人教版物理高一下册 圆周运动综合测试卷(word含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、第六章 圆周运动易错题培优(难)
1.如图所示,水平圆盘可绕竖直轴转动,圆盘上放有小物体A 、B 、C ,质量分别为m 、2m 、3m ,A 叠放在B 上,C 、B 离圆心O 距离分别为2r 、3r 。

C 、B 之间用细线相连,圆盘静止时细线刚好伸直无张力。

已知C 、B 与圆盘间动摩擦因数为μ,A 、B 间摩擦因数为3μ,设最大静摩擦力等于滑动摩擦力,重力加速度为g ,现让圆盘从静止缓慢加速,则( )
A .当23g
r
μω=时,A 、B 即将开始滑动 B .当2g
r
μω=32
mg
μ C .当g
r
μω=C 受到圆盘的摩擦力为0
D .当25g
r
μω=C 将做离心运动 【答案】BC 【解析】 【详解】
A. 当A 开始滑动时有:
2033A f mg m r μω==⋅⋅
解得:
0g
r
μω=
当23g
g
r
r
μμω=<AB 未发生相对滑动,选项A 错误;
B. 当2g
g
r
r
μμω=
<
时,以AB 为整体,根据2
F mr ω向
=可知 29
332
F m r mg ωμ⋅⋅=
向= B 与转盘之间的最大静摩擦力为:
23Bm f m m g mg μμ=+=()
所以有:
Bm F f >向
此时细线有张力,设细线的拉力为T , 对AB 有:
2333mg T m r μω+=⋅⋅
对C 有:
232C f T m r ω+=⋅⋅
解得
32mg T μ=
,32
C mg
f μ= 选项B 正确;
C. 当ω=
时,
AB 需要的向心力为:
2339AB Bm F m r mg T f ωμ'⋅⋅=+==
解得此时细线的拉力96Bm T mg f mg μμ'-== C 需要的向心力为:
2326C F m r mg ωμ⋅⋅==
C 受到细线的拉力恰好等于需要的向心力,所以圆盘对C 的摩擦力一定等于0,选项C 正确;
D. 当ω=
C 有: 212
325
C f T m r mg ωμ+=⋅⋅=
剪断细线,则
12
35
C Cm f mg f mg μμ=
<= 所以C 与转盘之间的静摩擦力大于需要的向心力,则C 仍然做匀速圆周运动。

选项D 错误。

故选BC 。

2.如图所示,有一可绕竖直中心轴转动的水平足够大圆盘,上面放置劲度系数为k 的弹簧,弹簧的一端固定于轴O 上,另一端连接质量为m 的小物块A (可视为质点),物块与圆盘间的动摩擦因数为μ,开始时弹簧未发生形变,长度为L ,若最大静摩擦力与滑动摩擦力大小相等,重力加速度为g ,物块A 始终与圆盘一起转动。

则( )
A .当圆盘角速度缓慢地增加,物块受到摩擦力有可能背离圆心
B .当圆盘角速度增加到足够大,弹簧将伸长
C g
L
μ D .当弹簧的伸长量为x mg kx
mL
μ+【答案】BC 【解析】 【分析】 【详解】
AB .开始时弹簧未发生形变,物块受到指向圆心的静摩擦力提供圆周运动的向心力;随着圆盘角速度缓慢地增加,当角速度增加到足够大时,物块将做离心运动,受到摩擦力为指向圆心的滑动摩擦力,弹簧将伸长。

在物块与圆盘没有发生滑动的过程中,物块只能有背离圆心的趋势,摩擦力不可能背离圆心,选项A 错误,B 正确;
C .设圆盘的角速度为ω0时,物块将开始滑动,此时由最大静摩擦力提供物体所需要的向心力,有
20mg mL μω=
解得
0g
L
μω=
选项C 正确;
D .当弹簧的伸长量为x 时,物块受到的摩擦力和弹簧的弹力的合力提供向心力,则有
2
mg kx m x L μω+=+()
解得
mg kx
m x L μω+=
+()
选项D 错误。

故选BC 。

3.荡秋千是大家喜爱的一项体育活动。

某秋千的简化模型如图所示,长度均为L 的两根细绳下端拴一质量为m 的小球,上端拴在水平横杆上,小球静止时,细绳与竖直方向的夹角均为θ。

保持两绳处于伸直状态,将小球拉高H 后由静止释放,已知重力加速度为g ,忽
略空气阻力及摩擦,以下判断正确的是( )
A .小球释放瞬间处于平衡状态
B .小球释放瞬间,每根细绳的拉力大小均为
2
cos 2cos L H
mg L θθ
- C .小球摆到最低点时,每根细绳的拉力大小均为2cos θ
mg
D .小球摆到最低点时,每根细绳的拉力大小均为2cos 2cos mgH mg
L θθ
+
【答案】BD 【解析】 【分析】 【详解】
AB .设每根绳的拉力大小为T ,小球释放瞬间,受力分析如图1,所受合力不为0 由于速度为0,则有
2cos cos 0T mg θα-=
如图2,由几何关系,有
cos cos cos L H
L θαθ
-=
联立得
2cos 2cos L H
T mg L θθ
-=
A 错误,
B 正确;
CD .小球摆到最低点时,图1中的0α=,此时速度满足
2112
mgH mv =
由牛顿第二定律得
2
12cos v T mg m R
θ'-=
其中cos R L θ= 联立解得
22cos 2cos mgH mg
T L θθ
'=
+
C 错误,
D 正确。

故选BD 。

4.荡秋千是小朋友们喜爱的一种户外活动,大人在推动小孩后让小孩自由晃动。

若将此模型简化为一用绳子悬挂的物体,并忽略空气阻力,已知O 点为最低点,a 、b 两点分别为最高点,则小孩在运动过程中( )
A .从a 到O 的运动过程中重力的瞬时功率在先增大后减小
B .从a 到O 的运动过程中,重力与绳子拉力的合力就是向心力
C .从a 到O 的运动过程中,重力与绳子拉力做的总功等于小球在此过程中获得的动能
D .从a 到O 的运动过程中,拉力向上有分量,位移向下有分量,所以绳子拉力做了负功 【答案】AC 【解析】 【分析】 【详解】
A .由题可知,a 、b 两点分别为最高点,所以在a 、b 两点人是速度是0,所以此时重力的瞬时功率为0;在最低点O 时,速度方向与重力方向垂直,所以此时重力的瞬时功率为0,所以从a 到O 的运动过程中重力的瞬时功率在先增大后减小,故A 正确;
B .从a 到O 的运动过程中,将重力分解为速度方向的分力和背离半径方向的分力,所以提供向心力的是重力背离半径方向的分力和绳子的拉力的合力共同提供的,故B 错误;
C .根据动能定理可知,从a 到O 的运动过程中,重力与绳子拉力做的总功等于小球在此过程中获得的动能,故C 正确;
D.从a到O的运动过程中,绳子的拉力与人运动的速度方向垂直,所以拉力不做功,故D错误。

故选AC。

5.一轻杆一端固定质量为m的小球,以另一端O为圆心,使小球在竖直面内做半径为R 的圆周运动,如图所示,则下列说法正确的是()
A.小球过最高点时,杆所受到的弹力可以等于零
B gR
C.小球过最高点时,杆对球的作用力一定随速度增大而增大
D.小球过最高点时,杆对球的作用力可能随速度增大而增大
【答案】AD
【解析】
【分析】
【详解】
A.当小球到达最高点弹力为零时,重力提供向心力,有
2
v
mg m
=
R
解得
=
v gR
=A正确;
即当速度v gR
B.小球通过最高点的最小速度为零,选项B错误;
<
CD.小球在最高点,若v gR
2
v
mg F m
-=
R
杆的作用力随着速度的增大而减小;
>
若v gR
2
v
+=
mg F m
R
杆的作用力随着速度增大而增大。

选项C错误,D正确。

故选AD。

6.如图所示,匀速转动的水平圆盘上放有质量分别为2kg和3kg的小物体A、B,A、B间
用细线沿半径方向相连。

它们到转轴的距离分别为R A =0.2m 、R B =0.3m 。

A 、B 与盘面间的最大静摩擦力均为重力的0.4倍。

g 取10m/s 2,现极其缓慢地增大圆盘的角速度,则下列说法正确的是( )
A .小物体A 达到最大静摩擦力时,
B 受到的摩擦力大小为12N B .当A 恰好达到最大静摩擦力时,圆盘的角速度为4rad/s
C 230
D .当A 恰好达到最大静摩擦力时,剪断细线,A 将做向心运动,B 将做离心运动 【答案】AC 【解析】 【分析】 【详解】
A .当增大原盘的角速度,
B 先达到最大静摩擦力,所以A 达到最大静摩擦力时,B 受摩擦力也最大,大小为
f B=km B
g =0.4⨯3⨯10N=12N
故A 正确;
B .当A 恰好达到最大静摩擦力时,圆盘的角速度为ω,此时细线上的拉力为T ,由牛顿第二定律,对A
2A A A k T R m g m ω-=
对B
2B B B T km g m R ω+=
联立可解得
s 13
102
ω=
故B 错误;
C. 当细线上开始有弹力时,此时B 物体受到最大摩擦力,由牛顿第二定律,有
2B B 1B k m R m g ω=
可得
1230
ω=
故C 正确;
D. 当A 恰好达到最大静摩擦力时,剪断细线,A 物体摩擦力减小,随圆盘继续做圆周运动,而B 不再受细线拉力,最大摩擦力不足以提供向心力,做离心运动,故D 错误。

故选AC 。

7.一小球质量为m ,用长为L 的悬绳(不可伸长,质量不计)固定于O 点,在O 点正下方
2
L
处钉有一颗钉子.如图所示,将悬线沿水平方向拉直无初速度释放后,当悬线碰到钉子后的瞬间,则( )
A .小球的角速度突然增大
B .小球的线速度突然减小到零
C .小球的向心加速度突然增大
D .小球的向心加速度不变 【答案】AC 【解析】 【分析】 【详解】
由于悬线与钉子接触时小球在水平方向上不受力,故小球的线速度不能发生突变,由于做圆周运动的半径变为原来的一半,由v =ωr 知,角速度变为原来的两倍,A 正确,B 错误;由a =
2T
知,小球的向心加速度变为原来的两倍,C 正确,D 错误.
8.水平光滑直轨道ab 与半径为R 的竖直半圆形光滑轨道bc 相切,一小球以初速度v 0沿直轨道向右运动,如图所示,小球进入圆形轨道后刚好能通过c 点,然后小球做平抛运动落在直轨道上的d 点,则( )
A .小球到达c gR
B .小球在c 点将向下做自由落体运动
C .小球在直轨道上的落点d 与b 点距离为2R
D .小球从c 点落到d 点需要时间为2R g
【答案】ACD
【解析】 【分析】 【详解】
小球恰好通过最高点C,根据重力提供向心力,有: 2
v mg m R
= 解得:v gR =故A 正确;小球离开C 点后做平抛运动,即水平方向做匀速运动,0bd s v t = 竖直方向做自由落体运动,
2122R gt =
解得:2R t g
= ;2bd s R = 故B 错误;CD 正确;故选ACD
9.如图所示,足够大的水平圆台中央固定一光滑竖直细杆,原长为L 的轻质弹簧套在竖直杆上,质量均为m 的光滑小球A 、B 用长为L 的轻杆及光滑铰链相连,小球A 穿过竖直杆置于弹簧上。

让小球B 以不同的角速度ω绕竖直杆匀速转动,当转动的角速度为ω0时,小球B 刚好离开台面。

弹簧始终在弹性限度内,劲度系数为k ,重力加速度为g ,则
A .小球均静止时,弹簧的长度为L -
mg
k
B .角速度ω=ω0时,小球A 对弹簧的压力为mg
C .角速度ω02kg
kL mg
-D .角速度从ω0继续增大的过程中,小球A 对弹簧的压力不变 【答案】ACD 【解析】 【详解】
A .若两球静止时,均受力平衡,对
B 球分析可知杆的弹力为零,
B N mg =;
设弹簧的压缩量为x ,再对A 球分析可得:
1mg kx =,
故弹簧的长度为:
11mg
L L x L k
=-=-
, 故A 项正确;
BC .当转动的角速度为ω0时,小球B 刚好离开台面,即0B
N '=,设杆与转盘的夹角为θ,由牛顿第二定律可知:
2
0cos tan mg m L ωθθ
=⋅⋅ sin F mg θ⋅=杆
而对A 球依然处于平衡,有:
2sin k F mg F kx θ+==杆
而由几何关系:
1
sin L x L
θ-=
联立四式解得:
2k F mg =,
02kg
kL mg
ω=
-
则弹簧对A 球的弹力为2mg ,由牛顿第三定律可知A 球队弹簧的压力为2mg ,故B 错误,C 正确;
D .当角速度从ω0继续增大,B 球将飘起来,杆与水平方向的夹角θ变小,对A 与B 的系统,在竖直方向始终处于平衡,有:
2k F mg mg mg =+=
则弹簧对A 球的弹力是2mg ,由牛顿第三定律可知A 球队弹簧的压力依然为2mg ,故D 正确; 故选ACD 。

10.无级变速是指在变速范围内任意连续地变换速度,其性能优于传统的挡位变速器,很多高档汽车都应用了“无级变速”.图所示为一种“滚轮-平盘无级变速器”的示意图,它由固定在主动轴上的平盘和可随从动轴移动的圆柱形滚轮组成.由于摩擦的作用,当平盘转动时,滚轮就会跟随转动,如果认为滚轮不会打滑,那么主动轴的转速n 1、从动轴的转速n 2、滚轮半径r 以及滚轮中心距离主动轴轴线的距离x 之间的关系是 ( ).
A .n 2=n 1
x r
B .n 1=n 2x r
C .n 2=n 12
2x r
D .n 2=n x r
【答案】A 【解析】
由滚轮不会打滑可知,主动轴上的平盘与可随从动轴转动的圆柱形滚轮在接触点处的线速度相同,即v 1=v 2,由此可得x·2πn 1=r·2πn 2,所以n 2=n 1x r
,选项A 正确.
11.如图所示,粗糙水平圆盘上,质量相等的A 、B 两物块叠放在一起,随圆盘一起做匀速圆周运动,则下列说法正确的是( )
A .A 对
B 的摩擦力指向圆心
B .B 运动所需的向心力大于A 运动所需的向心力
C .盘对B 的摩擦力是B 对A 的摩擦力的2倍
D .若逐渐增大圆盘的转速(A 、B 两物块仍相对盘静止),盘对B 的摩擦力始终指向圆心且不断增大
【答案】C
【解析】
【详解】
A .两物体随圆盘转动,都有沿半径向外的滑动趋势,受力分析如图
则所受静摩擦力均沿半径指向圆心,由牛顿第三定理可知A 对B 的静摩擦力沿半径向外,故A 错误;
B .两物体随圆盘转动,角速度相同为ω,运动半径为r ,则两物体转动所需的向心力均为2m r ω,即B 运动所需的向心力等于A 运动所需的向心力,故B 错误;
C .对整体由牛顿第二定律可知
22B f m r ω=
对A 由牛顿第二定律得
2BA f m r ω=
则盘对B 的摩擦力是B 对A 的摩擦力的2倍,故C 正确;
D .在增大圆盘转速的瞬间,两物体有沿半径向外的趋势和沿切线向后的趋势,则此时静摩擦力方向在径向和切向之间,与线速度成锐角,径向分力继续提供向心力,切向分力提供切向加速度使线速度增大,从而保证滑块继续跟着圆盘转动,而物体随转盘一起转时静摩擦力又恢复成沿半径方向提供向心力,故增大圆盘转速,盘对B 的摩擦力大小不断增大,但方向不是始终指向圆心,故D 错误。

故选C 。

12.如图所示,转台上固定有一长为4L 的水平光滑细杆,两个中心有孔的小球A 、B 从细杆穿过并用原长为L 的轻弹簧连接起来,小球A 、B 的质量分别为3m 、2m 。

竖直转轴处于转台及细杆的中心轴线上,当转台绕转轴匀速转动时( )
A .小球A 、
B 受到的向心力之比为3:2
B .当轻弹簧长度变为2L 时,小球A 做圆周运动的半径为1.5L
C .当轻弹簧长度变为3L 时,转台转动的角速度为ω,则弹簧的劲度系数为1.8mω²
D .如果角速度逐渐增大,小球A 先接触转台边沿
【答案】C
【解析】
【分析】
【详解】
A .由于弹簧的拉力提供小球做圆周运动的向心力,弹簧对两个小球的拉力相等,因此两个小球的向心力相等,A 错误;
B .由于向心力相等,因此
221232m r m r ωω=
而轻弹簧长度变为2L 时
122r r L +=
可得
10.8r L =,2 1.2r L =
当轻弹簧长度变为2L 时,小球A 做圆周运动的半径为0.8L ,B 错误;
C .当长度为3L 时,即
123r r L ''+=
可得
1 1.2r L '=
此时弹簧的弹力提供A 球做圆周运动的向心力,则
2(3)3 1.2k L L m L ω-=⨯
整理得
21.8k m ω=
C 正确;
D .由于B 球的轨道半径总比A 球的大,因此B 球先接触转台边沿,D 错误。

故选C 。

13.小明撑一雨伞站在水平地面上,伞面边缘点所围圆形的半径为R,现将雨伞绕竖直伞杆以角速度ω匀速旋转,伞边缘上的水滴落到地面,落点形成一半径为r的圆形,当地重力加速度的大小为g,根据以上数据可推知伞边缘距地面的高度为()
A.
22
22
()
2
g r R
R
ω
-
B.
22
22
()
2
g r R
r
ω
-
C.
2
22
()
2
g r R
R
ω
-
D.
2
22
2
gr
R
ω
【答案】A
【解析】
【分析】
【详解】
雨点甩出后做平抛运动,竖直方向有
h=1
2
gt2
水平方向初速度为雨伞边缘的线速度,所以
v0=ωR
雨点甩出后水平方向做匀速直线运动
x=v0t=
伞边缘上的水滴落到地面,落点形成一半径为r的圆形,根据几何关系可知水平距离为
x
所以
解得
h=
22
22 () 2
g r R
R
ω
-
故选A.
点评:本题就是对平抛运动规律的考查,平抛运动可以分解为在水平方向上的匀速直线运动,和竖直方向上的自由落体运动来求解.
14.在粗糙水平桌面上,长为l=0.2m的细绳一端系一质量为m=2kg的小球,手握住细绳另一端O点在水平面上做匀速圆周运动,小球也随手的运动做匀速圆周运动。

细绳始终与桌面保持水平,O点做圆周运动的半径为r=0.15m,小球与桌面的动摩擦因数为=0.6
μ,2
10m/s
g=。

当细绳与O点做圆周运动的轨迹相切时,则下列说法正确的是()
A.小球做圆周运动的向心力大小为6N
B.O点做圆周运动的角速度为42rad/s
C.小球做圆周运动的线速度为22m/s
D.小球做圆周运动的轨道半径为
1
8
m
【答案】B
【解析】
【分析】
【详解】
AD.小球做圆周运动的半径如图
根据几何关系有
220.25m
R r
l
=+=
则有
tan
r
l
θ=
解得
37
θ︒
=
正交分解
sin
T mg
θμ
=
cos
T F
θ=

两式相比解得
0.6210
N16N
3
tan37
4
F
mg
μ

⨯⨯
===

故AD错误;
B.小球和O点转动的角速度相同,根据
2
F m R
ω
=

可知
16rad/s 42rad/s 20.25
m F R ω=
==⨯向 故B 正确;
C .小球做圆周运动的线速度 420.25m/s 2m/s v R ω==⨯=
故C 错误。

故选B 。

15.如图所示,一根轻杆,在其B 点系上一根细线,细线长为R,在细线下端连上一质量为 m 小球.以轻杆的A 点为顶点,使轻杆旋转起来,其B 点在水平面内做匀速圆周运动,轻杆的轨迹为一个母线长为L 的圆锥,轻杆与中心轴AO 间的夹角为α.同时小球在细线的约束下开始做圆周运动,轻杆旋转的角速度为ω,小球稳定后,细线与轻杆间的夹角β = 2α.重力加速度用g 表示,则( )
A .细线对小球的拉カ为mg /sina
B .小球做圆周运动的周期为π/ω
C .小球做圆周运动的线速度与角速度的乘积为gtan2a
D .小球做圆周运动的线速度与角速度的比值为(L+R)sina
【答案】D
【解析】
【分析】
【详解】
细线的拉力满足cos F mg α=,得cos mg F α
=,选项A 错误;小球达到稳定状态后做匀速圆周运动,其周期与轻杆旋转的周期相同,周期2T πω=的
,选项B 错误;小球做圆周运
动,根据题意有tan(2)mg mv ααω-=得,小球的线速度与角速度的乘积是
tan v g ωα=,选项C 错误;小球做圆周运动的线速度与角速度的比值即是半径,根据题意得()sin r L R α=+,选项D 正确.
综上所述本题答案是:D。

相关文档
最新文档