人教版八年级数学上册 全册全套试卷同步检测(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级数学上册 全册全套试卷同步检测(Word 版 含答案)
一、八年级数学三角形填空题(难)
1.如图,Rt △ABC 中,∠C=90°,∠BAC 的角平分线AE 与AC 的中线BD 交于点F ,P 为CE 中点,连结PF ,若CP=2,15BFP S ∆=,则AB 的长度为_______.
【答案】15
【解析】
【分析】
作辅助线EH AB ⊥交AB 于H ,再利用等量关系用△BFP 的面积来表示△BEA 的面积,利用三角形的面积公式来求解底边AB 的长度
【详解】
作EH AB ⊥
∵AE 平分∠BAC
BAE CAE ∴∠=∠
EC EH ∴=
∵P 为CE 中点
4EC EH ==∴
∵D 为AC 中点,P 为CE 中点
=x =y PEF PCF CDF ADF S S S S ==△△△△∴设,
15x BEF S =-△∴
15+x+y BCD BDA S S ==△△∴
y=15+x+y-y=15+x BFA BDA S S =-△△∴
15x+15+x=30BEA BEF BFA S S S =+=-△△△∴
1=302
BEA S AB EH ⨯=△∵ =15AB ∴
【点睛】
本题考查了辅助线的运用以及三角形的中线平分三角形的面积,解题的关键在于如何利用
△BFP 的面积来表示△BEA 的面积
2.如图,ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D ,点,E F 分别在线段BD 、CD 上,点G 在EF 的延长线上,EFD ∆与EFH ∆关于直线EF 对称,若60,84,A BEH HFG n ︒︒︒∠=∠=∠=,则n =__________.
【答案】78.
【解析】
【分析】
利用ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D 得到
∠DBC=
12∠ABC ,∠ACD=12(∠A+∠ABC),根据三角形的内角和得到∠D=12
∠A=30︒,利用外角定理得到∠DEH=96︒,由EFD ∆与EFH ∆关于直线EF 对称得到∠DEG=∠HEG=48︒,根据外角定理即可得到∠DFG=∠D+∠DEG=78︒.
【详解】
∵ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D
∴∠DBC=12∠ABC ,∠ACD=12
(∠A+∠ABC), ∵∠DBC+∠BCD+∠D=180︒,∠A+∠ABC+∠ACB=180︒,
∴∠D=12
∠A=30︒, ∵84BEH ︒∠=,
∴∠DEH=96︒,
∵EFD ∆与EFH ∆关于直线EF 对称,
∴∠DEG=∠HEG=48︒,∠DFG=∠HFG n ︒=,
∵∠DFG=∠D+∠DEG=78︒,
∴n=78.
故答案为:78.
【点睛】
此题考查三角形的内角和定理、外角定理,角平分线性质,轴对称图形的性质,此题中求出∠D=12
∠A=30︒是解题的关键.
3.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.
【答案】2b-2a
【解析】
【分析】
【详解】
根据三角形的三边关系得:a ﹣b ﹣c <0,c +a ﹣b >0, ∴原式=﹣(a ﹣b ﹣c )﹣(a +c ﹣b )=﹣a +b +c ﹣a ﹣c +b =2b ﹣2a .
故答案为2b ﹣2a
【点睛】
本题考查了绝对值得化简和三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边;一个正数的绝对值等于它的本身,零的绝对值还是零,一个负数的绝对值等于它的相反数,据此解答即可.
4.一个正多边形的每个外角为60°,那么这个正多边形的内角和是_____.
【答案】720°.
【解析】
【分析】先利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.
【详解】这个正多边形的边数为36060︒︒
=6, 所以这个正多边形的内角和=(6﹣2)×180°=720°,
故答案为720°.
【点睛】本题考查了多边形内角与外角:内角和定理:(n ﹣2)•180 (n≥3)且n 为整数);多边形的外角和等于360度.
5.如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若l ∠,2∠,3∠,4∠的外角和等于210,则BOD ∠的度数为______.
【答案】30
【解析】
【分析】
由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∠BOD .
【详解】
1∠、2∠、3∠、4∠的外角的角度和为210,
12342104180∠∠∠∠∴++++=⨯,
1234510∠∠∠∠∴+++=,
五边形OAGFE 内角和()52180540=-⨯=,
1234BOD 540∠∠∠∠∠∴++++=,
BOD 54051030∠∴=-=.
故答案为:30
【点睛】 本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.
6.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内时,∠A 与∠1+∠2之间有始终不变的关系是__________.
【答案】2∠A =∠1+∠2
【解析】
【分析】
根据∠1与∠AED 的2倍和∠2与∠ADE 的2倍都组成平角,结合△AED 的内角和为180°可求出答案.
【详解】
∵△ABC 纸片沿DE 折叠,
∴∠1+2∠AED =180°,∠2+2∠ADE =180°,
∴∠AED =12(180°−∠1),∠ADE =12
(180°−∠2), ∴∠AED +∠ADE =12(180°−∠1)+12(180°−∠2)=180°−12
(∠1+∠2) ∴△ADE 中,∠A =180°−(∠AED +∠ADE )=180°−[180°−
12(∠1+∠2)]=12(∠1+∠2),
即2∠A =∠1+∠2.
故答案为:2∠A =∠1+∠2.
【点睛】
本题考查的是三角形内角和定理,熟知三角形的内角和等于180°及图形翻折变换的性质是解答此题的关键.
二、八年级数学三角形选择题(难)
7.一个三角形的两边长分别为5和7,设第三边上的中线长为x,则x的取值范围是()
A.x>5 B.x<7 C.2<x<12 D.1<x<6
【答案】D
【解析】
如图所示:
AB=5,AC=7,
设BC=2a,AD=x,
延长AD至E,使AD=DE,
在△BDE与△CDA中,
∵AD=DE,BD=CD,∠ADC=∠BDE,
∴△BDE≌△CDA,
∴AE=2x,BE=AC=7,
在△ABE中,BE-AB<AE<AB+BE,即7-5<2x<7+5,
∴1<x<6.
故选D.
8.如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点.若∠A=60°,则
∠BMN的度数为( )
A.45°B.50°C.60°D.65°
【答案】B
【解析】
分析:过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,根据角平分线上的点到角的两边的距离相等可得NE=NG=NF,再根据到角的两边距离相等的点在角的平分线上判断出MN平分∠BMC,然后根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角的三等分求出∠MBC+∠MCB的度数,然后利用三角形内角和定理求出∠BMC的度数,从而得解.详解:如图,过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,
∵∠ABC的三等分线与∠ACB的三等分线分别交于点M、N,∴BN平分∠MBC,CN平分∠MCB,
∴NE=NG,NF=NG,
∴NE=NF,
∴MN平分∠BMC,
∴∠BMN=1
2
∠BMC,
∵∠A=60°,
∴∠ABC+∠ACB=180°−∠A=180°−60°=120°,
根据三等分,∠MBC+∠MCB=2
3
(∠ABC+∠ACB)=
2
3
×120°=80°.
在△BMC中,∠BMC=180°−(∠MBC+∠MCB)=180°−80°=100°.
∴∠BMN=1
2
×100°=50°;
故选:B.
点睛:本题考查了三角形的内角和定理:三角形内角和为180°;角平分线的性质:角平分线上的点到角两边的距离相等.熟记性质和定理是解本题的关键.
9.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点,∠A=50°,则∠D=()
A.15°
B.20°
C.25°
D.30°
【答案】C
【解析】
根据角平分线的定义和三角形的外角的性质即可得到∠D=1
2
∠A.
解:∵∠ABC的平分线与∠ACB的外角平分线相交于D点,
∴∠1=1
2
∠ACE,∠2=
1
2
∠ABC,
又∠D=∠1﹣∠2,∠A=∠ACE﹣∠ABC,
∴∠D=1
2
∠A=25°.
故选C.
10.已知三角形的两边分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.10
【答案】C
【解析】
【分析】
根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得周长.
【详解】
设第三边为x,
根据三角形的三边关系,得:4-1<x<4+1,
即3<x<5,
∵x为整数,
∴x的值为4.
三角形的周长为1+4+4=9.
故选C.
【点睛】
此题考查了三角形的三边关系.关键是正确确定第三边的取值范围.
11.若(a﹣3)2+|b﹣6|=0,则以a、b为边长的等腰三角形的周长为()
A.12 B.15 C.12或15 D.18
【答案】B
【解析】
【分析】
根据非负数的和为零,可得每个非负数同时为零,可得a、b的值,根据等腰三角形的判定,可得三角形的腰,根据三角形的周长公式,可得答案.
【详解】
由(a﹣3)2+|b﹣6|=0,得a﹣3=0,b﹣6=0.
则以a、b为边长的等腰三角形的腰长为6,底边长为3,
周长为6+6+3=15,
故选B.
【点睛】
本题考查了非负数的性质,利用非负数的和为零得出每个非负数同时为零是解题关键.
12.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()
A.110°B.120°C.125°D.135°
【答案】D
【解析】
【分析】
【详解】
如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,
∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,
∴∠ABE+∠BED+∠CDE=360°.
又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,
∴∠FBE+∠FDE=1
2
(∠ABE+∠CDE)=1
2
(360°﹣90°)=135°,
∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.
故选D.
【点睛】
本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.
三、八年级数学全等三角形填空题(难)
13.已知:如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD,CE相交于点N,则下列五个结论:①AD=BE;②AP=
BM;③∠APM=60°;④△CMN是等边三角形;⑤连接CP,则CP平分∠BPD,其中,正确的是_____.(填写序号)
【答案】①③④⑤.
【解析】
【分析】
①根据△ACD≌△BCE(SAS)即可证明AD=BE;②根据△ACN≌△BCM(ASA)即可证明AN=BM,从而判断AP≠BM;③根据∠CBE+∠CDA=60°即可求出∠APM=60°;④根据
△ACN≌△BCM及∠MCN=60°可知△CMN为等边三角形;⑤根据角平分线的性质可知.【详解】
①∵△ABC和△CDE都是等边三角形
∴CA=CB,CD=CE,∠ACB=60°,∠DCE=60°
∴∠ACE=60°
∴∠ACD=∠BCE=120°
在△ACD和△BCE中
CA CB
ACD BCE
CD CE
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
∴△ACD≌△BCE(SAS)
∴AD=BE;
②∵△ACD≌△BCE
∴∠CAD=∠CBE
在△ACN和△BCM中
ACN BCM
CA CB
CAN CBM
∠=∠
⎧
⎪
=
⎨
⎪∠=∠
⎩
∴△ACN≌△BCM(ASA)
∴AN=BM;
③∵∠CAD+∠CDA=60°
而∠CAD=∠CBE
∴∠CBE+∠CDA=60°
∴∠BPD=120°
∴∠APM=60°;
④∵△ACN≌△BCM
∴CN=BM
而∠MCN=60°
∴△CMN为等边三角形;
⑤过C点作CH⊥BE于H,CQ⊥AD于Q,如图
∵△ACD≌△BCE
∴CQ=CH
∴CP平分∠BPD.
故答案为:①③④⑤.
【点睛】
本题主要考查了三角形全等的判定和性质的灵活运用,角的计算及角平分线的判定,熟练掌握三角形全等的证明方法,角平分线的判定及相关辅助线的作法是解决本题的关键.
14.如图,直角三角形ABC与直角三角形BDE中,点B,C,D在同一条直线上,已知
AC=AE=CD,∠BAC和∠ACB的角平分线交于点F,连DF,EF,分别交AB、BC于M、N,已知点F到△ABC三边距离为3,则△BMN的周长为____________.
【答案】6
【解析】
【分析】
由角平分线和三角形的内角和定理可得∠AFC=135°,由△AFC≌△DFC可得
∠DFC=∠AFC=135°,可得∠AFD=90°.同理可得∠CFE=90°,可求得∠MFN=45°,过点F作FP⊥AB于点P,FQ⊥BC于点Q,由正方形的半角模型可得MN=MP+NQ,由此即可得出答案.
【详解】
解:过点F作FP⊥AB于点P,FQ⊥BC于点Q,过点F作FG⊥FM,交BC于点G.
∵点F 是∠BAC 和∠BCA 的角平分线交点,
∴FP =FQ =3,
∵∠ABC =90°,
∴四边形BPFQ 是正方形,
∴BP =BQ =3.
在Rt △ABC 中,∠BAC +∠BCA =90°,
∵AF 、CF 是角平分线,
∴∠FAC +∠FCA =45°,
∴∠AFC =180°-45°=135°.
易证△AFC ≌△DFC (SAS ),
∴∠AFC =∠DFC =135°,
∴∠ADF =90°,
同理可得∠EFC =90°,
∴∠MFN =360°-90°-90°-135°=45°.
∵∠PFM +∠MFN =90°,∠MFN +∠QFG =90°,
∴∠PMF =∠QFG ,
∵∠FPM =∠FQG =90°,FP =FQ ,
∴△FPM ≌△FQG (ASA ),
∴PM =QG ,FM =FG .
在△FMN 和△FGN 中
45FM FG MFN GFN FN FN =⎧⎪∠=∠=⎨⎪=⎩
∴△FMN ≌△FGN (SAS ),
∴MN =NG ,
∴MN =NG =NQ +QG =PM +QN ,
∴△BMN 的周长为:
BM +BN +MN
= BM +BN + PM +QN
=BP +BQ
=3+3
=6.
故答案为:6.
【点睛】
本题是一道全等三角形的综合题,主要考查了全等三角形的判定和性质的应用,角平分线的性质,以及全等三角形常用辅助线的作法,作出辅助线,准确的找出全等三角形是解决此题的关键.
15.在△ABC中,∠ABC=60°,∠ACB=70°,若点O到三边的距离相等,则∠BOC=
_____°.
【答案】115或65或22.5
【解析】
【分析】
先画出符合的图形,再根据角平分线的性质和三角形的内角和定理逐个求出即可.
【详解】
解:①如图,
∵点O到三边的距离相等,
∴点O是△ABC的三角的平分线的交点,
∵∠ABC=60°,∠ACB=70°,
∴∠OBC=1
2
∠ABC=30°,
1
OCB
2
∠=∠ACB=35°,
∴∠BOC=180°﹣∠OBC﹣∠OCB=115°;
②如图,
∵∠ABC=60°,∠ACB=70°,
∴∠EBC=180°﹣∠ABC=120°,∠FCB=180°﹣∠ACB=110°,∵点O到三边的距离相等,
∴O是∠EBC和∠FCB的角平分线的交点,
∴∠OBC=1
2
∠EBC=60°,
1
OCB
2
∠=∠FCB=55°,
∴∠BOC=180°﹣∠OBC﹣∠OCB=65°;
③如图,
∵∠ABC=60°,∠ACB=75°,
∴∠A=180°﹣∠ABC﹣∠ACB=45°,
∵点O到三边的距离相等,
∴O是∠EBA和∠ACB的角平分线的交点,
∴∠OBA=1
2
∠EBA=
1
2
×(180°﹣60°)=60°,
1
OCB
2
∠=∠ACB=37.5°,
∴∠BOC=180°﹣(∠OBA+∠ABC+∠OCB)=180°﹣(60°﹣60°﹣37.5°)=22.5°;
如图,
此时∠BOC=22.5°,
故答案为:115或65或22.5.
【点睛】
此题主要考查三角形的内角和,解题的关键是根据题意分情况讨论.
16.已知在△ABC 中,两边AB、AC的中垂线,分别交BC于E、G.若BC=12,EG=2,则△AEG的周长是________.
【答案】16或12.
【解析】
【分析】
根据线段垂直平分线性质得出AE=BE,CG=AG,分两种情况讨论:①DE和FG的交点在
△ABC内,②DE和FG的交点在△ABC外.
【详解】
∵DE,FG分别是△ABC的AB,AC边的垂直平分线,∴AE=BE,CG=AG.分两种情况讨论:①当DE和FG的交点在△ABC内时,如图1.
∵BC=12,GE=2,∴AE+AG=BE+CG=12+2=14,△AGE的周长是AG+AE+EG=14+2=16.
②当DE和FG的交点在△ABC外时,如图2,△AGE的周长是AG+AE+EG= BE+CG
+EG=BC=12.
故答案为:16或12.
【点睛】
本题考查了线段垂直平分线性质,注意:线段垂直平分线上的点到线段两个端点的距离相等.
17.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足.下列结论:①△ABD ≌△EBC ; ②∠BCE+∠BCD=180°; ③AF 2=EC 2﹣EF 2; ④BA+BC=2BF .其中正确的是
_____.
【答案】①②③④.
【解析】
【分析】
根据已知条件易证△ABD ≌△EBC ,可判定①正确;根据等腰三角形的性质、对顶角相等、结合全等三角形的性质及平角的定义即可判定②正确;证明AD=AE=EC ,再利用勾股定理即可判定③正确;过E 作EG ⊥BC 于G 点,证明Rt △BEG ≌Rt △BEF 及
Rt △CEG ≌Rt △AFE ,根据全等三角形的性质可得AF=CG ,所以BA+BC=BF+FA+BG ﹣CG=BF+BG=2BF ,即可判定④正确.
【详解】
①∵BD 为△ABC 的角平分线,
∴∠ABD=∠CBD ,
在△ABD 和△EBC 中,
BD BC ABD CBD BE BA =⎧⎪∠=∠⎨⎪=⎩
, ∴△ABD ≌△EBC (SAS ),
∴①正确;
②∵BD 为△ABC 的角平分线,BD=BC ,BE=BA ,
∴∠BCD=∠BDC=∠BAE=∠BEA ,
∵△ABD ≌△EBC ,
∴∠BCE=∠BDA ,
∴∠BCE+∠BCD=∠BDA+∠BDC=180°,
∴②正确;
③∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE ,∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA , ∴∠DCE=∠DAE ,
∴△ACE 为等腰三角形,
∴AE=EC ,
∵△ABD ≌△EBC ,
∴AD=EC ,
∴AD=AE=EC ,
∵EF ⊥AB ,
∴AF 2=EC 2﹣EF 2;
∴③正确;
④如图,过E 作EG ⊥BC 于G 点,
∵E 是BD 上的点,∴EF=EG ,
在Rt △BEG 和Rt △BEF 中,
BE BE EF EG
=⎧⎨=⎩ , ∴Rt △BEG ≌Rt △BEF (HL ),
∴BG=BF ,
在Rt △CEG 和Rt △AFE 中,
EF FG AE CE
=⎧⎨=⎩, ∴Rt △CEG ≌Rt △AFE (HL ),
∴AF=CG ,
∴BA+BC=BF+FA+BG ﹣CG=BF+BG=2BF ,
∴④正确.
故答案为:①②③④.
【点睛】
本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.
18.如图,已知AB∥CD,O为∠CAB、∠ACD的角平分线的交点,OE⊥AC于E,且OE=2,CO=3,则两平行线间AB、CD的距离等于________.
【答案】4
【解析】
试题解析:如图,过点O作MN,MN⊥AB于M,交CD于N,
∵AB∥CD,
∴MN⊥CD,
∵AO是∠BAC的平分线,OM⊥AB,OE⊥AC,OE=2,
∴OM=OE=2,
∵CO是∠ACD的平分线,OE⊥AC,ON⊥CD,
∴ON=OE=2,
∴MN=OM+ON=4,
即AB与CD之间的距离是4.
点睛:要明确:①角的平分线上的点到角的两边的距离相等,②从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,③平行线间的距离处处相等.
四、八年级数学全等三角形选择题(难)
19.如图,在△ABC中,D、E分别是AC、AB上的点,BD与CE相交于点O,给出四个条件:①OB=OC;②∠EBO=∠DCO;③∠BEO=∠CDO;④BE=CD.上述四个条件中,选择两个可以判定△ABC是等腰三角形的方法有()
A.2种B.3种C.4种D.6种
【答案】C
【解析】
【分析】
①②:求出OBC=∠OCB,推出∠ACB=∠ABC即可的等腰三角形;①③:证
△EBO≌△DCO,得出∠EBO=∠DCO,求出∠ACB=∠ABC即可;②④:证
△EBO≌△DCO,推出OB=OC,求出∠ABC=∠ACB即可;③④:证△EBO≌△DCO,推出∠EBO=∠DCO,OB=OC,求出∠OBC=∠OCB,推出∠ACB=∠ABC即可.
【详解】
解:有①②,①③,②④,③④,共4种,
①②,
理由是:∵OB=OC,
∴∠OBC=∠OCB,
∵∠EBO=∠DCO,
∴∠EBO+∠OBC=∠DCO+∠OCB,
即∠ABC=∠ACB,
∴AB=AC,
即△ABC是等腰三角形;
①③,
理由是:∵在△EBO和△DCO中
BEO CDO
EOB DOC OB OC
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△EBO≌△DCO,
∴∠EBO=∠DCO,
∵∠OBC=∠OCB(已证),
∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,
即AB=AC,
∴△ABC是等腰三角形;
②④,
理由是:∵在△EBO和△DCO中
BEO CDO
EOB DOC BE CD
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△EBO≌△DCO,
∴OB=OC,
∴∠OBC=∠OCB,
∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,
即AB=AC,
∴△ABC是等腰三角形;
③④,
理由是:∵在△EBO和△DCO中
BEO CDO
EOB DOC
BE CD
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△EBO≌△DCO,
∴∠EBO=∠DCO,OB=OC,
∴∠OBC=∠OCB,
∴∠EBO+∠OBC=∠DCO+∠OCB,
即∠ABC=∠ACB,
即AB=AC,
∴△ABC是等腰三角形;
故选C.
20.Rt△ABC中,AB=AC,D点为Rt△ABC外一点,且BD⊥CD,DF为∠BDA的平分线,当∠ACD=15°,下列结论:①∠ADC=45°;②AD=AF;③AD+AF=BD;④BC﹣CE=2D,其中正确的是( )
A.①③B.①②④C.①③④D.①②③④
【答案】C
【解析】
【分析】
由题意可证点A,点C,点B,点D四点共圆,可得∠ADC=∠ABC=45°;由角平分线的性质和外角性质可得∠AFD=∠BDF+∠DBF>∠ADF,可得AD≠AF;如图,延长CD至G,使DE=DG,在BD上截取DH=AD,连接HF,由“SAS”可证△ADF≌△HDF,可得∠DHF=
∠DAF=30°,AF=HF,由等腰三角形的性质可得BH=AF,可证BD=BH+DH=AF+AD;由“SAS”可证△BDG≌△BDE,可得∠BGD=∠BED=75°,由三角形内角和定理和等腰三角形的性质可得BC=BG=2DE+EC.
【详解】
∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=45°,且∠ACD=15°,
∵∠BCD=30°,
∵∠BAC=∠BDC=90°,
∴点A,点C,点B,点D四点共圆,
∴∠ADC=∠ABC=45°,故①符合题意,
∠ACD=∠ABD=15°,∠DAB=∠DCB=30°,
∵DF为∠BDA的平分线,
∴∠ADF=∠BDF,
∵∠AFD=∠BDF+∠DBF>∠ADF,
∴AD≠AF,故②不合题意,
如图,延长CD至G,使DE=DG,在BD上截取DH=AD,连接HF,
∵DH=AD,∠HDF=∠ADF,DF=DF,
∴△ADF≌△HDF(SAS)
∴∠DHF=∠DAF=30°,AF=HF,
∵∠DHF=∠HBF+∠HFB=30°,
∴∠HBF=∠BFH=15°,
∴BH=HF,
∴BH=AF,
∴BD=BH+DH=AF+AD,故③符合题意,
∵∠ADC=45°,∠DAB=30°=∠BCD,
∴∠BED=∠ADC+∠DAB=75°,
∵GD=DE,∠BDG=∠BDE=90°,BD=BD,
∴△BDG≌△BDE(SAS)
∴∠BGD=∠BED=75°,
∴∠GBC=180°﹣∠BCD﹣∠BGD=75°,
∴∠GBC=∠BGC=75°,
∴BC=BG,
∴BC=BG=2DE+EC,
∴BC﹣EC=2DE,故④符合题意,
故选:C.
【点睛】
本题考查全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,
21.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四边形AEPF,上述结论正确的有()
A .1个
B .2个
C .3个
D .4个
【答案】C
【解析】
【分析】 利用“角边角”证明△APE 和△CPF 全等,根据全等三角形的可得AE=CF ,再根据等腰直角三角形的定义得到△EFP 是等腰直角三角形,根据全等三角形的面积相等可得△APE 的面积等于△CPF 的面积相等,然后求出四边形AEPF 的面积等于△ABC 的面积的一半.
【详解】
∵AB=AC ,∠BAC=90°,点P 是BC 的中点,
∴AP ⊥BC ,AP=PC ,∠EAP=∠C=45°,
∴∠APF+∠CPF=90°,
∵∠EPF 是直角,
∴∠APF+∠APE=90°,
∴∠APE=∠CPF ,
在△APE 和△CPF 中,
45APE CPF AP PC
EAP C ∠∠⎧⎪⎨⎪∠∠︒⎩
====, ∴△APE ≌△CPF (ASA ),
∴AE=CF ,故①②正确;
∵△AEP ≌△CFP ,同理可证△APF ≌△BPE ,
∴△EFP 是等腰直角三角形,故③错误;
∵△APE ≌△CPF ,
∴S △APE =S △CPF ,
∴四边形AEPF =S △AEP +S △APF =S △CPF +S △BPE =
12S △ABC .故④正确, 故选C .
【点睛】
本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF ,从而得到△APE 和△CPF 全等是解题的关键,也是本题的突破点.
22.已知:如图,ABC ∆、CDE ∆都是等腰三角形,且CA CB =,CD CE =,ACB DCE α∠=∠=,AD 、BE 相交于点O ,点M 、N 分别是线段AD 、BE 的中点.以下4个结论:①AD BE =;②180DOB α∠=-;③CMN ∆是等边三角形;④连
OC ,则OC 平分AOE ∠.正确的是( )
A .①②③
B .①②④
C .①③④
D .①②③④
【答案】B
【解析】
【分析】 ①根据∠ACB=∠DCE 求出∠ACD=∠BCE,证出ACD BCE ≅△△即可得出结论,故可判断; ②根据全等求出∠CAD=∠CBE,根据三角形外角定理得∠DOB=∠OBA+∠BAO,通过等角代换能够得到∠DOB=∠CBA+∠BAC,根据三角形内角和定理即可求出∠CBA+∠BAC,即可求出∠DOB ,故可判断;
③根据已知条件可求出AM=BN,根据SAS 可求出CAM CBN ≅,推出CM=CN ,∠ACM=∠BCN,然后可求出∠MCN=∠ACB=α,故可判断CMN ∆的形状;
④在AD 上取一点P 使得DP=EO,连接CP ,根据ACD BCE ≅△△,可求出∠CEO=∠CD P ,根据SAS 可求出 CEO CDP ≅,可得∠COE=∠CPD,CP=CO,进而得到 ∠COP=∠COE ,故可判断.
【详解】
①正确,理由如下:
∵ACB DCE α∠=∠=,
∴∠ACB+∠BCD=∠DCE+∠BCD,
即∠ACD=∠BCE,
又∵CA=CB,CD=CE,
∴ACD BCE ≅△△(SAS),
∴AD=BE,
故①正确;
②正确,理由如下:
由①知,ACD BCE ≅△△,
∴∠CAD=∠CBE,
∵∠DOB 为ABO 的外角,
∴∠DOB=∠OBA+∠BAO=∠EBC+∠CBA+∠BAO=∠DAC+∠BAO+∠CBA=∠CBA+∠BAC, ∵∠CBA+∠BAC+∠ACB=180°,∠ACB=α,
∴∠CBA+∠BAC=180°-α,
即∠DOB=180°-α,
故②正确;
③错误,理由如下:
∵点M 、N 分别是线段AD 、BE 的中点,
∴AM=
12AD,BN= 12
BE, 又∵由①知,AD=BE,
∴AM=BN,
又∵∠CAD=∠CBE,CA=CB,
∴CAM CBN ≅(SAS), ∴CM=CN ,∠ACM=∠BCN,
∴∠MCN=∠MCB+∠CBN=∠MCB+∠ACM=∠ACB=α,
∴MCN △为等腰三角形且∠MCN=α,
∴MCN △不是等边三角形,
故③错误;
④正确,理由如下:
如图所示,在AD 上取一点P 使得DP=EO,连接CP ,
由①知,ACD BCE ≅△△,
∴∠CEO=∠CDP ,
又∵CE=CD,EO=DP ,
∴CEO CDP ≅(SAS),
∴∠COE=∠CPD,CP=CO,
∴∠CPO=∠COP ,
∴∠COP=∠COE,
即OC 平分∠AOE,
故④正确;
故答案为:B.
【点睛】
本题考查了三角形全等的判定和性质,三角形内角和定理和外角定理,等边三角形的判定,根据已知条件作出正确的辅助线,找出全等三角形是解题的关键.
23.在△ABC 与△DEF 中,下列各组条件,不能判定这两个三角形全等的是( ) A .AB =DE ,∠B =∠E ,∠C =∠F B .AC =DE ,∠B =∠E ,∠A =∠F
C .AC =DF ,BC =DE ,∠C =∠
D D .AB =EF ,∠A =∠
E ,∠B =∠F
【答案】B
【解析】利用全等三角形的判定定理,分析可得:
A、AB=DE,∠B=∠E,∠C=∠F可利用AAS证明△ABC与△DEF全等;
B、∠A=∠F,∠B=∠E,AC=DE,对应边不对应,不能证明△ABC与△DEF全等;
C、AC=DF,BC=DE,∠C=∠D可利用ASA证明△ABC与△DEF全等;
D、AB=EF,∠A=∠E∠B=∠F可利用SAS证明△ABC与△DEF全等;
故选:D.
点睛:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
24.如图,等腰直角△ABC中,∠BAC=90 ,AD⊥BC于D,∠ABC的平分线分别交AC、AD 于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM.下列结论:
①AE=AF;②AM⊥EF;③AF=DF;④DF=DN,其中正确的结论有()
A.1个B.2个C.3个D.4个
【答案】C
【解析】
试题解析:∵∠BAC=90°,AC=AB,AD⊥BC,
∴∠ABC=∠C=45°,AD=BD=CD,∠ADN=∠ADB=90°,
∴∠BAD=45°=∠CAD,
∵BE平分∠ABC,
∴∠ABE=∠CBE=1
2
∠ABC=22.5°,
∴∠BFD=∠AEB=90°-22.5°=67.5°,∴∠AFE=∠BFD=∠AEB=67.5°,
∴AF=AE,故①正确;
∵M为EF的中点,
∴AM⊥EF,故②正确;
过点F作FH⊥AB于点H,
∵BE 平分∠ABC ,且AD ⊥BC ,
∴FD=FH <FA ,故③错误;
∵AM ⊥EF ,
∴∠AMF=∠AME=90°,
∴∠DAN=90°-67.5°=22.5°=∠MBN ,
在△FBD 和△NAD 中
{FBD DAN
BD AD
BDF ADN
∠∠∠∠=== ∴△FBD ≌△NAD ,
∴DF=DN ,故④正确;
故选C .
五、八年级数学轴对称三角形填空题(难)
25.如图,点O 是等边△ABC 内一点,∠AOB=110°,∠BOC=α.以OC 为一边作等边三角形OCD ,连接AC 、AD ,当△AOD 是等腰三角形时,求α
的角度为______
【答案】110°、125°、140°
【解析】
【分析】
先求出∠DAO=50°,分三种情况讨论:①AO=AD ,则∠AOD=∠ADO ,②OA=OD ,则∠OAD=∠ADO ,③OD=AD ,则∠OAD=∠AOD ,分别求出α的角度即可.
【详解】
解:∵设∠CBO=∠CAD=a ,∠ABO=b ,∠BAO=c ,∠CAO=d ,
则a+b=60°,b+c=180°﹣110°=70°,c+d=60°,
∴b ﹣d=10°,
∴(60°﹣a )﹣d=10°,
∴a+d=50°,
即∠DAO=50°,
分三种情况讨论:
①AO=AD,则∠AOD=∠ADO,
∴190°﹣α=α﹣60°,
∴α=125°;
②OA=OD,则∠OAD=∠ADO,
∴α﹣60°=50°,
∴α=110°;
③OD=AD,则∠OAD=∠AOD,
∴190°﹣α=50°,
∴α=140°;
所以当α为110°、125°、140°时,三角形AOD是等腰三角形,
故答案为:110°、125°、140°.
【点睛】
本题是对等边三角形的考查,熟练掌握等边三角形的性质定理及分类讨论是解决本题的关键.
26.在平面直角坐标系xOy中,已知点A(2,3),在x轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有_____个.
【答案】4
【解析】
【分析】
以O为圆心,OA为半径画弧交x轴于点P1、P3,以A为圆心,AO为半径画弧交x轴于点P4,作OA的垂直平分线交x轴于P2.
【详解】
解:如图,使△AOP是等腰三角形的点P有4个.
故答案为4.
【点睛】
本题考查了在平面直角坐标系中寻找等腰三角形,掌握两圆一线找等腰三角形是解题的关键.
27.如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AE平分∠BAC,
∠D=∠DBC=60°,若BD=5cm,DE=3cm,则BC的长是 ______cm.
【答案】8.
【解析】
【分析】
作出辅助线后根据等边三角形的判定得出△BDM为等边三角形,△EFD为等边三角形,从而得出BN的长,进而求出答案.
【详解】
解:延长DE交BC于M,延长AE交BC于N,作EF∥BC于F,
∵AB=AC,AE平分∠BAC,
∴AN⊥BC,BN=CN,
∵∠DBC=∠D=60°,
∴△BDM为等边三角形,
∴△EFD 为等边三角形,
∵BD=5,DE=3,
∴EM=2,
∵△BDM 为等边三角形, ∴∠DMB=60°,
∵AN ⊥BC ,
∴∠ENM=90°,
∴∠NEM=30°,
∴NM=1,
∴BN=4,
∴BC=2BN=8(cm ),
故答案为8.
【点睛】
本题考查等边三角形的判定与性质;等腰三角形的性质.
28.如图,在ABC ∆和DBC ∆中,40A ∠=,2AB AC ==,140BDC ∠=,BD CD =,以点D 为顶点作70MDN ∠=,两边分别交,AB AC 于点,M N ,连接MN ,则AMN ∆的周长为_______.
【答案】4
【解析】
【分析】
延长AB 至F ,使BF =CN ,连接DF ,通过证明△BDF ≌△CDN ,及△DMN ≌△DMF ,从而得出MN =MF ,△AMN 的周长等于AB +AC 的长.
【详解】
延长AB 至F ,使BF =CN ,连接DF .
∵BD =CD ,且∠BDC =140°,
∴∠BCD =∠DBC =20°.
∵∠A =40°,AB =AC =2,
∴∠ABC =∠ACB =70°,
∴∠DBA =∠DCA =90°.
在Rt △BDF 和Rt △CND 中,
∵BF =CN ,∠DBA =∠DCA ,DB =DC ,
∴△BDF ≌△CDN ,
∴∠BDF =∠CDN ,DF =DN .
∵∠MDN =70°,
∴∠BDM +∠CDN =70°,
∴∠BDM +∠BDF =70°,
∴∠FDM =70°=∠MDN .
∵DF =DN ,∠FDM =∠MDN ,DM =DM ,
∴△DMN ≌△DMF ,
∴MN =MF ,
∴△AMN 的周长是:AM +AN +MN =AM +MB +BF +AN =AB +AC =4.
故答案为:4.
【点睛】
本题主要利用等腰三角形的性质来证明三角形全等,构造全等三角形是解答本题的关键.
29.如图,30AOB ∠=︒,P 是AOB ∠内一点,10PO =.若Q 、R 分别是边OA 、OB 上
周长的最小值为_______.
的动点,则PQR
【答案】10
【解析】
【分析】
作点P关于OB的对称点P′,点P关于OA的对称点P″,连接P′P″交OB于R,交OA于Q,连接PR、PQ,如图3,利用对称的性质得到△PQR周长=P′P″,根据两点之间线段最短可判断此时△PQR周长最小,最小值为P′P″的长,再证明△P′OP″为等边三角形得到P′P″=OP′=OP=10,从而得到△PQR周长的最小值
【详解】
解:
作点P关于OB的对称点P′,点P关于OA的对称点P″,连接P′P″交OB于R,交OA于Q,连接PR、PQ,如图3,
则OP=OP′,OP=OP″,RP=RP′,QP=QP″,
∴△PQR周长=PR+RQ+PQ=RP′+RQ+QP″=P′P″,
∴此时△PQR周长最小,最小值为P′P″的长,
∵由对称性可知OP=OP′,OP=OP″,PP′⊥OB,PP″⊥OA,
∴∠1=∠2,∠3=∠4,
∴∠P′OP″=∠1+∠2+∠3+∠4=2∠2+2∠3=2∠BOA=60°,
∴△P′OP″为等边三角形,
∴P′P″=OP′=OP=10,
故答案是:10.
【点睛】
本题考查了几何变换综合题:熟练掌握轴对称的性质和等边三角形的性质;会利用两点之间线段最短解决最短路径问题.
30.如图, 在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B′处,两条折痕与斜边AB 分别交于点E 、F ,则线段B′F 的长为_________
【答案】8
5
【解析】
【分析】 首先根据折叠可得CD=AC=6,B′C=BC=8,∠ACE=∠DCE ,∠BCF=∠B′CF ,CE ⊥AB ,然后求得△ECF 是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=4.8,由勾股定理求出AE ,得出BF 的长,即 B′F 的长.
【详解】
解:根据折叠的性质可知:DE=AE ,∠ACE=∠DCE ,∠BCF=∠B′CF ,CE ⊥AB ,B′F=BF ,
∴B′D=8-6=2,∠DCE+∠B′CF =∠ACE+∠BCF ,
∵∠ACB=90°,
∴∠ECF=45°,
∴△ECF 是等腰直角三角形,
∴EF=CE ,∠EFC=45°,
∴∠BFC=∠B′FC=135°,
∴∠B′FE=90°,
∵S △ABC =
12AC•BC=12
AB•CE , ∴AC•BC=AB•CE , ∵根据勾股定理得:22226810AB
AC BC ∴ 4.8AC BC CE AB
⋅== ∴EF=4.8,22 3.6AE AC EC -=
∴B′F=BF=AB -AE-EF=10-3.6-4.8=1.6=8
5,
故答案是:85
.
【点睛】
此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理等知识;熟练掌握翻折变换的性质,由直角三角形的性质和勾股定理求出CE 、AE 是解决问题的关键.
六、八年级数学轴对称三角形选择题(难)
31.如图,ABC ∆中,3AC DC ==,BD 垂直BAC ∠的角平分线于D ,E 为AC 的中点,则图中两个阴影部分面积之差的最大值为( )
A .1.5
B .3
C .4.5
D .9
【答案】C
【解析】
【分析】 首先证明两个阴影部分面积之差=S △ADC ,然后由DC ⊥AC 时,△ACD 的面积最大求出结论即可.
【详解】
延长BD 交AC 于点H .设AD 交BE 于点O .
∵AD ⊥BH ,∴∠ADB =∠ADH =90°,∴∠ABD +∠BAD =90°,∠H +∠HAD =90°.
∵∠BAD =∠HAD ,∴∠ABD =∠H ,∴AB =AH .
∵AD ⊥BH ,∴BD =DH .
∵DC =CA ,∴∠CDA =∠CAD .
∵∠CAD +∠H =90°,∠CDA +∠CDH =90°,∴∠CDH =∠H ,∴CD =CH =AC .
∵BD =DH ,AC =CH ,∴S △CDH =12
S △ADH 14=S △ABH .
∵AE =EC ,∴S △ABE 14
=S △ABH ,∴S △CDH =S △ABE . ∵S △OBD ﹣S △AOE =S △ADB ﹣S △ABE =S △ADH ﹣S △CDH =S △ACD .
∵AC =CD =3,∴当DC ⊥AC 时,△ACD 的面积最大,最大面积为12⨯3×392
=
. 故选C .
【点睛】
本题考查了等腰三角形的判定和性质,三角形中线的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考选择题中的压轴题.
32.如图,等腰ABC ∆中,AB AC =,120BAC ∠=,AD BC ⊥于点D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP OC =.下列结论:
①30APO DCO ∠+∠=;②APO DCO ∠=∠;③OPC ∆是等边三角形;
④AB AO AP =+.其中正确结论的个数是( )
A .1
B .2
C .3
D .4
【答案】D
【解析】
【分析】 ①②连接OB ,根据垂直平分线性质即可求得OB=OC=OP ,即可解题;
③根据周角等于360°和三角形内角和为180°即可求得∠POC=2∠ABD=60°,即可解题;
④AB 上找到Q 点使得AQ=OA ,易证△BQO≌△PAO,可得PA=BQ ,即可解题.
【详解】
连接OB ,
∵AB AC =,AD ⊥BC ,
∴AD 是BC 垂直平分线,
∴OB OC OP ==,
∴APO ABO ∠=∠,DBO DCO ∠=∠,
∵AB=AC,∠BAC=120∘
∴30
ABC ACB
∠=∠=︒
∴30
ABO DBO
∠+∠=︒,
∴30
APO DCO
∠+∠=.
故①②正确;
∵OBP
∆中,180
BOP OPB OBP
∠=︒-∠-∠,
BOC
∆中,180
BOC OBC OCB
∠=︒-∠-∠,
∴360
POC BOP BOC OPB OBP OBC OCB
∠=︒-∠-∠=∠+∠+∠+∠,
∵OPB OBP
∠=∠,OBC OCB
∠=∠,
∴260
POC ABD
∠=∠=︒,
∵PO OC,
∴OPC
∆是等边三角形,
故③正确;
在AB上找到Q点使得AQ=OA,
则AOQ
∆为等边三角形,
则120
BQO PAO
∠=∠=︒,
在BQO
∆和PAO
∆中,
BQO PAO
QBO APO
OB OP
∠∠
⎧
⎪
∠∠
⎨
⎪
⎩
=
=
=
∴BQO PAO AAS
∆∆
≌(),
∴PA BQ
=,
∵AB BQ AQ
=+,
∴AB AO AP
=+,故④正确.
故选:D.
【点睛】
本题主要考查全等三角形的判定与性质、线段垂直平分线的性质,本题中求证
BQO PAO
∆∆
≌是解题的关键.
33.如图钢架中,∠A=a,焊上等长的钢条P1P2, P2P3, P3P4, P4P5……来加固钢架.著P1A= P1P2,
且恰好用了4根钢条,则α的取值范圈是( )
A .15°≤ a <18°
B .15°< a ≤18°
C .18°≤ a <22.5°
D .18° < a ≤ 22.5°
【答案】C
【解析】
【分析】
由每根钢管长度相等,可知图中都是等腰三角形,利用等腰三角形底角一定是锐角,可推出取值范围.
【详解】
∵AB=BC=CD=DE=EF
∴∠P 1P 2A=∠A=a
由三角形外角性质,可得∠P 2P 1P 3=2∠A=2a
同理可得,∠P 1P 3P 2=∠P 2P 1P 3=2a ,
∠P 3P 2P 4=∠P 3P 4P 2=∠A+∠P 1P 3P 2=3a ,
∠P 4P 3P 5=∠P 4P 5P 3=∠A+∠P 3P 4P 2=4a ,
在△P 4P 3P 5中,∠P 3P 4P 5=180°-2∠P 4P 3P 5=180°-8a
当∠P 5P 4B ≥90°即∠P 5P 4A ≤90°时,不能再放钢管,
∴3180890+-≤a a ,解得a ≥18°
又∵等腰三角形底角只能是锐角,
∴4a <90°,解得a <22.5
∴1822.5οο≤<a
故选C.
【点睛】
本题考查等腰三角形的性质,掌握等腰三角形的底角只能是锐角是关键.
34.如图,在Rt △ABC 中,AC =BC ,∠ACB =90°,D 为AB 的中点,E 为线段AD 上一点,过E 点的线段FG 交CD 的延长线于G 点,交AC 于F 点,且EG =AE ,分别延长CE ,BG 交于点H ,若EH 平分∠AEG ,HD 平分∠CHG 则下列说法:①∠GDH =45°;②GD =ED ;③EF =2DM ;④CG =2DE +AE ,正确的是( )
A.①②③B.①②④C.②③④D.①②③④
【答案】B
【解析】
【分析】
首先证明△AEC≌△GEC(SAS),推出CA=CG,∠A=∠CGE=45°,推出DE=DG,故②正确;再证明△EDC≌△GDB,推出∠CED=∠BGD,ED=GD,由三角形外角的性质得出
∠HDG=∠HDE,进而得出∠GDH=∠EDH=45°,即可判断①正确;
通过证明△EDC和△EMD是等腰直角三角形,得到ED2MD,再通过证明
△EFC≌△EDC,得到EF=ED,从而可判断③错误;由CG=CD+DG,CD=AD,ED=GD,变形即可判断④正确.
【详解】
∵AC=BC,∠ACB=90°,AD=DB,
∴CD⊥AB,CD=AD=DB,∠A=∠CBD=45°.
∵EH平分∠AEG,
∴∠AEH=∠GEH.
∵∠AEH+∠AEC=180°,∠GEH+∠CEG=180°,
∴∠AEC=∠CEG.
∵AE=GE,EC=EC,
∴△AEC≌△GEC(SAS),
∴CA=CG,∠A=∠CGE=45°.
∵∠EDG=90°,
∴∠DEG=∠DGE=45°,
∴DE=DG,∠AEF=∠DEG=∠A=45°,
故②正确;
∵DE=DG,∠CDE=∠BDG=90°,DC=DB,
∴△EDC≌△GDB(SAS),
∴∠CED=∠BGD,ED=GD.
∵HD平分∠CHG,
∴∠GHD=∠EHD.
∵∠CED=∠EHD+∠HDE,∠BGD=∠GHD+∠HDG,
∴∠HDG=∠HDE.。