最新北师大版七年级数学下册第五章-5.2探索轴对称的性质 教学设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章生活中的轴对称
2 探索轴对称的性质
一、学生起点分析
学生的知识技能基础:在本章前面一节课中,学生已经认识了轴对称现象,学习了轴对称的概念,加强了对图形的理解和认识,为接下来的学习奠定了知识和技能基础。

学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些认识轴对称以及轴对称图形的活动,解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

二、教学任务分析
本节课是对轴对称图形的性质进行探索,主要是通过对轴对称图形的分析,培养学生动手、制作、实验、说理的能力,并且给了学生更多表述的机会。

本节课主要培养学生自主探索、合作交流、解决问题,并且要学生学会及时对自己的求解过程进行回顾与思考。

具体地,本节课的教学目标是:
1.探索轴对称的基本性质,掌握对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等的性质。

2.通过本节课的学习,帮助学生更容易地感受到数学与现实生活的联系,体验到数学在解决实际问题中的作用,培养学生实事求是的态度及合作交流的能力。

3.通过环环相扣的、层层深入的问题设置,鼓励学生积极参与,培养学生自主、合作、探究的能力,培养学生学习数学的情趣。

教学重点:1.掌握轴对称的性质。

2.运用轴对称的性质解决实际问题。

教学难点:灵活运用轴对称的性质解决实际问题。

教学方法:为了充分体现“以学生为主体”的教学宗旨,结合本节课内容主要采
取了“自主、合作、探究”的探究式和启发式教学法。

教学手段和教具准备:长方形白纸一张,圆规一个,并运用了现代多媒体教学平台。

三、教学设计分析
本节课设计了七个环节:复习引入、探索发现、巩固新知、能力拓展、课堂小结、
布置作业、板书设计。

第一环节复习引入
活动内容:
(1)提问:什么样的图形是轴对称图形?怎么判断两个图形成轴对称?
轴对称图形:如果一个图形沿某条直线对折后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形。

这条直线叫这个图形的对称轴。

轴对称:对于两个图形,把一个图形沿着某一条直线对折,如果它能够与另一个图形完全重合,那么就说这两个图形成轴对称。

这条直线是对称轴(幻灯片给出答案)。

(2)观察动画后回答
1、动画(1)中的两个三角形有什么关系?
2、动画(2)中的三角形是个什么图形?)
活动目的:轴对称图形和两个图形成轴对称是学生比较容易混淆的概念,而本节课是探索轴对称的性质,实际上是以上两者都具备的性质,因此先对轴对称图形和两个图形成轴加强学生的学习目的。

实际教学效果:学生的学习目标得到了明晰,大大提高了课堂效率。

第二环节探索发现
活动内容:各小组派代表展示自己课前所做的“14”,再结合幻灯片引导学生探索得到本节课的核心内容——轴对称的基本性质:对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等。

活动目的:培养学生的动手能力,数学表达能力,团队合作意识。

实际教学效果:学生在一个开放的环境下展示、讲解亲自获取的数学知识,而且讲解中小组之间互相补充、互相竞争,气氛热烈,使学生们对轴对称的基本性质认识的更为深刻。

第三环节巩固新知
活动内容:
1.如果两个图形关于某条直线对称,那么对应点所连的线段被对称轴垂直平分。

2.图⑴是轴对称图形,根据轴对称图形的性子,你可以
得到相等的线段是,相等的角
是。

3.两个图形关于某直线对称,对称点一定在( )
A .这直线的两旁
B .这直线的同旁
C .这直线上
D .这直线两旁或这直线上
4.轴对称图形沿对称轴对折后,对称轴两旁的部分 ( )
A .完全重合
B .不完全重合
C .两者都有
5.下面说法中正确的是( )
A.设A,B关于直线MN 对称,则AB 垂直平分MN 。

B.如果△ABC ≌△DEF,则一定存在一条直线MN ,使△ABC 与△DEF 关于MN 对称。

C.如果一个三角形是轴对称图形,且对称轴不止一条,则它是等边三角形。

D.两个图形关于MN 对称,则这两个图形分别在MN 的两侧。

6. 已知互不平行的两条线段AB ,CD 关于直线l 对称,AB ,CD 所在直线交于点P ,下列结论中:①AB=CD ;②点P 在直线l 上; ③若A ,C 是对称点,则l 垂直平分线段AC ; ④若B ,D 是对称点,则PB=PD 。

其中正确的结论有( ) A. 1个 B. 2个
C. 3个
D. 4个
7.若直角三角形是轴对称图形,这个三角形三个内角的度数为 。

活动目的:对本节知识进行巩固练习。

实际教学效果:学生基本都能准确完成本环节的内容,并且已基本掌握了轴对称的基本性质。

3、4、5、6都是概念性问题,应引导学生从两方面入手:(1)运用书上的概念加以判断;(2)肯于动手按要求画出图形再加以判断。

第7题由于有了多媒体的动画展示,学生会比较容易解决。

第四环节 能力拓展
活动内容:
1.已知点A 、B 是直线MN 同侧两点。

点A 1、A 关于直线MN 对称。

连接A 1B 交直线MN 于点P,连接AP 。

(1)如图(2)若A 1B =5cm ,则AP+BP 的长为 5cm 。

(2)如图(3)若P 1为直线MN 上任意一点(不与P 重合),连结AP 1、BP 1, 试说明 AP 1+BP 1>AP+BP 。

(3)某乡为了解决所辖范围内张家村A 和李家村B 的饮水问题,决定在河MN 边打开
一个缺口P 将河水引入到张家村A 和李家村B 。

为了节约资金,使修建的水渠最短,应将缺口P 修建在哪里?请你利用所学知识解决这一问题,并用红色线段画出水渠。

2.如图(5),已知点P是∠AOB 内任意一点,点P1,P关于OA 对称,点P2,P关于OB 对称。

连接P 1P 2,分别交OA ,OB 于C ,D 。

连接PC ,PD 。

若P 1P 2=10cm ,则△PCD 的
周长为10cm 。

3.如图(6),△ABC 与△DEF 关于直线l 成轴对称
①请写出其中相等的线段; ②如果△ABC 的面积为6cm,且DE=3cm ,求△ABC 中AB 边上的高h 。

解:① AB=DE 、AC=DF 、BC=EF
② 活动目的:通过由浅入深的习题设置,让学生在收获成功体验的同时突破难点,同时让学生体会到学习数学的意义——数学来源于生活,应用于生活。

此处留给学生充分的时间与空间去思考、动手、讨论,培养学生对某个问题作出正确判断、合理决策的能力,使学生在合作学习的过程中不仅学会如何应用所学知识,更增加了学生们的合作意识。

实际教学效果:由于习题的设置有明显的梯度,绝大部分学生都收获了成功体验,比较轻松的突破了本节课的难点,从而大大激发了学生的学习热情,起到了非常理想的效果。

2233162
4ABC DE cm
AB DE cm
S AB h cm h cm =∴===∙=∴=A1 A B P N M P1 (3)
A B
P A1 N M (4) A
B
C F
D
E l
(6) (5)
第五环节课堂小结
活动内容:师生互相交流总结这节课的体会,重新回顾这节课的知识点以及新知识点应用方面的一些技巧。

活动目的:鼓励学生结合本节课的学习,谈自己的收获与感想包括在研讨活动中的收获(学生畅所欲言,教师给予鼓励)。

实际教学效果:学生畅所欲言自己的切身感受与实际收获,并再次感受到了合作学习的快乐。

第六环节布置作业
1.独立完成习题5.2 知识技能:第1题、第2题;问题解决第1题、第2题。

2.小组合作探究联系拓广:第1题。

四、教学设计反思
1.对于教材的应用
教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整,课件也只是一种辅助工具,应用时不宜过于受两者的拘束。

应以学生为出发点,根据不同学生的不同特点来决定如何应用教材以及课件上的内容。

2.相信学生并为学生提供充分展示自己的机会
新型课堂决定了学生是学习的主人,不仅仅在于接受老师所教授的,更应注重培养学生自己发现探索新知识及运用新知识能力。

这要求老师要充分的相信学生,把课堂还给学生。

3.注意改进的方面
在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。

教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性。

根据不同学生的不同特点应注意适当增减内容以保证课堂教学的顺利完成。

相关文档
最新文档