崇武镇实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

崇武镇实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)下列图形中,线段AD的长表示点A到直线BC距离的是()
A. B.
C. D.
【答案】D
【考点】点到直线的距离
【解析】【解答】解:∵线段AD的长表示点A到直线BC距离
∴过点A作BC的垂线,
A、过点A作DA⊥AB,故A不符合题意;
B、AD与BC相交,故B不符合题意;
C、过点A作DA⊥AB,故C不符合题意;
D、过点A作AD⊥BC,交BC的延长线于点D,故D符合题意;
故答案为:D
【分析】根据已知条件线段AD的长表示点A到直线BC距离,因此应该过点A作BC的垂线,观察图形即可得出答案。

2、(2分)在数,,,,0中,无理数的个数是()
A.1
B.2
C.3
D.4
【答案】B
【考点】无理数的认识
【解析】【解答】在数,,,,0中,
,是无理数,
故答案为:B.
【分析】无理数是指无限不循环小数。

根据无理数的定义即可求解。

3、(2分)比较2, , 的大小,正确的是()
A. 2< <
B. 2< <
C. <2<
D. < <2
【答案】C
【考点】实数大小的比较,估算无理数的大小
【解析】【解答】解:∵1<<2,2<<3
∴<2<
故答案为:C
【分析】根据题意判断和分别在哪两个整数之间,即可判断它们的大小。

4、(2分)西峰城区出租车起步价为5元(行驶距离在3千米内),超过3千米按每千米加收1.2元付费,不足1千米按1千米计算,小明某次花费14.6元.若设他行驶的路为x千米,则x应满足的关系式为()A. 14.6﹣1.2<5+1.2(x﹣3)≤14.6 B. 14.6﹣1.2≤5+1.2(x﹣3)<14.6
C. 5+1.2(x﹣3)=14.6﹣1.2
D. 5+1.2(x﹣3)=14.6
【答案】A
【考点】一元一次不等式组的应用
【解析】【解答】解:设行驶距离为x千米依题意,得
∵14.6>5,
∴行驶距离在3千米外.
则14.6﹣1.2<5+1.2(x﹣3)≤14.6.
故答案为:A
【分析】先根据付费可知行驶距离在3千米以上,再用行驶距离表示出付费费用,再根据收费情况列出关于x 的一元一次不等式组.
5、(2分)如图,已知直线EF⊥MN垂足为F,且∠1=140°,则当∠2等于()时,AB∥CD.
A. 50°
B. 40°
C. 30°
D. 60°
【答案】A
【考点】垂线,平行线的判定
【解析】【解答】解:∵AB∥CD,
∴∠3=∠4(两直线平行,同位角相等);
又∵∠1+∠3=180°(平角的定义),
∠1=140°(已知),
∴∠3=∠4=40°;
∵EF⊥MN,
∴∠2+∠4=90°,
∴∠2=50°;
故答案为:A.
【分析】根据AB∥CD,可得出∠3=∠4,再根据平角的定义,可求出∠3、∠4的度数,再根据垂直的定义得出就可求出∠2的度数,从而可得出正确的选项。

6、(2分)如图所示,初一(2)班的参加数学兴趣小组的有27人,那么参加美术小组的有()
A. 18人
B. 50人
C. 15人
D. 8人
【答案】D
【考点】扇形统计图
【解析】【解答】27÷54%=50(人),
50×(1-54%-30%)=50×16%=8(人)
故答案为:D
【分析】用数学组的人数除以数学组占总人数的百分率即可求出总人数,然后用总人数乘美术小组占的百分率即可求出美术小组的人数.
7、(2分)如图所示,点P到直线l的距离是()
A. 线段PA的长度
B. 线段PB的长度
C. 线段PC的长度
D. 线段PD的长度【答案】B
【考点】点到直线的距离
【解析】【解答】解:∵PB⊥直线l于点B
∴点P到直线l的距离是线段PB的长度
故答案为:B
【分析】根据点到直线的距离(直线外一点到这条直线的垂线段的长度)的定义,即可求解。

8、(2分)如图,在下列条件中,能判断AD∥BC的是()
A. ∠DAC=∠BCA
B. ∠DCB+∠ABC=180°
C. ∠ABD=∠BDC
D. ∠BAC=∠ACD 【答案】A
【考点】平行线的判定
【解析】【解答】解:A、∵∠DAC=∠BCA,∴AD∥BC(内错角相等,两直线平行),A符合题意;
B、根据“∠DCB+∠ABC=180°”只能判定“DC∥AB”,而非AD∥BC,B不符合题意;
C、根据“∠ABD=∠BDC”只能判定“DC∥AB”,而非AD∥BC,C不符合题意;
D、根据“∠BAC=∠ACD”只能判定“DC∥AB”,而非AD∥BC,D不符合题意;
故答案为:A.
【分析】根据各个选项中各角的关系,再利用平行线的判定定理,对各选项逐一判断即可。

9、(2分)下列各数: 0.3,0.101100110001…(两个1之间依次多一个0), 中,无理数的个数为()
A. 5个
B. 4个
C. 3个
D. 2个
【答案】C
【考点】无理数的认识
【解析】【解答】解:依题可得:
无理数有:-,-,0.101100110001… (两个1之间依次多一个0),
故答案为:C.
【分析】无理数:无限不循环小数,由此即可得出答案.
10、(2分)下列调查适合抽样调查的有()
①了解一批电视机的使用寿命;②研究某种新式武器的威力;③审查一本书中的错误;④调查人们节约用电意识.
A. 4种
B. 3种
C. 2种
D. 1种
【答案】B
【考点】全面调查与抽样调查
【解析】【解答】解:①调查具有破坏性,因而只能抽样调查;
②调查具有破坏性,因而只能抽样调查;
③关系重大,因而必须全面调查调查;
④人数较多,因而适合抽查.
故答案为:B
【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,根据抽样调查的特征进行判断即可确定结论.
11、(2分)若正方形的边长是a,面积为S,那么()
A.S的平方根是a
B.a是S的算术平方根
C.a=±
D.S=
【答案】B
【考点】算术平方根
【解析】【解答】解:∵a2=s,a>0,
∴a=。

故答案为:B.
【分析】根据正方形的面积与边长的关系,结合算术平方根的意义即可判断。

12、(2分)在图1、2、3、4、5中,∠1和∠2是同位角的有()
A. (1)(2)(3)
B. (2)(3)(4)
C. (2)(3)(5)
D. (1)(2)(5)
【答案】D
【考点】同位角、内错角、同旁内角
【解析】【解答】解:(1)(2)(5)都是同位角;(3)不是三线所形成的角,(4)不在直线的同一侧.故答案为:D.
【分析】此题考查了同位角的概念,两条直线被第三条直线所截形成的角中,同位角是指两个角都在第三条直线的同旁,在被截的两条直线同侧的位置的角,呈“F”型,即可得出答案。

二、填空题
13、(1分)为了了解全县30000名九年级学生的视力情况,随机抽查500名学生的视力进行统计分析,在这个问题中样本容量是________.
【答案】500
【考点】总体、个体、样本、样本容量
【解析】【解答】解:样本容量是500.故答案为:500
【分析】根据样本容量是指抽查的样本的数量即可确定结果.
14、(1分)如果一个角的两边分别与另一个角的两边平行,那么这两个角的大小关系是________.
【答案】相等或互补
【考点】平行线的性质
【解析】【解答】解:如图,
∠1的两边和∠3的两边分别平行,∠2和∠3的两边互相平行,∴∠3=∠4,∠4=∠1,∠4+∠2=180°,∴∠3=∠1,∠3+∠2=180°,∴∠3和∠1相等,∠3和∠2互补.故答案为:相等或互补.
【分析】根据平行线的性质可得∠3=∠4,∠4=∠1,∠4+∠2=180°,由等量代换可得∠3=∠1,∠3+∠2=180°。

即这两个角相等或互补.
15、(1分)一罐饮料净重500克,罐上注有“蛋白质含量≥0.4%”,则这罐饮料中蛋白质的含量至少为________克.
【答案】2
【考点】一元一次不等式的应用
【解析】【解答】解:设蛋白质的含量至少应为x克,依题意得:
≥0.4%,
解得x≥2,
则蛋白质的含量至少应为2克
故答案为:2.
【分析】“蛋白质含量≥0.4%”即蛋白质含量与净重量的比大于等于0.4%.
16、(1分)某药品说明书上标明药品保存的温度是(10±4)℃,设该药品合适的保存温度为t,则温度t 的范围是________
【答案】6~14
【考点】一元一次不等式的应用
【解析】【解答】即6℃~14℃之间;故答案为:6~14
【分析】某药品说明书上标明药品保存的温度时(10±4)℃,说明在10℃的基础上,再上下4℃,即10-4≤t≤10+4,从而得出6≤t≤14.
17、(1分)根据机器零件的设计图纸(如图),用不等式表示零件长度的合格尺寸(L的取值范围)________
【答案】19.99≤L≤20.01
【考点】一元一次不等式的应用
【解析】【解答】解:由L=20±0.01,得
19.99≤L≤20.01,
故答案为:19.99≤L≤20.01
【分析】由L=20±0.01得20-0.01≤l≤20+0.01,解不等式组解得出零件长度的合格尺寸的范围。

18、(1分)如图,直线l1∥l2,∠α=∠β,∠1=50°,则∠2=________
【答案】130°
【考点】平行线的性质
【解析】【解答】解:如图,
∵l1∥l2,
∵∠α=∠β,
∴AB∥CD,
∴∠2+∠3=180°,
∴∠2=180°﹣∠3=180°﹣50°=130°.
故答案为:130°
【分析】由已知可知AE//CD ,所以延长AE交于点B,利用平行线的性质,可知∠2+∠3=,即可求出∠2的值.
三、解答题
19、(5分)如图,已知AB∥CD,CD∥EF,∠A=105°,∠ACE=51°.求∠E.
【答案】解:∵AB∥CD,
∴∠A+∠ACD=180°,
∵∠A=105°,
又∵∠ACE=51°,
∴∠DCE=∠ACD-∠ACE=75°-51°=24°,
∵CD∥EF,
∠E=∠DCE=24°.
【考点】平行线的性质
【解析】【分析】根据平行线的性质得∠A+∠ACD=180°,结合已知条件求得∠DCE=24°,再由平行线的性质即可求得∠E的度数.
20、(10分)下列调查方式是普查还是抽样调查?如果是抽样调查,请指出总体、个体、样本和样本容量.
(1)为了了解七(2)班同学穿鞋的尺码,对全班同学做调查;
(2)为了了解一批空调的使用寿命,从中抽取10台做调查.
【答案】(1)解:因为要求调查数据精确,故采用普查。

(2)解:在调查空调的使用寿命时,具有破坏性,故采用抽样调查.其中该批空调的使用寿命是总体,每一台空调的使用寿命是个体,从中抽取的10台空调的使用寿命是总体中的一个样本,样本容量为10。

【考点】总体、个体、样本、样本容量
【解析】【分析】(1)根据调查的方式的特征即可确定;
(2)根据总体、样本、个体、样本容量定义即可解答.
21、(5分)在数轴上表示下列各数,并用“<”连接。

3, 0,,,.
【答案】解:数轴略,
【考点】实数在数轴上的表示,实数大小的比较
【解析】【解答】解:∵=-2,(-1)2=1,
数轴如下:
由数轴可知:<-<0<(-1)2<3.
【分析】先画出数轴,再在数轴上表示各数,根据数轴左边的数永远比右边小,用“<”连接各数即可.
22、(15分)“节约用水、人人有责”,某班学生利用课余时间对金辉小区300户居民的用水情况进行了
统计,发现5月份各户居民的用水量比4月份有所下降,并且将5月份各户居民的节水量统计整理成如图所示的统计图表
(1)写出统计表中a的值和扇形统计图中2.5立方米对应扇形的圆心角度数.
(2)根据题意,将5月份各居民的节水量的条形统计图补充完整.
(3)求该小区300户居民5月份平均每户节约用水量,若用每立方米水需4元水费,请你估算每户居民1年可节约多少元钱的水费?
【答案】(1)解:由题意可得,a=300﹣50﹣80﹣70=100,
扇形统计图中2.5立方米对应扇形的圆心角度数是:=120°
(2)解:补全的条形统计图如图所示:
(3)解:由题意可得,5月份平均每户节约用水量为:=2.1(立方米),
2.1×12×4=100.8(元),
即求该小区300户居民5月份平均每户节约用水量2.1立方米,若用每立方米水需4元水费,每户居民1年可节约100.8元钱的水费
【考点】扇形统计图,条形统计图
【解析】【分析】(1)根据总数减去节水量对应的数据和可得a的值,利用节水量是2.5立方米的百分比乘以360°可得对应的圆心角的度数;
(2)根据(1)中a的值即可补全统计图;
(3)利用加权平均数计算平均每户节约的用水量,然后乘以需要的水费乘以12个月可得结论.
23、(5分)甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解
为;乙看错了方程②中的b,得到方程组的解为,试计算的值.
【答案】解:由题意可知:
把代入,得,


把代入,得,

∴= = .
【考点】代数式求值,二元一次方程组的解
【解析】【分析】根据甲看错了方程①中的a,将甲得到的方程组的解代入方程②求出b的值;而乙看错了方程②中的b,因此将乙得到的方程组的解代入方程①求出的值,然后将a、b的值代入代数式求值即可。

24、(5分)如图,∠1= ∠2,∠1+∠2=162°,求∠3与∠4的度数.
【答案】解:∵∠1= ∠2,∠1+∠2=162°,
∴∠1=54°,∠2=108°.
∵∠1和∠3是对顶角,
∴∠3=∠1=54°
∵∠2和∠4是邻补角,
∴∠4=180°-∠2=180°-108°=72°
【考点】解二元一次方程组
【解析】【分析】将∠1= ∠2 代入∠1+∠2=162°,消去∠1,算出∠2的值,再将∠2的值代入∠1=
∠2算出∠1的值,然后根据对顶角相等及邻补角的定义即可分别算出∠3与∠4的度数.
25、(5分)如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.
【答案】解:∵∠AFE=90°,
∴∠AEF=90°﹣∠A=90°﹣35°=55°,
∴∠CED=∠AEF=55°,
∴∠ACD=180°﹣∠CED﹣∠D=180°﹣55°﹣42°=83°.
答:∠ACD的度数为83°
【考点】余角、补角及其性质,对顶角、邻补角,三角形内角和定理
【解析】【分析】先根据两角互余得出∠AEF =55°,再根据对顶角相等得出∠CED=∠AEF=55°,最后根据三角形内角和定理得出答案。

26、(5分)把下列各数填在相应的大括号里:
正分数集合:{};
负有理数集合:{};
无理数集合:{};
非负整数集合:{}.
【答案】解:正分数集合:{|-3.5|,10%,…… };
负有理数集合:{-(+4),,…… };
无理数集合:{,……};
非负整数集合:{0,2013,…… }.
【考点】有理数及其分类,无理数的认识
【解析】【分析】根据有理数的分类:正分数和负分数统称为分数。

正有理数、0、负有理数统称有理数。

非负整数包括正整数和0;无理数是无限不循环的小数。

将各个数准确填在相应的括号里。

相关文档
最新文档