八年级上册数学第五章相交线与平行线单元试卷试卷(word版含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册数学第五章相交线与平行线单元试卷试卷(word 版含答案)
一、选择题
1.如图,直线//AB CD ,AP 平分BAC CP AP ∠⊥,于点P ,若149︒∠=,则2∠的度数为( )
A .40︒
B .41︒
C .50︒
D .51︒
2.下列说法中错误的是( ) A .一个锐角的补角一定是钝角; B .同角或等角的余角相等;
C .两点间的距离是连结这两点的线段的长度;
D .过直线l 上的一点有且只有一条直线垂
直于l
3.如图,AD ∥CE ,∠ABC =95°,则∠2﹣∠1的度数是( )
A .105°
B .95°
C .85°
D .75°
4.如图,∠1的同位角是( )
A .∠2
B .∠3
C .∠4
D .∠5
5.如图,下列条件不能判定AB ∥CD 的是( )
A .12∠∠=
B .2E ∠∠=
C .B E 180∠∠+=
D .BAF C ∠∠=
6.定义:平面内的直线l 1与l 2相交于点O ,对于该平面内任意一点M ,点M 到直线l 1、l 2
的距离分别为a、b,则称有序非负实数对(a,b)是点M的“距离坐标”,根据上述定义,距离坐标为(2,1)的点的个数有()
A.2个B.3个C.4个D.5个
7.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3()
A.70°B.180°C.110°D.80°
8.如图,直线AB、CD、EF相交于点O,其中AB⊥CD,∠1:∠2=3:6,则∠EOD=()
A.120° B.130° C.60° D.150°
9.佳佳将坐标系中一图案横向拉长2倍,又向右平移2个单位长度,若想变回原来的图案,需要变化后的图案上各点坐标( )
A.纵坐标不变,横坐标减2
B.纵坐标不变,横坐标先除以2,再均减2
C.纵坐标不变,横坐标除以2
D.纵坐标不变,横坐标先减2,再均除以2
10.下列语句是命题的是 ( )
(1)两点之间,线段最短;(2)如果两个角的和是180度,那么这两个角互补;(3)请画出两条互相平行的直线;(4)一个锐角与一个钝角互补吗?
A.(1)(2)B.(3)(4)C.(2)(3)D.(1)(4)11.如图是郝老师的某次行车路线,总共拐了三次弯,最后行车路线与开始的路线是平行的,已知第一次转过的角度120︒,第三次转过的角度135︒,则第二次拐弯的角度是()
A.75︒B.120︒C.135︒D.无法确定
12.已知:如图,直线a∥b,∠1=50°,∠2=∠3,则∠2的度数为()
A.50°B.60°C.65°D.75°
二、填空题
13.如图,已知A1B//A n C,则∠A1+∠A2+…+∠A n等于__________(用含n的式子表示).
14.如图,已知,∠ABG为锐角,AH∥BG,点C从点B(C不与B重合)出发,沿射线BG 的方向移动,CD∥AB交直线AH于点D,CE⊥CD交AB于点E,CF⊥AD,垂足为F(F不与A重合),若∠ECF=n°,则∠BAF的度数为_____度.(用n来表示)
15.如图,AB∥CD, AC∥BD, CE平分∠ACD,交BD于点E,点F在CD的延长线上,且
∠BEF=∠CEF,若∠DEF=∠EDF,则∠A的度数为_____ .
16.如图,图①是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图②,则图②中的∠CFG 的度数是_____________.
17.如图,AC⊥AB,AC⊥CD,垂足分别是点A、C,如果∠CDB=130°,那么直线AB与BD 的夹角是________度.
18.如图,直线l 1∥l 2∥l 3,等边△ABC 的顶点B 、C 分别在直线l 2、l 3上,若边BC 与直线
l 3的夹角∠1=25°,则边AB 与直线l 1的夹角∠2=________.
19.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.
20.跳格游戏:如图,人从格外只能进入第1格;在格中,每次可向前跳l 格或2格,那么人从格外跳到第6格可以有_________种方法.
三、解答题
21.已知直线//EF MN ,点,A B 分别为EF , MN 上的点.
(1)如图1,若120FAC ACB ∠=∠=︒,12CAD FAC ∠=∠, 1
2CBD CBN ∠=∠,求CBN ∠与ADB ∠的度数;
(2)如图2,若120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 1
3
CBD CBN ∠=∠,则ADB =∠_________︒;
(3)若把(2)中“120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 1
3
CBD CBN ∠=∠”改为“FAC ACB m ∠=∠=︒,1CAD FAC n ∠=
∠, 1
CBD CBN n
∠=∠”,则ADB =∠_________︒.(用含,m n 的式子表示) 22.如图1,D 是△ABC 延长线上的一点,CE //AB .
(1)求证:∠ACD =∠A+∠B ;
(2)如图2,过点A 作BC 的平行线交CE 于点H ,CF 平分∠ECD ,FA 平分∠HAD ,若∠BAD =70°,求∠F 的度数.
(3)如图3,AH //BD ,G 为CD 上一点,Q 为AC 上一点,GR 平分∠QGD 交AH 于R ,QN 平分∠AQG 交AH 于N ,QM //GR ,猜想∠MQN 与∠ACB 的关系,说明理由.
23.如图1,在平面直角坐标系中,()()02A a C b ,,
,,且满足()2
40a b a b ++-+=,过C 作CB x ⊥轴于B
(1)求三角形ABC 的面积.
(2)发过B 作//BD AC 交y 轴于D ,且,AE DE 分别平分,CAB ODB ∠∠,如图2,若
,90()CAB ACB a αββ∠=∠=+=︒,求AED ∠的度数.
(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求
出P 点坐标;若不存在;请说明理由.
24.已知:直线//AB CD ,点E ,F 分别在直线AB ,CD 上,点M 为两平行线内部一点. (1)如图1,∠AEM ,∠M ,∠CFM 的数量关系为________;(直接写出答案) (2)如图2,∠MEB 和∠MFD 的角平分线交于点N ,若∠EMF 等于130°,求∠ENF 的度数;
(3)如图3,点G 为直线CD 上一点,延长GM 交直线AB 于点Q ,点P 为MG 上一点,射线PF 、EH 相交于点H ,满足13PFG MFG ∠=∠,1
3
BEH BEM ∠=∠,设∠EMF =α,求∠H 的度数(用含α的代数式表示).
25.问题情境:如图1,AB CD ∥,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.
小明的思路是:如图2,过P 作PE AB ,通过平行线性质,可得APC ∠=______.
问题迁移:如图3,AD BC ∥,点P 在射线OM 上运动,ADP α∠=∠,
BCP β∠=∠.
(1)当点P 在A 、B 两点之间运动时,CPD ∠、α∠、β∠之间有何数量关系?请说明理由.
(2)如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出CPD ∠、α∠、β∠之间有何数量关系.
26.(1)如图1,已知直线//m n ,在直线n 上取A B 、两点,C P 、为直线m 上的两点,无论点C P 、移动到任何位置都有:ABC
S
____________ABP S △(填“>”、“<”或“=”)
(2)如图2,在一块梯形田地上分别要种植大豆(空白部分)和芝麻(阴影部分),若想把种植大豆的两块地改为一块地,且使分别种植两种植物的面积不变,请问应该怎么改进呢?写出设计方案,并在图中画出相应图形并简述理由.
(3)如图3,王爷爷和李爷爷两家田地形成了四边形DEFG ,中间有条分界小路(图中折线ABC ),左边区域为王爷爷的,右边区域为李爷爷的。
现在准备把两家田地之间的小路改为直路,请你用有关的几何知识,按要求设计出修路方案,并在图中画出相应的图形,说明方案设计理由。
(不计分界小路与直路的占地面积).
27.如图,已知AB∥CD,∠A=40°,点P是射线B上一动点(与点A不重合),CM,CN 分别平分∠ACP和∠PCD,分别交射线AB于点M,N.
(1)求∠MCN的度数.
(2)当点P运动到某处时,∠AMC=∠ACN,求此时∠ACM的度数.
(3)在点P运动的过程中,∠APC与∠ANC的比值是否随之变化?若不变,请求出这个比值:若变化,请找出变化规律.
28.如图1,已知直线PQ∥MN,点A在直线PQ上,点C、D在直线MN上,连接AC、AD,∠PAC=50°,∠ADC=30°,AE平分∠PAD,CE平分∠ACD,AE与CE相交于E.(1)求∠AEC的度数;
(2)若将图1中的线段AD沿MN向右平移到A1D1如图2所示位置,此时A1E平分
∠AA1D1,CE平分∠ACD1,A1E与CE相交于E,∠PAC=50°,∠A1D1C=30°,求∠A1EC 的度数.
(3)若将图1中的线段AD沿MN向左平移到A1D1如图3所示位置,其他条件与(2)相同,求此时∠A1EC的度数.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【分析】
根据平行线的性质和角平分线的定义可得∠ACD=82°,再根据CP⊥AP,即可得∠2的度数.
【详解】
解:∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵AP平分∠BAC,
∴∠BAC=2∠1=98°,
∴∠ACD=180°-98°=82°,
∵CP⊥AP,
∴∠P=90°,
∴∠ACP=90°-∠1=90°-49°=41°,
∴∠2=∠ACD-∠ACP=82°-41°=40°.
则∠2的度数为41°.
故选:B.
【点睛】
本题考查了平行线的性质、垂线,解题的关键是掌握平行线的性质.
2.D
解析:D
【详解】
解:D选项中缺少先要条件,就是在同一平面内
故选:D
3.C
解析:C
【分析】
直接作出BF∥AD,再利用平行线的性质分析得出答案.
【详解】
解:作BF∥AD,
∵AD∥CE,
∴AD∥BF∥EC,
∴∠1=∠3,∠4+∠2=180°①,
∵∠3+∠4=95°,
∴∠1+∠4=95°②,
①-②,得
∠2-∠1=85°.
故选C.
【点睛】
此题主要考查了平行线的性质,正确得出∠1+∠4=95°,∠2+∠4=180°是解题关键.4.D
解析:D
【分析】
根据同位角定义可得答案.
解:解:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角,根据定义,结合图形,∠1的同位角是∠5.
故选:D.
【点睛】
本题考查同位角的定义,解题关键是熟练理解同位角的定义,本题属于基础题型.
5.B
解析:B
【分析】
结合图形,根据平行线的判定方法对选项逐一进行分析即可得.
【详解】
A. ∠l=∠2,根据内错角相等,两直线平行,可得AB//CD,故不符合题意;
B. ∠2=∠E,根据同位角相等,两直线平行,可得AD//BE,故符合题意;
C. ∠B+∠E= 180°,根据同旁内角互补,两直线平行,可得AB//CD,故不符合题意;
D. ∠BAF=∠C,根据同位角相等,两直线平行,可得AB//CD,故不符合题意,
故选B.
【点睛】
本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.
6.C
解析:C
【分析】
首先根据题意,可得距离坐标为(2,1)的点是到l1的距离为2,到l2的距离为1的点;然后根据到l1的距离为2的点是两条平行直线,到l2的距离为1的点也是两条平行直线,可得所求的点是以上两组直线的交点,一共有4个,据此解答即可.
【详解】
解:如图1,
,
到l1的距离为2的点是两条平行直线l3、l4,到l2的距离为1的点也是两条平行直线l5、l6,
∵两组直线的交点一共有4个:A、B、C、D,
∴距离坐标为(2,1)的点的个数有4个.
【点睛】
此题主要考查了点的坐标,以及对“距离坐标”的含义的理解和掌握,解答此题的关键是要明确:到l1的距离为2的点是两条平行直线,到l2的距离为1的点也是两条平行直线.7.C
解析:C
【解析】
【分析】作AB∥a,先证AB∥a∥b,由平行线性质得∠2=180°-∠1+∠3,变形可得结果.【详解】作AB∥a,由直线a平移后得到直线b,
所以,AB∥a∥b
所以,∠2=180°-∠1+∠3,
所以,∠2-∠3=180°-∠1=180°-70°=110°.
故选:C
【点睛】本题考核知识点:平行线性质.解题关键点:熟记平行线性质.
8.D
解析:D
【解析】试题分析:根据对顶角的性质可知∠1=∠DOF,然后由平面直角坐标系可知∠DOB=90°=∠DOF+∠2,可知∠1+∠2=90°,再由∠1:∠2=3:6,可求得∠2=60°,因此可知∠AOE=60°,从而求得∠EOD的度数为150°.
故选:D
9.D
解析:D
【解析】图案横向拉长2倍就是纵坐标不变,横坐标乘以2,又向右平移2个单位长度,就是纵坐标不变,横坐标加2,应该利用逆向思维纵坐标不变,横坐标先减2,再均除以2.
故选:D.
点睛:此题主要考查了坐标与图形变化-平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减
10.A
解析:A
【分析】
根据命题的定义对四句话进行判断.
【详解】
解:(1)两点之间,线段最短,它是命题;
(2)如果两个角的和是90度,那么这两个角互余,它是命题;
(3)请画出两条互相平行的直线,它不是命题;
(4)一个锐角与一个钝角互补吗?,它不是命题.
所以,是命题的为(1)(2),
故选:A.
【点睛】
本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成如果…那么…形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
11.A
解析:A
【解析】
分析:根据两直线平行,内错角相等,得到∠BFD的度数,进而得出∠CFD的度数,再由三角形外角的性质即可得到结论.
详解:如图,延长ED交BC于F.
∵DE∥AB,∴∠DFB=∠ABF=120°,∴∠CFD=60°.
∵∠CDE=∠C+∠CFD,∴∠C=∠CDE-∠CFD=135°-60°=75°.
故选A.
点睛:本题考查了平行线的性质及三角形外角的性质.解题的关键是理解题意,灵活应用平行线的性质解决问题,属于中考常考题型.
12.C
解析:C
【分析】
根据平行线的性质,即可得到∠1+∠2+∠3=180°,再根据∠2=∠3,∠1=50°,即可得出∠2的度数.
【详解】
∵a∥b,
∴∠1+∠2+∠3=180°,
又∵∠2=∠3,∠1=50°,
∴50°+2∠2=180°,
∴∠2=65°,
故选:C.
【点睛】
本题主要考查了平行线的性质,角平分线的定义,解题时注意:两直线平行,同旁内角互补.
二、填空题
13.【分析】
过点向右作,过点向右作,得到,根据两直线平行同旁内角互补即可得出答案.
【详解】
解:如图,过点向右作,过点向右作
,
故答案为:.
【点睛】
本题考查了平行线的性质定理,根据题
解析:()1180n -⋅︒
【分析】
过点2A 向右作21//A D A B ,过点3A 向右作31//A E A B ,得到
321////...////n A E A D A B A C ,根据两直线平行同旁内角互补即可得出答案.
【详解】
解:如图,过点2A 向右作21//A D A B ,过点3A 向右作31//A E A B
1//n A B A C
321////...////n A E A D A B A C ∴
112180A A A D ∴∠+∠=︒,2323180DA A A A E ∠+∠=︒...
()11231...1180n n A A A A A A C n -∴∠+∠++∠=-⋅︒
故答案为:()1180n -⋅︒.
【点睛】
本题考查了平行线的性质定理,根据题意作合适的辅助线是解题的关键.
14.n或180﹣n
【分析】
分两种情况讨论:当点在线段上;点在延长线上,根据平行线的性质,即可得到结论.
【详解】
解:过A作AM⊥BC于M,如图1,
当点C在BM延长线上时,点F在线段AD上,
∵
解析:n或180﹣n
【分析】
分两种情况讨论:当点M在线段BC上;点C在BM延长线上,根据平行线的性质,即可得到结论.
【详解】
解:过A作AM⊥BC于M,如图1,
当点C在BM延长线上时,点F在线段AD上,
∵AD∥BC,CF⊥AD,
∴CF⊥BG,
∴∠BCF=90°,
∴∠BCE+∠ECF=90°,
∵CE⊥AB,
∴∠BEC=90°,
∴∠B+∠BCE=90°,
∴∠B=∠ECF=n°,
∵AD∥BC,
∴∠BAF=180°﹣∠B=180°﹣n°,
过A作AM⊥BC于M,如图2,当点C在线段BM上时,点F在DA延长线上,
∵AD∥BC,CF⊥AD,
∴CF⊥BG,
∴∠BCF=90°,
∴∠BCE+∠ECF=90°,
∵CE⊥AB,
∴∠BEC=90°,
∴∠B+∠BCE=90°,
∴∠B=∠ECF=n°,
∵AD∥BC,
∴∠BAF=∠B=n°,
综上所述,∠BAF的度数为n°或180°﹣n°,
故答案为:n或180﹣n.
【点睛】
本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.
15.108
【解析】
分析:根据平行线的性质,得到∠A+∠B=180°,∠B=∠BDF,
∠A+∠ACD=180°,然后根据角平分线的性质,得到∠ACE=∠ECD=∠CED,然后根据题意和三角形的外角的性
解析:108
【解析】
分析:根据平行线的性质,得到∠A+∠B=180°,∠B=∠BDF,∠A+∠ACD=180°,然后根据角平分线的性质,得到∠ACE=∠ECD=∠CED,然后根据题意和三角形的外角的性质,四边形的内角和求解.
详解:∵CE平分∠ACD
∴∠ACE=∠DCE
∵AB∥CD,AC∥BD,
∴∠A+∠B=180°,∠B=∠BDF,∠ACD+∠A=180°,∠ACE=∠CED
∵∠EDF=∠DEF =∠ECD+∠CED
∴∠CEF=∠FEB=∠CED+∠DEF
设∠B=x,则∠A=180°-x,∠ACE=∠ECD=∠CED=1
2 x,
∴∠EDF=x,∠BEF=3
2
x
∴∠CEB=360°-2×∠BEF=360°-3x
∴∠A+∠B+∠BEC+∠ACE=180°-x+x+360°-3x+1
2
x=360°
解得x=72°
∴∠A=180°-72°=108°.
故答案为108.
点睛:此题主要考查了平行线的性质和三角形的外角的综合应用,关键是利用平行线的性质和三角形的外角确定角之间的关系,有一定的难度.
16.130°
【解析】
∵AD∥BC,∠DEF=25°,
∴∠BFE=∠DEF=25°,
∴∠EFC=155°,
∴∠CFG=155°-25°=130°.
故答案为130°.
点睛:本题主要是根据折叠能
解析:130°
【解析】
∵AD∥BC,∠DEF=25°,
∴∠BFE=∠DEF=25°,
∴∠EFC=155°,
∴∠CFG=155°-25°=130°.
故答案为130°.
点睛:本题主要是根据折叠能够发现相等的角,同时运用了平行线的性质.
17.50
【分析】
先根据平行线的判定可得,再根据平行线的性质、两直线的夹角的定义即可得.
【详解】
∵,,
∴,
∵,
∴,
∴直线AB 与BD 的夹角是50度,
故答案为:50.
【点睛】
本题考查了平
解析:50
【分析】
先根据平行线的判定可得//AB CD ,再根据平行线的性质、两直线的夹角的定义即可得.
【详解】
∵AC AB ⊥,AC CD ⊥,
∴//AB CD ,
∵130CDB ∠=︒,
∴18050ABD CDB ∠=︒-∠=︒,
∴直线AB 与BD 的夹角是50度,
故答案为:50.
【点睛】
本题考查了平行线的判定与性质、两直线的夹角的定义,熟练掌握平行线的判定与性质是解题关键.
18.【解析】
试题分析:如图:
∵△ABC 是等边三角形,
∴∠ABC=60°,
又∵直线l1∥l2∥l3,∠1=25°,
∴∠1=∠3=25°.
∴∠4=60°-25°=35°,
∴∠2=∠4=35
解析:035
【解析】
试题分析:如图:
∵△ABC是等边三角形,
∴∠ABC=60°,
又∵直线l1∥l2∥l3,∠1=25°,
∴∠1=∠3=25°.
∴∠4=60°-25°=35°,
∴∠2=∠4=35°.
考点:1.平行线的性质;2.等边三角形的性质.
19.40°
【分析】
本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.
【详解】
∵AD∥BC,
∴∠BCD=180°-∠D=80°,
又∵CA平分∠BCD,
∴
解析:40°
【分析】
本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.
【详解】
∵AD∥BC,
∴∠BCD=180°-∠D=80°,
又∵CA平分∠BCD,
∴∠ACB=1
2
∠BCD=40°,
∴∠DAC=∠ACB=40°.
【点睛】
本题重点考查了平行线的性质及角平分线的定义,是一道较为简单的题目.
20.8
【分析】
理解已知条件是解答此题的关键,跳格总共有6格,第一次只能跳1格,后面
的可以跳2格或者1格,当全部都是1格,或者部分1格部分2格,整理出所有的情况即可求出答案.
【详解】
当全部都只跳1
解析:8
【分析】
理解已知条件是解答此题的关键,跳格总共有6格,第一次只能跳1格,后面的可以跳2格或者1格,当全部都是1格,或者部分1格部分2格,整理出所有的情况即可求出答案.
【详解】
当全部都只跳1格时,1种方法;
当有1次跳2格,其他全部1格,有4种方法;
当有2次跳2格时,其他全部1格,有3种方法;
不存在3次或者更多跳2格的情况
综上共有1+4+3=8种方法.
【点睛】
本题考查数列的递推式,实际上我们解题时抓住实际问题的本质,写出满足条件的数列,利用数列的递推式写出结果.
三、解答题
21.(1)120º,120º;(2)160;(3)
()1360n m n -⋅- 【分析】
(1)过点,C D 作CG EF ,DH EF ,根据 120FAC ACB ∠=∠=︒,平行线的性质和周角可求出120GCB ∠=︒,则 120CBN GCB ∠=∠=︒,再根据
12CAD FAC ∠=∠, 12CBD CBN ∠=∠,可得 1602
CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒,可求出 60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,根据
ADB ADH BDH ∠=∠+∠即可得到结果; (2)同理(1)的求法,根据120FAC ACB ∠=∠=︒,13CAD FAC ∠=
∠, 13
CBD CBN ∠=∠求解即可; (3)同理(1)的求法,根据FAC ACB m ∠=∠=︒,1CAD FAC n
∠=∠, 1CBD CBN n
∠=
∠求解即可; 【详解】 解:(1)如图示,分别过点,C D 作CG EF ,DH EF ,
∵EF MN , ∴EF MN CG DH ,
∴120ACG FAC ∠=∠=︒,
∴360120GCB ACG ACB ∠=︒-∠-∠=︒,
∴120CBN GCB ∠=∠=︒, ∵1602
CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒ ∴60DBN CBN CBD ∠=∠-∠=︒,
又∵60FAD FAC CAD ∠=∠-∠=︒,
∴60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,
∴120ADB ADH BDH ∠=∠+∠=︒.
(2)如图示,分别过点,C D 作CG EF ,DH EF ,
∵EF MN ,∴EF MN CG DH ,
∴120ACG FAC ∠=∠=︒,
∴360120GCB ACG ACB ∠=︒-∠-∠=︒,
∴120CBN GCB ∠=∠=︒,
∵1403CBD CBN ∠=∠=︒, 1403
CAD FAC ∠=∠=︒ ∴80DBN CBN CBD ∠=∠-∠=︒,
又∵80FAD FAC CAD ∠=∠-∠=︒,
∴80ADH FAD ∠=∠=︒,80BDH DBN ∠=∠=︒,
∴160ADB ADH BDH ∠=∠+∠=︒.
故答案为:160;
(3)同理(1)的求法
∵EF MN ,∴EF MN CG DH ,
∴ACG FAC m ∠=∠=︒,
∴3603602GCB ACG ACB m ∠=︒-∠-∠=︒-︒,
∴3602CBN GCB m ∠=∠=︒-︒, ∵13602m CBD CBN n n ︒-︒∠=∠=, 1m CAD FAC n n
︒∠=∠= ∴()()360213602=3602m n m DBN CB D m n N n CB ︒-︒-︒-︒-
︒∠-∠=-=∠︒, 又∵()1n m FAD FAC CAD m m n n -︒∠=∠-∠=︒-
=︒, ∴()
1n ADH FAD m n -∠=∠=︒, ()13602n BDH DBN m n
-∠=∠=︒-︒, ∴()()()1113602=360n n n ADB ADH BDH m m m n n n --∠=∠+∠=
-︒︒-︒︒-+︒. 故答案为:
()1360n m n
-⋅-. 【点睛】 本题主要考查了平行线的性质和角度的运算,熟悉相关性质是解题的关键.
22.(1)证明见解析;(2)∠F=55°;(3)∠MQN =
12∠ACB ;理由见解析. 【分析】
(1)首先根据平行线的性质得出∠ACE =∠A ,∠ECD =∠B ,然后通过等量代换即可得出答案;
(2)首先根据角平分线的定义得出∠FCD =12∠ECD ,∠HAF =12
∠HAD ,进而得出∠F =12
(∠HAD+∠ECD ),然后根据平行线的性质得出∠HAD+∠ECD 的度数,进而可得出答案;
(3)根据平行线的性质及角平分线的定义得出12
QGR QGD ∠=∠,12
NQG AQG ∠=∠,180MQG QGR ∠+∠=︒ ,再通过等量代换即可得出∠MQN =12
∠ACB . 【详解】
解:(1)∵CE //AB ,
∴∠ACE =∠A ,∠ECD =∠B ,
∵∠ACD =∠ACE+∠ECD ,
∴∠ACD =∠A+∠B ;
(2)∵CF 平分∠ECD ,FA 平分∠HAD ,
∴∠FCD =
12∠ECD ,∠HAF =12∠HAD , ∴∠F =12∠HAD+12∠ECD =12
(∠HAD+∠ECD ), ∵CH //AB ,
∴∠ECD =∠B ,
∵AH //BC ,
∴∠B+∠HAB =180°,
∵∠BAD =70°,
110B HAD ∴∠+∠=︒,
∴∠F =12
(∠B+∠HAD )=55°; (3)∠MQN =12
∠ACB ,理由如下: GR 平分QGD ∠,
12
QGR QGD ∴∠=∠. GN 平分AQG ∠,
12
NQG AQG ∴∠=∠. //QM GR ,
180MQG QGR ∴∠+∠=︒ .
∴∠MQN =∠MQG ﹣∠NQG
=180°﹣∠QGR ﹣∠NQG
=180°﹣
12(∠AQG+∠QGD ) =180°﹣
12(180°﹣∠CQG+180°﹣∠QGC ) =
12(∠CQG+∠QGC ) =12
∠ACB . 【点睛】
本题主要考查平行线的性质和角平分线的定义,掌握平行线的性质和角平分线的定义是解题的关键.
23.(1)4;(2)45°;(3)P (0,-1)或(0,3)
【分析】
(1)根据非负数的性质得到a =−b ,a−b +4=0,解得a =−2,b =2,则A (−2,0),B (2,0),C (2,2),即可计算出三角形ABC 的面积=4;
(2)由于CB ∥y 轴,BD ∥AC ,则∠CAB =∠ABD ,即∠3+∠4+∠5+∠6=90°,过E 作
EF ∥AC ,则BD ∥AC ∥EF ,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED =∠1+∠2=1
2×90°=45°; (3)先根据待定系数法确定直线AC 的解析式为y =
12x +1,则G 点坐标为(0,1),然后利用S △PAC =S △APG +S △CPG 进行计算.
【详解】
解:(1)由题意知:a =−b ,a−b +4=0,
解得:a =−2,b =2,
∴ A (−2,0),B (2,0),C (2,2),
∴S △ABC =1AB BC=42⋅; (2)∵CB ∥y 轴,BD ∥AC ,
∴∠CAB =∠ABD ,
∴∠3+∠4+∠5+∠6=90°,
过E 作EF ∥AC ,
∵BD ∥AC ,
∴BD ∥AC ∥EF ,
∵AE ,DE 分别平分∠CAB ,∠ODB ,
∴∠3=∠4=∠1,∠5=∠6=∠2,
∴∠AED =∠1+∠2=12
×90°=45°; (3)存在.理由如下:
设P 点坐标为(0,t ),直线AC 的解析式为y =kx +b ,
把A (−2,0)、C (2,2)代入得:
-2k+b=02k+b=2⎧⎨⎩,解得1k=2b=1
⎧⎪⎨⎪⎩, ∴直线AC 的解析式为y =
12x +1, ∴G 点坐标为(0,1),
∴S △PAC =S △APG +S △CPG =12|t−1|•2+12
|t−1|•2=4,解得t =3或−1, ∴P 点坐标为(0,3)或(0,−1).
【点睛】
本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.
24.(1)M AEM CFM ∠=∠+∠;(2)115ENF ∠=︒;(3)1603
H α∠=︒-.
【分析】
(1)过点M 作//ML AB ,利用平行线的性质可得1AEM ∠=∠,2CFM ∠=∠,由12EMF ∠=∠+∠,经过等量代换可得结论; (2)过M 作//ME AB ,利用平行线的性质以及角平分线的定义计算即可.
(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .证明H x y ∠=-,求出x y -即可解决问题.
【详解】
(1)如图1,过点M 作//ML AB ,
//AB CD ,
////ML AB CD ∴,
1AEM ∴∠=∠,2CFM ∠=∠,
12EMF ∠=∠+∠,
M AEM CFM ∴∠=∠+∠;
(2)过M 作//ME AB ,
//AB CD ,
//ME CD ∴,
24180BEM DFM ∴∠+∠=∠+∠=︒,
1802BEM ∴∠=︒-∠,1804DFM ∠=︒-∠, EN ,FN 分别平分MEB ∠和DFM ∠, 112BEM ∴∠=∠,132DFM ∠=∠, 111113(1802)(1804)180(24)1801301152222∴∠+∠=
︒-∠+︒-∠=︒-∠+∠=︒-⨯︒=︒, 36013360115130115ENF EMF ∴∠=︒-∠-∠-∠=︒-︒-︒=︒;
(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .
//AB CD ,
BEH DKH x ∴∠=∠=,
PFG HFK y ∠=∠=,DKH H HFK ∠=∠+∠,
H x y ∴∠=-,
EMF MGF α∠=∠=,180BQG MGF ∠+∠=︒,
180BQG α∴∠=︒-,
QMF QMF EMF MGF MFG ∠=∠+∠=∠+∠,
3QME MFG y ∴∠=∠=,
BEM QME MQE ∠=∠+∠,
33180x y α∴-=︒-,
1603
x y α∴-=︒-, 1603
H α∴∠=︒-. 【点睛】
本题考查平行线的性质和判定,三角形的外角的性质,三角形的内角和定理等知识,作出平行线,利用参数解决问题是解题的关键.
25.110︒;(1)CPD αβ∠=∠+∠;理由见解析;(2)当点P 在B 、O 两点之间时,CPD αβ∠=∠-∠;当点P 在射线AM 上时,CPD βα∠=∠-∠.
【分析】
问题情境:理由平行于同一条直线的两条直线平行得到 PE ∥AB ∥CD ,通过平行线性质来求∠APC .
(1)过点P 作PQ AD ,得到PQ AD BC 理由平行线的性质得到
ADP DPQ ∠=∠,BCP CPQ ∠=∠,即可得到
CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠
(2)分情况讨论当点P 在B 、O 两点之间,以及点P 在射线AM 上时,两种情况,然后构造平行线,利用两直线平行内错角相等,通过推理即可得到答案.
【详解】
解:问题情境:
∵AB ∥CD ,PE AB
∴PE ∥AB ∥CD , ∴∠A+∠APE=180°,∠C+∠CPE=180°,
∵∠PAB=130°,∠PCD=120°,
∴∠APE=50°,∠CPE=60°,
∴∠APC=∠APE+∠CPE=50°+60°=110°;
(1)CPD αβ∠=∠+∠
过点P 作PQ AD .
又因为AD BC ∥,所以PQ AD BC
则ADP DPQ ∠=∠,BCP CPQ ∠=∠
所以CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠
(2)情况1:如图所示,当点P 在B 、O 两点之间时
过P 作PE ∥AD ,交ON 于E ,
∵AD ∥BC ,
∴AD ∥BC ∥PE ,
∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,
∴∠CPD=∠DPE-∠CPE=∠α-∠β
情况2:如图所示,当点P 在射线AM 上时,
过P 作PE ∥AD ,交ON 于E ,
∵AD ∥BC ,
∴AD ∥BC ∥PE ,
∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,
∴∠CPD=∠CPE-∠DPE=∠β-∠α
【点睛】
本题主要借助辅助线构造平行线,利用平行线的性质进行推理.
26.(1)=;(2)见解析;(3)见解析
【分析】
(1)根据平行线间的距离处处相等,所以无论点C P 、在m 上移动到何位置,总有ABC 与ABP △同底等高,因此它们的面积相等;
(2)利用同底等高的三角形的面积相等即可求得设计方案;
(3)连结AC ,过B 点作AC 的平行线PQ ,连结AQ 或CP ,则AQ 或CP 即为所修直路.
【详解】
(1)∵ABC 与ABP △有共同的边AB ,
又∵//m n ,
∴ABC 与ABP △的高相等,即ABC 与ABP △同底等高,
∴ABC S =ABP S △,
故答案为:=;
(2)方法一:
连结AC ,将ACD 的区域用于种植大豆,ABC 的区域用于种植芝麻,理由如下: 在梯形ABCD 中,//AD BC ,
则ACE △与ABE △同底等高,
∴ACE ABE S S =△△,
∴ABE ECD ACE ECD S S S S +=+△△△△,
即ACD ABE ECD S S S =+△△△,
又由//AD BC 可知ABC 与EBC 同底等高,
∴=B ABC E C S S ,
∴该设计方案把种植大豆的两块地改为一块地,且使分别种植两种植物的面积不变;
方法二
连结BD ,将ABD △的区域用于种植大豆,BCD 的区域用于种植芝麻,理由如下: 在梯形ABCD 中,//AD BC ,
则BED 与CED 同底等高,
∴=BED CED S
S , ∴+=+ABE CED ABE BED S
S S S , 即=+ABD ABE CED S S S ,
又由//AD BC 可知BCD 与BCE 同底等高,
∴BCD BCE S S =△△,
∴该设计方案把种植大豆的两块地改为一块地,且使分别种植两种植物的面积不变;
(3)方法一
连结AC ,过B 点作AC 的平行线PQ :连结AQ ,AQ 即为所修直路.
将四边形ADEQ 的区域分给王爷爷,四边形AGFQ 的区域分给李爷爷,理由如下: ∵//PQ AC ,则BCQ △与ABQ △同底等高,
∴BCQ ABQ S S =△△,则ABP BCQ ABP ABQ S S S S +=+△△△△,
即APQ ABP BCQ S S S =+△△△,
又由//PQ AC 可知ABC 与ACQ 同底等高,
∴ABC ACQ S S =△△,
∴AQ 满足修路方案;
方法二:
连结AC ,过B 点作AC 的平行线PQ :连结PC ,PC 即为所修直路.
将四边形CEDP 的区域分给王爷爷,四边形CPGF 的区域分给李爷爷,理由如下: ∵//PQ AC ,则ABP △与PBC 同底等高,
∴ABP PBC S S =△△,则ABP BCQ PBC BCQ S S S S +=+△△△△,
即=+CPQ ABP BCQ S S S ,
又由//PQ AC 可知ABC 与ACP △同底等高,
∴ABC ACP S S =△△,
∴PC 满足修路方案.
【点睛】
本题主要考查了两条平行线间的距离处处相等.只要两个三角形是同底等高的,则两个三角形的面积一定相等.解题的关键还要根据等式的性质进一步进行变形.
27.(1)∠MCN=70°;(2)∠ACM=35°;(3)不变.(详见解析)
【分析】
(1)由AB ∥CD 可得∠ACD=180°-∠A ,再由CM 、CN 均为角平分线可求解;
(2)由AB ∥CD 可得∠AMC=∠MCD ,再由∠AMC=∠ACN 可得∠ACM =∠NCD ; (3)由AB ∥CD 可得∠APC=∠PCD ,再由CN 为角平分线即可解答.
【详解】
解:(1)∵A B ∥CD ,
∴∠ACD=180°﹣∠A=140°,
又∵CM ,CN 分别平分∠ACP 和∠PCD ,
∴∠MCN=∠MCP+∠NCP=
12(∠ACP+∠PCD )=12∠ACD=70°, 故答案为:70°.
(2)∵AB ∥CD ,
∴∠AMC=∠MCD ,
又∵∠AMC=∠ACN ,
∴∠MCD=∠ACN ,
∴∠ACM=∠ACN ﹣∠MCN=∠MCD ﹣∠MCN=∠NCD ,
∴∠ACM=∠MCP=∠NCP=∠NCD ,
∴∠ACM=14
∠ACD=35°, 故答案为:35°.
(3)不变.理由如下:
∵AB∥CD,
∴∠APC=∠PCD,∠ANC=∠NCD,又∵CN平分∠PCD,
∴∠ANC=∠NCD=1
2
∠PCD=
1
2
∠APC,即∠APC:∠ANC=2:1.
【点睛】
本题主要考查了平行线的性质,角平分线的性质的运用,解决问题的关键是掌握两直线平行,内错角相等.
28.(1)∠AEC=130°;(2)∠A1EC=130°;(3)∠A1EC=40°.
【解析】
【分析】
(1)由直线PQ∥MN,∠ADC=∠QAD=30°,可得∠PAD=150°,再求∠PAE=75°,可得
∠CAE=25°;由∠PAC=∠ACN,求得∠ECA=25°,故∠AEC=180°﹣25°﹣25°;
(2)先求出∠QA1D1=30°,∠PA1D1=150°,再求出∠PA1E=∠EA1D1=75°,再求出
∠CAQ=130°,∠ACN=50°,根据平分线定义得∠ACE=25°,再利用四边形内角和性质可求∠CEA1;
(3)根据平行线性质和角平分线定义可求得∠QA1E=∠2=15°,∠ACE=∠ECN=∠1=25°,再由∠CEA1=∠1+∠2即可求得答案.
【详解】
(1)如图1所示:
∵直线PQ∥MN,∠ADC=30°,
∴∠ADC=∠QAD=30°,
∴∠PAD=150°,
∵∠PAC=50°,AE平分∠PAD,
∴∠PAE=75°,
∴∠CAE=25°,
可得∠PAC=∠ACN=50°,
∵CE平分∠ACD,
∴∠ECA=25°,
∴∠AEC=180°﹣25°﹣25°=130°;
(2)如图2所示:
∵∠A1D1C=30°,线段AD沿MN向右平移到A1D1,PQ∥MN,
∴∠QA1D1=30°,
∴∠PA1D1=150°,
∵A1E平分∠AA1D1,
∴∠PA1E=∠EA1D1=75°,
∵∠PAC=50°,PQ∥MN,
∴∠CAQ=130°,∠ACN=50°,
∵CE平分∠ACD1,
∴∠ACE=25°,
∴∠CEA1=360°﹣25°﹣130°﹣75°=130°;
(3)如图3所示:
过点E作FE∥PQ,
∵∠A1D1C=30°,线段AD沿MN向左平移到A1D1,PQ∥MN,
∴∠QA1D1=30°,
∵A1E平分∠AA1D1,
∴∠QA1E=∠2=15°,
∵∠PAC=50°,PQ∥MN,
∴∠ACN=50°,
∵CE平分∠ACD1,
∴∠ACE=∠ECN=∠1=25°,
∴∠CEA1=∠1+∠2=15°+25°=40°.
【点睛】
本题考查了平行线性质,角平分线定义,熟练运用平行线性质和角平分线定义推出角的度数是解题的关键.。