康巴什区实验中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

康巴什区实验中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 已知a n =(n ∈N *
),则在数列{a n }的前30项中最大项和最小项分别是( )
A .a 1,a 30
B .a 1,a 9
C .a 10,a 9
D .a 10,a 30
2. 在等比数列中,,前项和为,若数列也是等比数列,则
等于( )
A .
B .
C .
D .
3. 已知随机变量X 服从正态分布N (2,σ2),P (0<X <4)=0.8,则P (X >4)的值等于( ) A .0.1 B .0.2 C .0.4 D .0.6
4. f ()=,则f (2)=( )
A .3
B .1
C .2
D .
5. 已知函数()x e f x x
=,关于x 的方程2
()2()10f x af x a -+-=(a R Î)有3个相异的实数根,则a 的
取值范围是( )
A .21(,)21e e -+?-
B .21(,)21e e --?-
C .21(0,)21e e --
D .2121e e 禳-镲

-镲铪
【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力.
6. 已知平面α、β和直线m ,给出条件:①m ∥α;②m ⊥α;③m ⊂α;④α⊥β;⑤α∥β.为使m ∥β,应选择下面四个选项中的( ) A .①④ B .①⑤
C .②⑤
D .③⑤
7. “2
4
x π
π
-
<≤
”是“tan 1x ≤”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件
D.既不充分也不必要条件
【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性.
8. 设=(1,2),=(1,1),=+k ,若,则实数k 的值等于( )
A .﹣
B .﹣
C .
D .
9. 某几何体的三视图如图所示,则该几何体为( )
A .四棱柱
B .四棱锥
C .三棱台
D .三棱柱 10.“x 2﹣4x <0”的一个充分不必要条件为( ) A .0<x <4 B .0<x <2 C .x >0 D .x <4
11.若数列{a n }的通项公式a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),{a n }的最大项为第p 项,最小项为第q 项,则q ﹣p 等于( ) A .1
B .2
C .3
D .4
12.函数y=2|x|的定义域为[a ,b],值域为[1,16],当a 变动时,函数b=g (a )的图象可以是( )
A .
B .
C .
D .
二、填空题
13.已知函数32()39f x x ax x =++-,3x =-是函数()f x 的一个极值点,则实数a = .
14.如图,在平行四边形ABCD 中,点E 在边CD 上,若在平行四边形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率是 .
15.在直角坐标系xOy 中,已知点A (0,1)和点B (﹣3,4),若点C 在∠AOB 的平分线上且||=2,则
= .
16.已知函数f(x)的定义域为[﹣1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图示.
①函数f(x)的极大值点为0,4;
②函数f(x)在[0,2]上是减函数;
③如果当x∈[﹣1,t]时,f(x)的最大值是2,那么t的最大值为4;
④当1<a<2时,函数y=f(x)﹣a有4个零点;
⑤函数y=f(x)﹣a的零点个数可能为0、1、2、3、4个.
其中正确命题的序号是.
17.△ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60°,b=2,则c的值为.
18.已知直线5x+12y+m=0与圆x2﹣2x+y2=0相切,则m=.
三、解答题
19.已知等比数列中,。

(1)求数列的通项公式;
(2)设等差数列中,,求数列的前项和.
20.(本小题满分12分)设f(x)=-x2+ax+a2ln x(a≠0).
(1)讨论f (x )的单调性;
(2)是否存在a >0,使f (x )∈[e -1,e 2]对于x ∈[1,e]时恒成立,若存在求出a 的值,若不存在说明理由.
21.已知在等比数列{a n }中,a 1=1,且a 2是a 1和a 3﹣1的等差中项.
(1)求数列{a n }的通项公式;
(2)若数列{b n }满足b 1+2b 2+3b 3+…+nb n =a n (n ∈N *
),求{b n }的通项公式b n .
22.(本小题满分16分)
给出定义在()+∞,0上的两个函数2()ln f x x a x =-,()g x x =- (1)若()f x 在1=x 处取最值.求的值;
(2)若函数2()()()h x f x g x =+在区间(]0,1上单调递减,求实数的取值范围; (3)试确定函数()()()6m x f x g x =--的零点个数,并说明理由.
23.如图1,∠ACB=45°,BC=3,过动点A 作AD ⊥BC ,垂足D 在线段BC 上且异于点B ,连
接AB ,沿AD 将△ABD 折起,使∠BDC=90°(如图2所示),
(1)当BD的长为多少时,三棱锥A﹣BCD的体积最大;
(2)当三棱锥A﹣BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小。

24.(本小题满分10分)选修4-1:几何证明选讲1111]
CP=.
如图,点C为圆O上一点,CP为圆的切线,CE为圆的直径,3
(1)若PE交圆O于点F,16
EF=,求CE的长;
5
⊥于D,求CD的长.
(2)若连接OP并延长交圆O于,A B两点,CD OP
康巴什区实验中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】C
【解析】解:a
==1+,该函数在(0,)和(,+∞)上都是递减的,
n
图象如图,
∵9<<10.
∴这个数列的前30项中的最大项和最小项分别是a10,a9.
故选:C.
【点评】本题考查了数列的函数特性,考查了数形结合的解题思想,解答的关键是根据数列通项公式画出图象,是基础题.
2.【答案】D
【解析】
设的公比为,则,,
因为也是等比数列,所以,
即,所以
因为,所以,即,所以,故选D
答案:D
3.【答案】A
【解析】解:∵随机变量ξ服从正态分布N(2,o2),
∴正态曲线的对称轴是x=2
P(0<X<4)=0.8,
∴P(X>4)=(1﹣0.8)=0.1,
故选A.
4.【答案】A
【解析】解:∵f()=,
∴f(2)=f
()
==3.
故选:A.
5.【答案】
D
第Ⅱ卷(共90分)
6.【答案】D
【解析】解:当m⊂α,α∥β时,根据线面平行的定义,m与β没有公共点,有m∥β,其他条件无法推出m ∥β,
故选D
【点评】本题考查直线与平面平行的判定,一般有两种思路:判定定理和定义,要注意根据条件选择使用.
7. 【答案】A
【解析】因为tan y x =在,22ππ⎛⎫
-
⎪⎝⎭
上单调递增,且24x ππ-<≤,所以tan tan 4x π≤,即tan 1x ≤.反之,当
tan 1x ≤时,24k x k πππ-<≤+π(k Z ∈),不能保证24x ππ-<≤,所以“24
x ππ
-<≤”是“tan 1x ≤”
的充分不必要条件,故选A.
8. 【答案】A
【解析】解:∵ =(1,2),=(1,1),
∴=+k =(1+k ,2+k )

,∴ =0,
∴1+k+2+k=0,解得k=﹣
故选:A
【点评】本题考查数量积和向量的垂直关系,属基础题.
9. 【答案】A 【解析】
试题分析:由三视图可知,该几何体是底面为直角梯形的直四棱柱,直角梯形的上下底分别为3和4,直角腰为1,棱柱的侧棱长为1,故选A. 考点:三视图
【方法点睛】本题考查了三视图的问题,属于基础题型,三视图主要还是来自简单几何体,所以需掌握三棱锥,四棱锥的三视图,尤其是四棱锥的放置方法,比如正常放置,底面就是底面,或是以其中一个侧面当底面的放置方法,还有棱柱,包含三棱柱,四棱柱,比如各种角度,以及以底面当底面,或是以侧面当底面的放置方法,还包含旋转体的三视图,以及一些组合体的三视图,只有先掌握这些,再做题时才能做到胸有成竹. 10.【答案】B
【解析】解:不等式x 2
﹣4x <0整理,得x (x ﹣4)<0 ∴不等式的解集为A={x|0<x <4},
因此,不等式x 2
﹣4x <0成立的一个充分不必要条件,
对应的x 范围应该是集合A 的真子集.
写出一个使不等式x 2
﹣4x <0成立的充分不必要条件可以是:0<x <2,
故选:B .
11.【答案】A
【解析】解:设=t∈(0,1],a n=5()2n﹣2﹣4()n﹣1(n∈N*),
∴a n=5t2﹣4t=﹣,
∴a n∈,
当且仅当n=1时,t=1,此时a n取得最大值;同理n=2时,a n取得最小值.
∴q﹣p=2﹣1=1,
故选:A.
【点评】本题考查了二次函数的单调性、指数函数的单调性、数列的通项公式,考查了推理能力与计算能力,属于中档题.
12.【答案】B
【解析】解:根据选项可知a≤0
a变动时,函数y=2|x|的定义域为[a,b],值域为[1,16],
∴2|b|=16,b=4
故选B.
【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题.
二、填空题
13.【答案】5
【解析】
试题分析:'2'
=++∴-=∴=.
()323,(3)0,5
f x x ax f a
考点:导数与极值.
14.【答案】.
【解析】解:由题意△ABE的面积是平行四边形ABCD的一半,
由几何概型的计算方法,
可以得出所求事件的概率为P=,
故答案为:.
【点评】本题主要考查了几何概型,解决此类问题的关键是弄清几何测度,属于基础题.
15.【答案】(﹣,).
【解析】解:∵,,
设OC与AB交于D(x,y)点
则:AD:BD=1:5
即D分有向线段AB所成的比为

解得:

又∵||=2
∴=(﹣,)
故答案为:(﹣,)
【点评】如果已知,有向线段A(x1,y1),B(x2,y2).及点C分线段AB所成的比,求分点C的坐标,
可将A,B两点的坐标代入定比分点坐标公式:坐标公式进行求解.
16.【答案】①②⑤.
【解析】解:由导数图象可知,当﹣1<x<0或2<x<4时,f'(x)>0,函数单调递增,当0<x<2或4<x <5,f'(x)<0,函数单调递减,当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,当x=2时,函数取得极小值f(2),所以①正确;②正确;
因为在当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,要使当x∈[﹣1,t]函数f(x)的最大值是4,当2≤t≤5,所以t的最大值为5,所以③不正确;
由f(x)=a知,因为极小值f(2)未知,所以无法判断函数y=f(x)﹣a有几个零点,所以④不正确,
根据函数的单调性和极值,做出函数的图象如图,(线段只代表单调性),根据题意函数的极小值不确定,分f(2)<1或1≤f(2)<2两种情况,由图象知,函数y=f(x)和y=a的交点个数有0,1,2,3,4等不同情形,所以⑤正确,
综上正确的命题序号为①②⑤.
故答案为:①②⑤.
【点评】本题考查导数知识的运用,考查导函数与原函数图象之间的关系,正确运用导函数图象是关键.
17.【答案】.
【解析】解:∵△ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60°,b=2,
∴由正弦定理可得:,解得:a=3,
∴利用余弦定理:a2=b2+c2﹣2bccosA,可得:9=4+c2﹣2c,即c2﹣2c﹣5=0,
∴解得:c=1+,或1﹣(舍去).
故答案为:.
【点评】本题主要考查了正弦定理,余弦定理,在解三角形中的综合应用,考查了转化思想和计算能力,属于基础题.
18.【答案】8或﹣18
【解析】【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案.
【解答】解:整理圆的方程为(x﹣1)2++y2=1
故圆的圆心为(1,0),半径为1
直线与圆相切
∴圆心到直线的距离为半径
即=1,求得m=8或﹣18
故答案为:8或﹣18
三、解答题
19.【答案】
【解析】
解:(1)设等比数列的公比为
由已知,得,解得
(2)由(1)得
设等差数列的公差为,则,解得
20.【答案】
【解析】解:(1)f(x)=-x2+ax+a2ln x的定义域为{x|x>0},f′(x)=-2x+a+a 2
x
=-2(x+a
2
)(x-a)
x.
①当a<0时,由f′(x)<0得x>-a
2

由f′(x)>0得0<x<-a
2.
此时f(x)在(0,-a
2
)上单调递增,
在(-a
2
,+∞)上单调递减;
②当a>0时,由f′(x)<0得x>a,
由f ′(x )>0得0<x <a ,
此时f (x )在(0,a )上单调递增,在(a ,+∞)上单调递减. (2)假设存在满足条件的实数a , ∵x ∈[1,e]时,f (x )∈[e -1,e 2], ∴f (1)=-1+a ≥e -1,即a ≥e ,① 由(1)知f (x )在(0,a )上单调递增, ∴f (x )在[1,e]上单调递增,
∴f (e )=-e 2+a e +e 2≤e 2,即a ≤e ,② 由①②可得a =e , 故存在a =e ,满足条件.
21.【答案】
【解析】解:(1)设等比数列{a n }的公比为q ,由a 2是a 1和a 3﹣1的等差中项得:
2a 2=a 1+a 3﹣1,∴

∴2q=q 2
,∵q ≠0,∴q=2,
∴;
(2)n=1时,由b 1+2b 2+3b 3+…+nb n =a n ,得b 1=a 1=1. n ≥2时,由b 1+2b 2+3b 3+…+nb n =a n ① b 1+2b 2+3b 3+…+(n ﹣1)b n ﹣1=a n ﹣1②
①﹣②得:




【点评】本题考查等差数列和等比数列的通项公式,考查了数列的递推式,解答的关键是想到错位相减,是基础题.
22.【答案】(1) 2a = (2) a ≥2(3)两个零点. 【解析】
试题分析:(1) 开区间的最值在极值点取得,因此()f x 在1=x 处取极值,即(1)0f =′
,解得2a = ,需验证(2) ()h x 在区间(]0,1上单调递减,转化为()0h x ′
≤在区间(]0,1上恒成立,再利用变量分离转化为对应函数最值:2
41
x a x +≥的最大值,根据分式函数求最值方法求得()241x F x x =+最大值2(3)先利用导数研究函数
()x m 单调性:当()1,0∈x 时,递减,当()+∞∈,1x 时,递增;再考虑区间端点函数值的符号:()10m <,
4)0m e ->( , 4()0m e >,结合零点存在定理可得零点个数
试题解析:(1) ()2a
f x x x
=-′
由已知,(1)0f =′
即: 20a -=, 解得:2a = 经检验 2a = 满足题意 所以 2a = ………………………………………4分
因为(]0,1x ∈,所以[)1
1,x ∈+∞,所以2min
112x x ⎛⎫⎛⎫+= ⎪ ⎪ ⎪⎝⎭⎝⎭ 所以()max 2F x =,所以a ≥2 ……………………………………10分
(3)函数()()()6m x f x g x =--有两个零点.因为(
)22ln 6m x x x x =--+
所以(
)
)(
)1222
221x m x x x x
=--+==′ ………12分
当()1,0∈x 时,()'x m ,当()+∞∈,1x 时,()0>'x m
所以()()min 140m x m ==-<, ……………………………………14分 32
41-e)(1+e+2e )(=0e m e -<() ,8424
8
12(21))0e e e m e e -++-=>(
44
42()1)2(7)0m e e e e =-+->( 故由零点存在定理可知:
函数()x m 在4(,1)e - 存在一个零点,函数()x m 在4(1,)e 存在一个零点,
所以函数()()()6m x f x g x =--有两个零点. ……………………………………16分 考点:函数极值与最值,利用导数研究函数零点,利用导数研究函数单调性 【思路点睛】
对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等. ⊥平面=×AD =×()××=(=(=((2)以D 为原点,建立如图直角坐标系
【解析】
试题分析:(1)由切线的性质可知ECP ∆∽EFC ∆,由相似三角形性质知::EF CE CE EP =,可得4CE =;(2)由切割线定理可得2
(4)CP BP BP =+,求出,BP OP ,再由CD OP OC CP ⋅=⋅,求出CD 的值. 1 试题解析:
(1)因为CP 是圆O 的切线,CE 是圆O 的直径,所以CP CE ⊥,0
90CFE ∠=,所以ECP ∆∽EFC ∆,
设CE x =,EP =,又因为ECP ∆∽EFC ∆,所以::EF CE CE EP =,
所以2
x =
4x =.
考点:1.圆的切线的性质;2.切割线定理;3.相似三角形性质.。

相关文档
最新文档