B L mg mg v R r B L θθ
=
+ 结合函数图像解得:m = 0.8kg 、r = 2Ω
(3)由题意:由感应电动势E = BLv 和功率关系2
E P R r =+
得222
B L V P R r
=+
则222222
21B L V B L V P R r R r
∆=-
++ 再由动能定理222111
22
W mV mV =- 得22
()
1.22m R r W P J B L
+=
∆=
4.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数
0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整
个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取2
10/g m s =.
()1求0t =时棒所受到的安培力0F ;
()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系
式;
()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去
外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .
【答案】(1)0 0.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J
【解析】 【详解】
解:()1由图b 知:
0.2
0.1T /s 2
B t V V == 0t =时棒的速度为零,故回路中只有感生感应势为:
0.05V B E Ld t t
Φ===V V V V
感应电流为:0.25A E
I R
==
可得0t =时棒所受到的安培力:
000.025N F B IL ==,方向水平向右;
()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=
故前3s 内导体棒静止不动,由平衡条件得: f BIL = 由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=- 联立解得: ()0.01252(3s)f t N t =-<;
()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t V =⨯=⨯=
设3s 后到撤去外力F 时又运动了1s ,则有:
1
1BLs q q I t R R
Φ-===V V &
解得:16m s =
此时ab 棒的速度设为1v ,则有:22
1012v v as -=
解得:14m /s v =
此后到停止,由能量守恒定律得: 可得:2
1210.195J 2
Q mv mgs μ=
-=
5.如图所示,一阻值为R 、边长为l 的匀质正方形导体线框abcd 位于竖直平面内,下方存在一系列高度均为l 的匀强磁场区,与线框平面垂直,各磁场区的上下边界及线框cd 边均磁场方向均与线框平面垂水平。
第1磁场区的磁感应强度大小为B 1,线框的cd 边到第1磁区上场区上边界的距离为h 0。
线框从静止开始下落,在通过每个磁场区时均做匀速运动,且通过每个磁场区的速度均为通过其上一个磁场区速度的2倍。
重力加速度大小为g ,不计空气阻力。
求: (1)线框的质量m ;
(2)第n 和第n +1个磁场区磁感应强度的大小B n 与B n+1所满足的关系;
(3)从线框开始下落至cd 边到达第n 个磁场区上边界的过程中,cd 边下落的高度H 及线框产生的总热量Q 。
【答案】22112B l gh gR (2)+12n n B B =;2311
2(1)2n B l gh - 【解析】 【分析】 【详解】
(1)设线框刚进第一个磁场区的速度大小为v 1,由运动学公式得2
112v gh =,设线框所受安
培力大小为F 1,线框产生的电动势为E 1,电流为I ,由平衡条件得
1F mg =
由安培力的表达式得11F B Il =,111=E B lv ,1
E I R
=
联立解得 22
112B l m gh gR
=(2)设线框在第n 和第n +1个磁场区速度大小分别为v n 、v n +1,由平衡条件得
22n n
B l v mg R = 22+1+1
n n B l v mg R
=
且
12n n v v +=
联立解得
12n n B B +=
(3)设cd 边加速下落的总距离为h ,匀速下落的总距离为L ,由运动学公式得
22n
v h g
=
112n n v v -=
=2(1)L n l -
联立解得
2(1)122(1)n H h L h n l -=+=+-
由能量守恒定律得
2(1)Q mg n l =-
联立解得
2311
2(1)2n B l gh Q -=
6.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成=30θ︒角固定,N 、Q 之间接电阻箱R ,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B =0.5T ,质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻位为r 。
现从静止释放杆ab ,测得最大速度为v M ,改变电阻箱的阻值R ,得到v M 与R 之间的关系如图乙所示。
已知导轨间距为L =2m ,重力加速度g =10m/s 2,轨道足够长且电阻不计。
求: (1)当R =0时,杆ab 匀速下滑过程中产生感应电动势E 的大小及杆中的电流方向; (2)金属杆的质量m 及阻值r ;
(3)当R =4Ω时,回路瞬时电功率每增加1W 的过程中合外力对杆做的功W 。
【答案】(1)3V E =,杆中电流方向从b →a ;(2)0.2kg m =,3r =Ω;(3)0.7J W = 【解析】 【分析】 【详解】
(1)由图可知,当R =0时,杆最终以v =3m/s 匀速运动,产生电动势
E =BLv =0.5×2×3V=3V
电流方向为由b 到a
(2)设最大速度为v ,杆切割磁感线产生的感应电动势E =BLv ,由闭合电路的欧姆定律:
E
I R r
=
+ 杆达到最大速度时满足
sin 0mg BIL θ-=
解得
22
()sin mg R r v B L
θ
+=
由图像可知:斜率为
62
m /(s Ω)1m /(Ω)3
s k -=
⋅=⋅ 纵截距为
v 0=3m/s
得到:
022sin mgr v B L θ
=
22
sin mg k B L
θ
= 解得
m =0.2kg ,r =3Ω
(3)由题意:E =B Lv ,2
E P R r
=+,得
222
P L v P R r
=
+ 则
222222
21P L v P L v P R r R r
∆=-
++ 由动能定理得
22211122W mv mv =
- 联立解得
22()
2m R r W P B L +=
∆
W =0.7J 【点睛】
7.如图所示,在坐标xoy 平面内存在B=2.0T 的匀强磁场,OA 与OCA 为置于竖直平面内的光滑金属导轨,其中OCA 满足曲线方程
,C 为导轨的最右端,导轨
OA 与OCA 相交处的O 点和A 点分别接有体积可忽略的定值电阻R 1和R 2,其R 1=4.0Ω、R 2=12.0Ω.现有一足够长、质量m=0.10kg 的金属棒MN 在竖直向上的外力F 作用下,以v=3.0m/s 的速度向上匀速运动,设棒与两导轨接触良好,除电阻R 1、R 2外其余电阻不计,g 取10m/s 2,求:
(1)金属棒MN在导轨上运动时感应电流的最大值;
(2)外力F的最大值;
(3)金属棒MN滑过导轨OC段,整个回路产生的热量.
【答案】(1)1.0A(2)20.0N(3)1.25J
【解析】
【分析】
【详解】
(1)金属棒MN沿导轨竖直向上运动,进入磁场中切割磁感线产生感应电动势.当金属棒MN匀速运动到C点时,电路中感应电动势最大,产生的感应电流最大.
金属棒MN接入电路的有效长度为导轨OCA形状满足的曲线方程中的x值.因此接入电路的金属棒的有效长度为
L m=x m=0.5m
E m=3.0V
且
A
(2)金属棒MN匀速运动中受重力mg、安培力F安、外力F外作用
N
N
(3)金属棒MN在运动过程中,产生的感应电动势
有效值为
金属棒MN滑过导轨OC段的时间为t
m
s
滑过OC 段产生的热量J.
8.如图所示,宽L =2m 、足够长的金属导轨MN 和M′N′放在倾角为θ=30°的斜面上,在N 和N′之间连接一个R =2.0Ω的定值电阻,在AA′处放置一根与导轨垂直、质量m =0.8kg 、电阻r =2.0Ω的金属杆,杆和导轨间的动摩擦因数3
4
μ=
,导轨电阻不计,导轨处于磁感应强度B =1.0T 、方向垂直于导轨平面的匀强磁场中.用轻绳通过定滑轮将电动小车与杆的中点相连,滑轮与杆之间的连线平行于斜面,开始时小车位于滑轮正下方水平面上的P 处(小车可视为质点),滑轮离小车的高度H =4.0m .启动电动小车,使之沿PS 方向以v =5.0m/s 的速度匀速前进,当杆滑到OO′位置时的加速度a =3.2m/s 2,AA′与OO′之间的距离d =1m ,求:
(1)该过程中,通过电阻R 的电量q ; (2)杆通过OO′时的速度大小; (3)杆在OO′时,轻绳的拉力大小;
(4)上述过程中,若拉力对杆所做的功为13J ,求电阻R 上的平均电功率. 【答案】(1)0.5C (2)3m/s (3)12.56N (4)2.0W 【解析】 【分析】 【详解】
(1)平均感应电动势BLd
E t t
∆Φ=
=∆∆ •=BLd
q I t R r R r
∆Φ=∆=
++ 代入数据,可得:0.5q C = (2)几何关系:
sin H
H d α
-=解得:sin 0.8α=0=53α 杆的速度等于小车速度沿绳方向的分量:1cos 3/v v m s α== (3)杆受的摩擦力cos 3f F mg N μθ==
杆受的安培力221
()
B L F BIL R r v 安==+代入数据,可得3F N =安
根据牛顿第二定律:sin =T f F mg F F ma θ---安 解得:12.56T F N =
(4)根据动能定理:211sin 2
f W
W mgd F mv θ+--=
安 解出 2.4W J =-安,电路产生总的电热 2.4Q J =总 那么,R 上的电热 1.2R Q J = 此过程所用的时间cot 0.6H t s v α
== R 上的平均电功率 1.2
W 2.0W 0.6
R Q P t === 【点睛】
本题是一道电磁感应与力学、电学相结合的综合体,考查了求加速度、电阻产生的热量,分析清楚滑杆的运动过程,应用运动的合成与分解、E=BLv 、欧姆定律、安培力公式、牛顿第二定律、平衡条件、能量守恒定律即可正确解题;求R 产生的热量时要注意,系统产生的总热量为R 与r 产生的热量之和.
9.如图所示,“<”型光滑长轨道固定在水平面内,电阻不计.轨道中间存在垂直水平面向下的匀强磁场,磁感应强度B .一根质量m 、单位长度电阻R 0的金属杆,与轨道成45°位置放置在轨道上,从静止起在水平拉力作用下从轨道的左端O 点出发,向右做加速度大小为a 的匀加速直线运动,经过位移L .求: (1)金属杆前进L 过程中的平均感应电动势.
(2)已知金属杆前进L 过程中水平拉力做功W .若改变水平拉力的大小,以4a 大小的加速度重复上述前进L 的过程,水平拉力做功多少?
(3)若改用水平恒力F 由静止起从轨道的左端O 点拉动金属杆,到金属杆速度达到最大值v m 时产生热量.(F 与v m 为已知量)
(4)试分析(3)问中,当金属杆速度达到最大后,是维持最大速度匀速直线运动还是做减速运动?
【答案】(1)2
2a
BL L W +2maL (3)2202
122-m m
F R mv B v (4)当金属杆速度达到最大后,将做减速运动 【解析】 【详解】
(1)由位移﹣速度公式得
2aL =v 2﹣0
所以前进L 时的速度为
v
前进L 过程需时
t
=
=v a a
由法拉第电磁感应定律有:
t
E ∆Φ=∆
=21
2B L L
B S BL t ⨯⨯⨯∆==∆(2)以加速度a 前进L 过程,合外力做功
W +W 安=maL
所以
W 安=maL ﹣W
以加速度4a 前进L 时速度为
'=v =2v
合外力做功
W F ′+W 安′=4maL
由22A B L v
F BIL R
==可知,位移相同时:
F A ′=2F A
则前进L 过程
W 安′=2W 安
所以
W F ′=4maL ﹣2W 安=2W +2maL
(3)设金属杆在水平恒力作用下前进d 时F A =F ,达到最大速度,由几何关系可知,接入电路的杆的有效长度为2d ,则
220(2)2⨯===⨯m
A B d v F BIl F R d
所以
d=
22m
FR B v 由动能定理有
212
-=
m Fd Q mv 所以:
Q =Fd ﹣2
22
02
1122=2
m m m F R mv mv B v (4)根据安培力表达式,假设维持匀速,速度不变而位移增大,安培力增大,则加速度一定会为负值,与匀速运动的假设矛盾,所以做减速运动。
10.如图所示,一对光滑的平行金属导轨(电阻不计)固定在同一水平面内,导轨足够长且间距为L ,左端接有阻值R 的电阻,一质量m 、长度L 的金属棒MN 放置在导轨上,棒的电阻为r ,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度为B ,棒在水平向右的外力作用下,由静止开始做加速运动,保持外力的功率为P 不变,经过时间t 导体棒最终做匀速运动.求:
(1)导体棒匀速运动时的速度是多少? (2)t 时间内回路中产生的焦耳热是多少? 【答案】(1);(2)
【解析】 【分析】
(1)金属棒在功率不变的外力作用下,先做变加速运动,后做匀速运动,此时受到的安培力与F 二力平衡,由法拉第定律、欧姆定律和安培力公式推导出安培力与速度的关系式,再由平衡条件求解速度;
(2)t 时间内,外力F 做功为Pt ,外力F 和安培力对金属棒做功,根据动能定理列式求出金属棒克服安培力做功,即可得到焦耳热. 【详解】
(1)金属棒匀速运动时产生的感应电动势为 E=BLv 感应电流I=
金属棒所受的安培力 F 安=BIL 联立以上三式得:F 安=
外力的功率 P=Fv 匀速运动时,有F=F 安 联立上面几式可得:v= (2)根据动能定理:W F +W 安=
其中 W F =Pt ,Q=﹣W 安
可得:Q=Pt﹣
答:
(1)金属棒匀速运动时的速度是.
(2)t时间内回路中产生的焦耳热是Pt﹣.
【点睛】
金属棒在运动过程中克服安培力做功,把金属棒的动能转化为焦耳热,在此过程中金属棒做加速度减小的减速运动;对棒进行受力分析、熟练应用法拉第电磁感应定律、欧姆定律、动能定理等正确解题.
11.(1)如图1所示,固定于水平面上的金属框架abcd,处在竖直向下的匀强磁场中.金属棒MN沿框架以速度v向右做匀速运动.框架的ab与dc平行,bc与ab、dc垂直.MN与bc的长度均为l,在运动过程中MN始终与bc平行,且与框架保持良好接触.磁场的磁感应强度为B.
a. 请根据法拉第电磁感应定律,推导金属棒MN中的感应电动势E;
b. 在上述情景中,金属棒MN相当于一个电源,这时的非静电力与棒中自由电子所受洛伦兹力有关.请根据电动势的定义,推导金属棒MN中的感应电动势E.
(2)为进一步研究导线做切割磁感线运动产生感应电动势的过程,现构建如下情景:如图2所示,在垂直于纸面向里的匀强磁场中,一内壁光滑长为l的绝缘细管MN,沿纸面以速度v向右做匀速运动.在管的N端固定一个电量为q的带正电小球(可看做质点).某时刻将小球释放,小球将会沿管运动.已知磁感应强度大小为B,小球的重力可忽略.在小球沿管从N运动到M的过程中,求小球所受各力分别对小球做的功.
【答案】(1)见解析(2)洛伦兹力做功为0,管的支持力做功
【解析】
【分析】
【详解】
(1)如图1所示,在一小段时间Dt内,金属棒MN的位移
这个过程中线框的面积的变化量
穿过闭合电路的磁通量的变化量
根据法拉第电磁感应定律
解得
如图2所示,棒向右运动时,电子具有向右的分速度,受到沿棒向下的洛伦兹力
,f即非静电力
在f的作用下,电子从M移动到N的过程中,非静电力做功
根据电动势定义
解得
(2)小球随管向右运动的同时还沿管向上运动,其速度如图3所示.小球所受洛伦兹力f 如图4所示.将f合正交分解如图5所示.
合
小球除受到洛伦兹力f合外,还受到管对它向右的支持力F,如图6所示.
洛伦兹力f 合不做功
沿管方向,洛伦兹力f 做正功
垂直管方向,洛伦兹力
是变力,做负功
由于小球在水平方向做匀速运动,则 因此,管的支持力F 对小球做正功
12.如图所示,间距为
L 、电阻不计的足够长双斜面型平行导轨,左导轨光滑,右导轨粗糙,
左、右导轨分别与水平面成α、β角,分别有垂直于导轨斜面向上的磁感应强度为 B1、B2 的匀强磁场,两处的磁场互不影响.质量为 m 、电阻均为 r 的导体棒 ab 、cd 与两平行导轨垂直放置且接触良 好.ab 棒由静止释放,cd 棒始终静止不动.求: (1)ab 棒速度大小为 v 时通过 cd 棒的电流大小和 cd 棒受到的摩擦力大小. (2)ab 棒匀速运动时速度大小及此时 cd 棒消耗的电功率.
【答案】(1)12B Lv r ;2122B B L v
r
-mgsin β(2)222221sin m g r B L α
【解析】 【分析】 【详解】
(1)当导体棒ab 的速度为v 时,其切割磁感线产生的感应电动势大小为:E =B 1Lv①
导体棒ab 、cd 串联,由全电路欧姆定律有:2E I r
=
② 联立①②式解得流过导体棒cd 的电流大小为:12B Lv
I r
=③
导体棒cd 所受安培力为:F 2=B 2IL④ 若mgsin β >F 2,则摩擦力大小为:
21212sin ?sin 2B B L v
f m
g F mg r
ββ=-=-
⑤ 若mgsin β ≤F 2,则摩擦力大小为: 21222sin sin 2B B L v
f F m
g mg r
ββ=-=-⑥
(2)设导体棒ab 匀速运动时速度为v 0,此时导体棒ab 产生的感应电动势为:E 0=B 1Lv 0⑦
流过导体棒ab 的电流大小为:0
02E I r
=
⑧
导体棒ab 所受安培力为:F 1=B 1I 0L⑨ 导体棒ab 匀速运动,满足:mgsin α-F 1=0⑩ 联立⑦⑧⑨⑩式解得:02
2
12sin mgr v B L α
=
此时cd 棒消耗的电功率为:22220
22
1sin m g r P I R B L α
==
【点睛】
本题是电磁感应与力学知识的综合应用,在分析中要注意物体运动状态(加速、匀速或平衡),认真分析物体的受力情况,灵活选取物理规律,由平衡条件分析和求解cd 杆的受力情况.
13.一种可测速的跑步机的测速原理如图所示。
该机底面固定有间距为L 、宽度为d 的平行金属电极。
电极间充满磁感应强度为B ,方向垂直纸面向里的匀强磁场,左侧与电压表和电阻R 相连接。
绝缘橡胶带上每隔距离d 就嵌入一个电阻为r 的平行细金属条,跑步过程中,绝缘橡胶带跟随脚步一起运动,金属条和电极之间接触良好且任意时刻仅有一根金属条处于磁场中。
现在测出t 时间内电压表读数为恒为U ,设人与跑步机间无相对滑动,求:
(1)判断电阻R 的电流方向;
(2)该人跑步过程中,是否匀速?给出定性判断理由; (3)求t 时间内的平均跑步速度;
(4)若跑步过程中,人体消耗的能量有20%用于克服磁场力做功,求t 时间内人体消耗的能量。
【答案】(1)电阻R 的电流方向向下;(2)是匀速;(3)R r v U BLR +=;(4)2
5()R r t
E UR += 【解析】 【分析】 【详解】
(1)由题意且根据右手定则可知,流经电阻R 的电流方向向下; (2)(3)金属条做切割磁感线运动产生的电动势大小为E BLv =, 回路中的电流大小为E
I R r
=
+, 伏特表的示数为U IR =, 解得
R r
v U BLR +=
由于伏特表示数恒定,所以速度也恒定,说明该人跑步过程中,是匀速;速度为
R r
v U BLR
+=
(4)金属条中的电流为
I r
BLv
R =
+ 金属条受的安培力大小为
A F BIL =
时间t 内金属条克服安培力做功为
22222
()A B L v t R r U t
W F vt R r R +===
+ 所以t 时间内人体消耗的能量
22
5()0.2W R r U t
E R
+==
14.如图所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L ,M 、P 两点间接有阻值为R 的电阻,一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直,金属杆的电阻为r ,整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直于斜面向下,导轨电阻可忽略,让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(重力加速度为g )
(1)在加速下滑过程中,当ab 杆的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小;
(2)求在下滑过程中,ab 杆可以达到的速度最大值.
(3)杆在下滑距离d 的时以经达到最大速度,求此过程中通过电阻的电量和热量。
【答案】(1) I r BLv R =+,22sin ()B L v a g R r m θ=-
+(2) 22()sin m mg R r v B L θ
+=(3) BLd q r R =+,32244
sin ()sin 2R mgdR m g R r R Q R r B L θθ
+=-+ 【解析】 【详解】
(1)杆受力图如图所示:
重力mg ,竖直向下,支撑力N ,垂直斜面向上,安培力F ,沿斜面向上,故ab 杆下滑过程中某时刻的受力示意如图所示,当ab 杆速度为v 时,感应电动势E =BLv ,此时电路中电流
E BLv
I R r R r
=
=++ ab 杆受到安培力:
22B L v
F BIL r R
==
+ 由牛顿运动定律得:
mg sin θ-F =ma
解得加速度为
22sin ()B L v
a g R r m
θ=-+
(2)当金属杆匀速运动时,杆的速度最大,由平衡条件得
22sin B L v
mg R r
θ=
+ 解得最大速度
22
()sin m mg R r v B L θ
+=
(3)杆在下滑距离d 时,根据电荷量的计算公式,可得
E BLd q It t R r r R
==
=++ 由能量守恒定律得
2
1sin 2
m mgd Q mv θ=+
解得
322244
()sin sin 2m g R r Q mgd B L
θ
θ+=- 电阻R 产生的热量
32223224444
()sin sin ()sin (sin )22R R m g R r mgdR m g R r R Q mgd R r B L R r B L θθθ
θ++=-=-
++
15.如图所示,两平行光滑的金属导轨MN 、PQ 固定在水平面上,相距为L ,处于竖直向
下的磁场中,整个磁场由n个宽度皆为x0的条形匀强磁场区域1、2、3、…n组成,从左向右依次排列,磁感应强度的大小分别为B、2B、3B、…nB,两导轨左端MP间接入电阻R,一质量为m的金属棒ab垂直于MN、PQ放在水平导轨上,与导轨电接触良好,不计导轨和金属棒的电阻。
(1)对导体棒ab施加水平向右的力,使其从图示位置开始运动并穿过n个磁场区,求导体棒穿越磁场区1的过程中,通过电阻R的电荷量q。
(2)对导体棒ab施加水平向右的恒力F0,让它从磁场1左侧边界处开始运动,当向右运
动距离为时做匀速运动,求棒通过磁场区1所用的时间t。
(3)对导体棒ab施加水平向右的恒定拉力F1,让它从距离磁场区1左侧x=x0的位置由静止开始做匀加速运动,当棒ab进入磁场区1时开始做匀速运动,此后在不同的磁场区施加不同的水平拉力,使棒ab保持该匀速运动穿过整个磁场区,求棒ab通过第i磁场区时的水平拉力Fi和棒ab通过整个磁场区过程中回路产生的电热Q。
【答案】⑴;⑵;⑶
【解析】
试题分析:⑴电路中产生的感应电动势。
通过电阻的电荷量。
导体棒穿过1区过程。
解得
(2)棒匀速运动的速度为v,则
设棒在前x0/2距离运动的时间为t1,则
由动量定律:F0 t1-BqL=mv;解得:
设棒在后x0/2匀速运动的时间为t2,则
所以棒通过区域1所用的总时间:
(3)进入1区时拉力为,速度,则有。
解得;。
进入i区时的拉力。
导体棒以后通过每区都以速度做匀速运动,由功能关系有
解得。
考点:动能定理的应用;导体切割磁感线时的感应电动势;电磁感应中的能量转化。