作业06_第四章时变电磁场

合集下载

工程电磁场导论时变电磁场

工程电磁场导论时变电磁场
有限差分法的优点在于简单直观,易于编程实现,适用于处理规则的几 何形状和网格划分。
边界元法
01
边界元法是一种将偏微分方程的求解域离散化为边界离散点的 方法,通过在边界上应用离散化的方程来求解问题。
02
在时变电磁场中,边界元法可以用来求解电磁波散射和辐射等
问题。
边界元法的优点在于精度高,适用于处理复杂的几何形状和边
介电常数
描述电场中物质电容特性的物理量,单位 为法拉/米(F/m)。介电常数的大小与物 质的极化程度有关。
VS
磁导率
如前所述,描述材料对磁场响应能力的物 理量。在时变电磁场中,磁导率是复数, 其实部表示物质的磁性,虚部表示物质的 损耗。
铁电材料与铁磁材料
铁电材料
具有自发极化且在一定温度范围内铁电体从 顺电相转变为铁电相的材料。其特点是具有 较高的介电常数和较弱的磁导率。
包括四个基本方程,其中三个描述了电场和磁场的变化,一个描述了电荷 与电流的关系。
适用于所有频率和波长的电磁波,包括无线电波、可见光、X射线等。
波动方程
是描述波动现象的基 本方程,包括声波、 光波、电磁波等。
波动方程是偏微分方 程,需要求解以获得 电场和磁场的分布和 变化。
在时变电磁场中,波 动方程描述了电场和 磁场在空间中的传播 和变化。
铁磁材料
具有显著磁性的材料,其特点是具有较高的 磁导率和较弱的介电常数。在时变电磁场中, 铁磁材料的磁导率可能表现出强烈的非线性。
06
时变电磁场中的数值计算 方法
有限元法
01
有限元法是一种将连续的求解 域离散化为有限个小的、相互 连接但不重叠的单元,然后对 每个单元进行求解的方法。
02
在时变电磁场中,有限元法可 以用来求解复杂的电磁问题, 如电磁波传播、电磁散射和辐 射等。

第4章 时变电磁场

第4章 时变电磁场
⇒ ∇× H =
B = ∇× A
E = −∇ϕ −
1 ∂E ∇×∇× A = J +ε µ ∂t ∂ ⎛ ∂A ⎞ −∇ ϕ − ⎜ ⎟ ∂t ⎝ ∂t ⎠
= J +ε
将矢量恒等式
∇ × ∇ × A = ∇ (∇ ⋅ A ) − ∇ 2 A
得 即
⎛ ∂ϕ ∇ ( ∇ ⋅ A ) − ∇ A = µ J − µε ∇ ⎜ ⎝ ∂t
2
2
∂2 A ⎞ ⎟ − µε ∂t 2 ⎠
∂2 A ∂ϕ ⎞ ⎛ J A ∇ A − µε = − µ + ∇ ∇ ⋅ + µε ⎜ ⎟ ∂t 2 ∂t ⎠ ⎝
◇ 由亥姆霍兹定理:一矢量由其散度和旋度确定。 ◇ 前面定义A 的旋度等于磁感应强度B。为确定矢量位A 还需规定其散度。 ∂ϕ ◇ 令 (洛仑兹条件) ∇ ⋅ A = − µε ∂t 所以 同理
)=
−H ⋅
∂B ∂D − E ⋅J − E ⋅ ∂t ∂t
)
∂D ∂t ∂ (ε E ) = E ⋅ ∂t 1 ∂ = (ε E ⋅ E 2 ∂t ∂ ⎛1 2 ⎞ = ⎜ εE ⎟ ∂t ⎝ 2 ⎠
E ⋅
)
E ⋅ J = σ E2
于是得
H ⋅ (∇ × E ) − E ⋅ (∇ × H
)= −
∂ → jω ∂t
∂2 ቤተ መጻሕፍቲ ባይዱ −ω 2 2 ∂t
二、复数形式的麦氏方程 由麦氏第一方程 设为时谐场
∇× H = J + ∂D ∂t
i i ⎡ ⎛ i jωt ⎞⎤ ⎡ ⎡ jωt ⎤ ⇒ ∇× ⎢ Re ⎜ Hm e ⎟⎥ = Re ⎢ J m e ⎥ + Re ⎢ jω Dm e jωt ⎤ ⎥ ⎠⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎝

第四章时变电磁场

第四章时变电磁场

第四章 时变电磁场1. 在无源的自由空间中,已知磁场强度597.210cos(31010)A/m y H t z e -=⨯⨯-,求位移电流密度。

2. 在电导率310S/m γ=、介电常数06εε=的导电媒质中,已知电场强度58210sin(10π)x E t e -=⨯ ,计算在92.510s t -=⨯时刻,媒质中的传导电流密度c J 和位移电流密度d J 。

(90110F/m 36ε-=⨯π) 3. 在无源区域,已知电磁场的电场强度90.1cos(6.281020.9)V/m x E t z e =⨯-,求空间任一点的磁场强度H和磁感应强度B。

4. 已知自由空间中电磁波的两个场量表达式为)V/m x E =t z e ωβ-,)A/m y H =t z e ωβ-式中,20MHz f =,0.42rad/m β==。

求(1)瞬时坡印亭矢量;(2)平均坡印亭矢量;(3)流入图示的平行六面体(长为2m ,横截面积为0.5m 2)中的净瞬时功率。

5. 在时变电磁场中,已知矢量位函数m e cos()z x A A t z e αωβ-=-,其中m A 、α和β均是常数。

试求电场强度E 和磁感应强度B 。

6. 测得空气中电磁场的电场强度90.5sin(2)cos(410)V/m y E x t kz e =ππ⨯-,求磁场强度H和式中的常数k 。

7. 在均匀的非导电媒质中(0γ=),已知时变电磁场分别为430c o s ()V /m 3z E =t y e ωπ- ,410cos()A/m 3x H =t y e ω-且媒质的1r μ=,由麦克斯韦方程求出ω和r ε。

电磁场与电磁波第四章时变电磁场

电磁场与电磁波第四章时变电磁场
电磁场与电磁波
第 4 章 时变电磁场
电磁场与电磁波第四章时变电磁 场..
电磁场与电磁波
第 4 章 时变电磁场
2
4.1 电磁场波动方程
麦克斯韦方程 —— 一阶矢量微分方程组,描述电场与磁场 间的相互作用关系。
波动方程 —— 二阶矢量微分方程,揭示电磁场的波动性。
麦克斯韦方程组
波动方程。
无源区域中电磁场波动方程
时变电磁场唯一性定理
在以闭曲面S为边界的有界区域V 中,
V
如果给定t=0 时刻的电场强度和磁场强度 S
的初始值,并且当t 0 时,给定边界面S
上的电场强度或者磁场强度的切向分量已知,那么,在 t > 0 的
任何时刻,区域V 中的电磁场都由麦克斯韦方程组唯一确定。
唯一性定理指出了获得唯一解所必须给定的边界条件。
第 4 章 时变电磁场
17
4.5.1 简谐电磁场的复数表示
简谐场量的复数表示形式
设 A(r,t)是一个以角频率 随时间t 作余弦变化的场量,它
可以是电场或磁场的任意一个分量,也可以是电荷或电流等变量,
它与时间的变化关系可以表示为:
A ( r ,t) A 0 c o s [t ( r ) ]
实数表示法 或称瞬时表示法
只要把微分算子 用 j 代替,就可把麦克斯韦方程转换为
t
简谐电磁场复矢量之间的关系,而得到简谐场的麦克斯韦方程。
H
J D t
E
B t
B 0
D
Hm
Jm
j D m
Em
j B m
Bm 0
D m m
H J j D
E j B
D
式中A0代表振幅、 ( r )为与坐标有关的相位因子。

工程电磁场导论-第四章 时变电磁场

工程电磁场导论-第四章 时变电磁场

H y z
d
0 Hy(z) 0
ex 2.63104 sin(3109 t 10z) A / m2
2. 分界面上的衔接条件 ( Boundary Conditions )
时变电磁场中媒质分界面上的衔接条件的推导方式与前 三章类同,应用积分形式的基本方程:
法向分量
lD dS q
电场的切向分量 lB dS 0
布,不存在电流,则在分界面处的边界条件为
H1t H2t B1n B2n
E1t E2t D1n D2n
折射定律
n
B1
1 1,1
2
B2
2,2
tg1
B1t B1n
1H1t
B1n
tg 2
B2t B2n
2 H 2t
H2n
tg1 1 tg2 2
n
D1
3 1,1
4
D2
2,2
tg3
D1t D1n
1E1t
dt
S t
称为感生电动势,为变压器工作原理,亦称变压器电势。
感生电动势
返回 上页 下页
2)磁场不变,回路运动切割磁力线
f qv B
E f vB
e dm
q (ν B) dl
dt
l
称动生电动势,是发电机工
作原理,亦称发电机电势。
若B均匀,且l、B、v三
者垂直,则
动生电动势
e Blv
② 遵循麦克斯韦方程; ③ 电场和磁场相互联系成为不可分割的整体。
上页 下页
法拉第(Michael Faraday, 1791-1867),伟大的英国物理学 家和化学家.他创造性地提出场的 思想,磁场这一名称是法拉第最 早引入的.他是电磁理论的创始人 之一,于1831年发现电磁感应现 象,后又相继发现电解定律,物

电磁场与电磁波及其应用 第四章

电磁场与电磁波及其应用 第四章
将以上两式相减, 得到
在线性、 各向同性媒质中, 当参数不随时间变化时,
于是得到 再利用矢量恒等式
可得到 (4.3.4)
在体积V上, 对式(4.3.4)两端积分, 并应用散度定理即 可得到
(4.3.5)
由于E和H也是相互垂直的, 因此S、 E、 H三者是相互 垂直的, 且构成右旋关系, 如图4.3-1 所示。
第四章 时变电磁场
4.1 波动方程 4.2 时变场的位函数 4.3 时变电磁场的能量与能流 4.4 时谐电磁场 4.5 左手媒质 4.6 时变电磁场的应用
4.1 波 动 方 程
在无源空间中, 电流密度和电荷密度处处为零, 即 ρ=0、 J=0。 在线性、 各向同性的均匀媒质中, E和H满足 麦克斯韦方程
图4.3-1 能流密度矢量与电场及磁场的方向关系
例4.3.1 同轴线的内导体半径为a、 外导体半径为b, 其 间均匀充填理想介质。 设内外导体间电压为U, 导体中流过 的电流为 I。 (1) 在导体为理想导体的情况下, 计算同轴线 中传输的功率; (2) 当导体的电导率σ为有限值时, 计算通 过内导体表面进入每单位长度内导体的功率。
磁场仍为 内导体表面外侧的坡印廷矢量为
由此可见内导体表面外侧的坡印廷矢量既有轴向分量, 也 有径向分量, 如图4.3-3所示。
图4.3-3 同轴线中电场、 磁场和坡印廷矢量 (非理想导体情况)
进入每单位长度内导体的功率为
式中
是单位长度内导体的电阻。 由此可见,
进入内导体中的功率等于这段导体的焦耳损耗功率。
利用复数取实部表示方法, 可将式(4.5.1)写成
式中
(4.4.2)
称为复振幅, 或称为u(r, t)的复数形式。 为了区别复数形 式与实数形式, 这里用打“•”的符号表示复数形式。

《电磁场与电磁波》第四章 时变电磁场

《电磁场与电磁波》第四章 时变电磁场
E e ln(b a) ,
r H

r e
I

(a b)
内外导体之间任意横截面上的坡印廷矢量
r S

rr EH
[er
U
ln(b
a)] (er
I)


r ez
UI
2π 2 ln(b
a)
电磁能量在内外导体之间的介质中沿轴方向流动,即由电源流向 负载,如图所示。
原因:未规定 A的散度。
位函数的规范条件
造成位函数的不确定性的原因就是没有规定 A的散度。利用位 函数的不确定性,可通过规定 的A散度使位函数满足的方程得以简
化。
在电磁理论中,通常采用洛仑兹条件,即


A



0
t
除了利用洛仑兹条件外,另一种常用的是库仑条件,即
A 0
r
(H0) 0

r E0


r H0 t
r
( E0 ) 0
根据坡印廷定理,应有

S
(E0

H0
)
endS

d dt
V
(1
2
H0
2

1 2

E0
2
)dV

2

V
E0
dV
rr
根据 E0 和 H0的边界条件,上式左端的被积函数为
r (E0

(E H ) dS —— 通过曲面S 进入体积V 的电磁功率。 S
推证 由


H Ε

J

D

时变电磁场 知识结构体系(1)

时变电磁场 知识结构体系(1)
3、矢量场的旋度:理解矢量环流的物理意义及矢量场旋度的物理 意义;掌握直角坐标系下旋度的计算方法; 4、拉普拉斯运算:了解拉普拉斯运算的数学表达式及直角坐标系 下的展开式。 5、亥姆霍兹定理:掌握亥姆霍兹定理内容,理解其在矢量分析中 的地位。
07:54
电子科技大学电磁场与电磁波课程组
电磁场与电磁波
电磁场与电磁波
第4章 时变电磁场
恒定电场边界条件:J1n J 2n E1t E2t
电容:C Q U
电感:L I
M12
4
C2
dl1 dl2
R C1
12
电场能量:We
1 2
dV
V
1
we 2
i
qii
磁场能量: Wm
1 2
A JdV
V
Wm
1 2
I
1 2
LI 2
07:54
电子科技大学电磁场与电磁波课程组
4、掌握应用高斯定理、安培环路定律求解静电场和恒定磁场的计 算方法和技巧。
5、掌握电介质极化和磁介质磁化的微观机理,掌握电位移矢量和 磁场强度矢量的定义,了解极化电荷和磁化电流的求解,了解导电 媒质的传导特性。
07:54
电子科技大学电磁场与电磁波课程组
电磁场与电磁波
第4章 时变电磁场
6、掌握电磁感应定律的微分形式及其揭示的物理意义;掌握位移电 流的概念,理解麦克斯韦引入位移电流假说对电磁理论发展所作出 的贡献。
n (H1 H2 ) 0 n (E1 E2 ) 0 B1 n B2 n 0 (D1 D2 ) n 0
nH Js nE 0 B n0
D n s
拉普拉斯方程:2 / 0 2 0
电位和电位差:E
A

第4章 时变电磁场 1PPT课件

第4章 时变电磁场 1PPT课件

电的磁磁场H 感都应J能定产律D 生:t 电麦场克lH 。斯d 韦l第二S(方J 程,D t)表d明S电全荷电和流定变律化
磁通连E续性原B理:表E明d磁l 场是无B 源场dS, 磁电力磁线感总应是定律闭
合曲线。 t
l
S t
:旋表的明形B 电式 荷 产0以 生发 电散 场的)。方SB式d产S生电0场 (变磁化通的连磁续场性以原涡理
2 t A
(2)
定义A 的散度 A 洛仑兹条件
t
返回 上页 下页
第四章
2 A
2A t 2
J
2
2
t 2
时变电磁场
达朗贝尔方程 (Dalangbaier Equation)
说明 确定了 A的值,与 BA共同确定 A;
简化了动态位与场源之间的关系;
若场量不随时间变化,波动方程蜕变为泊松方程
2AJ
2/
洛仑兹条件是电流连续性原理的体现。
返回 上页 下页
第四章
时变电磁场
若激励源是时变电流源时
A(x,y,z,t)
J(x,y,z,tr) vdV (无反射)
4πV
r
达朗贝尔方程解的形式表明:t 时刻的响应取
决于 (tr/v) 时刻的激励源。又称 A, 为滞后
位(Retarded Potential)。
电磁波是以有限速度 v 1 传播的, 光
也是一种电磁波。
当场源不随时间变化时, A, 蜕变为恒定
场中的位函数(拉普拉斯方程或泊松方程)。
返回 上页 下页
第四章
时变电磁场
4.4 坡印廷定理和坡印廷矢量
Poynting Theorem and Poynting Vector

时变电磁场

时变电磁场

y, y,
z, z,
t) t)
Exm E ym
(x, (x,
y, y,
z) z)
cos[t cos[t
x (x, y (x,
y, y,
z)] z)]
Ez
(x,
y,
z,
t)
Ezm
(x,
y,
z)
cos[t
z
(
x,
y,
z)]
式中:Exm , Eym , Ezm 为电场在x,y,z方向分量的幅度
x, y,z 为电场x,y,z分量的初始相位
电磁场与电磁波
第4章 时变电磁场
第四章 时变电磁场
时变情况下,电场和磁场相互关联,构成统一的电磁场 时变电场和磁场能量在空间中不断相互转换,并以电磁波动的 形式从一个地方传递到另外一个地方
本章主要内容: ➢ 时变电场和磁场满足的方程——波动方程 ➢ 时变电磁场的辅助函数——标量电位和矢量磁位 ➢ 时变电磁场的能量守恒定律 ➢ 正弦规律变化的时变场——时谐电磁场
对于时变场来说,动态位函数常用的规范条件为洛伦兹规范条件
A
t
洛伦兹规范条件
思考:库仑规范条件和洛伦兹规范条件有何联系?
15:54
电磁场与电磁波
第4章 时变电磁场
4.2.2 达朗贝尔方程
E (
H H
J
1
E
t A
A) 2
t
t
1 A J E
t
(
A)
Σ
J EdV
V
15:54
E, H
V
电磁场与电磁波
第4章 时变电磁场
坡印廷定理物理意义:单位时间内流入体积V内的电磁能量等于 体积V内增加的电磁能量与体积V内损耗的电磁能量之和。

电磁场与电磁波第四章

电磁场与电磁波第四章

∇2ϕ

με
∂2ϕ ∂t 2
=

1 ε
ρ
矢量位和标量位满足(分离出的两个独立)的方程, 称为达朗贝尔方程
间接方法:A. 求解两个达朗贝尔方程 B. 达朗贝尔方程 + 洛仑兹条件
9
4.3 电磁能量守恒定律
讨论电磁场的能量问题,引入坡印廷矢量, 得到反映电磁能量守恒关系的坡印廷定理。
一、电磁场能量密度和能流密度
=
d dt
V
(1 2
μ
|
v H0
|2
+
1 2
ε
|
v E0
|2 )dV
+
σ
V
|
v E0
|2
dV
20
根据
v E0

v H0
满足的边界条件,左端被积函数
v (E0
×
v H
0
)

evn
|S
=
(evn
×
v E0
)

v H
0
|S
=
v (H
0
×
evn
)

v E0
|S
=
0

∫ ∫ d
dt
V
(1 2
μ
|
v H0
|2
+
∂2Ez ∂y 2
+
∂2Ez ∂z 2
− με
∂2Ez ∂t 2
=0
解波动方程,可求出空间中电磁场场量的分布。
(直接求解波动方程的过程很复杂)
4
4.2 电磁场的位函数
一、矢量位和标量位
∇ ⋅ Bv = 0

第4章 时变电磁场1

第4章 时变电磁场1

2、坡印亭矢量
− ∫
S
v v v 表流入闭合面S的电磁功率, ( E × H )dS 表流入闭合面S的电磁功率,因此
v v 为一与通过单位面积的功率相关的矢量。 与通过单位面积的功率相关的矢量 E × H 为一与通过单位面积的功率相关的矢量。
v 定义:坡印廷矢量( 表示)- 定义:坡印廷矢量(用符号 S 表示)-能流密度矢量
v v 讨论:1 :1、 为与时间相关的函数(瞬时形式), ),则 讨论:1、若 E , H 为与时间相关的函数(瞬时形式),则 v v v S (t ) = E (t ) × H (t )
称为坡印廷矢量的瞬时形式。 称为坡印廷矢量的瞬时形式。 瞬时形式
v v 对某些时变场, 2、对某些时变场, , H 呈周期性变化。则将瞬 E 呈周期性变化。
v v v d v v ⇒ − ( E × H )dS = (We + Wm ) + ∫ E JdV ∫S V dt
坡印廷定理积分形式 说明: 说明:
− ∫
S
坡印廷定理物理意义: 坡印廷定理物理意义: 物理意义 流入体积V 流入体积V内的电磁功率 等于体积V 等于体积V内电磁能量的 增加率与体积V 增加率与体积V内损耗的 电磁功率之和。 电磁功率之和。
坡印廷定理描述了空间中电磁能量守恒关系。 坡印廷定理描述了空间中电磁能量守恒关系。
第4章 时变电磁场
13
1、坡印亭定理
在时变场中, 在时变场中,电、磁能量 相互依存, 相互依存,总能量密度为
1r r 1r r w = we + wm = D ⋅ E + B ⋅ H 2 2 W = ∫V 1 r r r r w dV = ∫V (D ⋅ E + B ⋅ H) V d 2

04第四章-时变电磁场和时谐电磁场(1)

04第四章-时变电磁场和时谐电磁场(1)

电磁场与电磁波_ 电磁场的边界条件
2.7.1 边界条件的一般形式
一、H 的切向分量的边界条件
取一小矩形回路,两个边 l 分别
位取于H分沿界此面闭两合侧回,路的h 线积0 分,,


CH
单位
电场强度
E
V/m
电的
电通量密度
D
C/m^2
(电位移矢量)
磁通量密度
B
T
磁的 (磁感应强度)
磁场强度
H
A/m
回顾以上矢量场量的引入
E是讨论自由空间中静电学时引入的唯一矢量,其物理意义 是单位试验电荷上的电作用力
F qE
D是研究电介质中的电场时引入的辅助量
D E 0E P
B是讨论自由空间中静磁学时引入的唯一矢量,其物理意义 是单位长度电流上的磁作用力

D →高斯定律。电场的一个源是静止电荷;电场有通量源
电动力学的基本方程:麦克斯韦方程 +
f

qv

B
+
f

m
dv
dt
电磁场的基本方程: 麦克斯韦方程 第16页
电磁场与电磁波 时变电磁场
2.6.3 媒质的本构关系(电磁场的辅助方程)
本构关系(组成关系、流量关系、特性方程)
SB dS 0

S D dS q
麦克斯韦方程组: 宏观电磁现象所电遵子循科学的与工基程本学院规律,周是俊 电磁场的基本方程。
电磁场与电磁波_ 2.6 麦克斯韦方程组
2.6.2 麦克斯韦方程组的微分形式(点函数形式)
微分形式(麦克斯韦方程的不限定形式):
所 不 因从 HE有符此18的,)6J。4宏 麦年Bt理观 克提Dt论→电 斯出变上→磁 韦到化也变场方目磁化没问程场前电有产题组为场找生被,止产到并电生认,场任且磁为麦;从何场是克位未真;2移斯J出正0、磁世韦J现值流d纪方是过得是磁之程电错挑场前可场误剔的最以的的(涡成或涡用流东流功与来源西源的实求。物验解 理 B学方0 程→,磁被通称连为续“性上。自帝然的界符不号存”在。磁荷;磁场无通量源

第4章时变电磁场

第4章时变电磁场

2AJ
2/
洛仑兹条件是电流连续性原理的体现。
返回 上页 下页
第四章
时变电磁场
4.3.2 动态位方程的积分解
(Integral Solutions of Kinetic Potentials)
以时变点电荷为例
22t2 0
(Dalangbaier方程,除坐标 原点外)
具有,球 展对 开 2 (rr 2 称 为 )v 1 2 性 2 (tr 2 )
磁场呢?
返回 上页 下页
第四章
4.1.3 全电流定律(Ampere’s Law)
时变电磁场
问题的提出
l Hdl i
经过S1面
lH dlS1JdSi
图4.1.6 交变电路用 安培环路定律
思考
经过S2面
lH dlS2JdS0
为什么相同的线积分结果不同?电流不连续 吗?
原因所在?
返回 上页 下页
第四章
q
(无限大均匀媒质)
4πr
由此推论,时变点电荷的动态标量位为
q(t r)
(t)
v
4πr
无反射
根据叠加定理,连续分布电荷产生的动态标量位为
(x,y,z,tr)
(x,y,z,t) V
4πr vdV 无反射
返回 上页 下页
第四章
时变电磁场
若激励源是时变电流源时
A(x,y,z,t)
J(x,y,z,tr) vdV (无反射)
感应电场是非保守场,电力线呈闭合曲线,变化
的磁场
B t
是产生
E i 的涡旋源,故又称涡旋电场。 返回 上页 下

第四章
时变电磁场
若空间同时存在库仑电场,

第四章 时变电磁场

第四章 时变电磁场

∂ϕ µε = −∇ ⋅ A = 0, ϕ = C ∂t
如果假设过去某一时刻,场还没有建立,则C=0。
µ
∂A E = −∇ϕ − = −exωAm cos(ωt − kz ) ∂t
23
坡印廷矢量的瞬时值为:
S (t ) = E (t ) × H (t ) k = [−exωAm cos(ωt − kz )] × − e y Am cos(ωt − kz ) µ ωk 2 = ez Am cos(ωt − kz )
20
单位W/m2 单位
波的传播方向
21
22
例题 已知时变电磁场中矢量位
A = ex Am sin(ωt − kz ) , 其中
Am、k是常数,求电场强度、磁场强度和坡印廷矢量。 是常数, 是常数 求电场强度、磁场强度和坡印廷矢量。 解:
∂Ax B = ∇ × A = ey = −e y kAm cos(ωt − kz ) ∂t k H = −e y Am cos(ωt − kz )
∂A E+ = −∇ϕ ∂t
∂ (∇ × A) ∇× E = − ∂t ∂A ∇× E + = 0 ∂t ∇ × (∇M ) = 0
{
8
注意: 注意: 这里的矢量位及标量位均是时间 空间函数 时间、 函数。 这里的矢量位及标量位均是时间、空间函数。当它 们与时间无关时,矢量位、 们与时间无关时,矢量位、标量位和场量之间的关系与 静态场完全相同,因此矢量位又称为矢量磁位 矢量磁位, 静态场完全相同,因此矢量位又称为矢量磁位,标量位 又称为标量电位 标量电位。 又称为标量电位。
ab =| a | | b | e a | a | j (α − β ) = e b |b|

时变电磁场和准静态电磁场

时变电磁场和准静态电磁场

两项结论相加得到最后结论.
4.麦克斯韦假设:
除了电荷产生电场外,变化的磁场也要 产生电场--感应电场. 例如 , 法拉第所述闭合回路中感应电流 就是在感应电场的作用下引起的 . 然而这 里不仅仅局限于回路中.
d m d l Ei dl S B dS dt dt
式中的 D / t 是有限量, 所以最后一项趋向于零 得
H1t H2t J s n (H1 H2 ) J s 若分界面上Js=0, 则 n ( H1 H 2 ) 0
例题 4-3 比较传导电流和位移电流的大小. 设导体 中存在电场,电场强度为 Em sin t , 导体的电导率: r 107 S / m 介电常数为 0 D (E ) 解: 传导电流密度为 J E , J d 0 Em cost t t J d 0 | | 1017 f J 这里 2f 该题说明, 在良导体中位移电流很小. 例题4-4 两块导电平板z=0和z=d之间的空气中传播 的电磁波的电流强度为 E E0 sin d z cos(t x)ey , 其中 为常数,试求:(1) 磁场强度; (2) 两块导电平板表 面上的电流线密度.
A A A (E ) 0 E 或者 E t t t
3.达朗贝尔方程-确定动态位与场源关系 根据 B H 和 D E , 以及 D 得到下列方程:
2
A 2 2 A 2 J ( A ) 和 ( A) t t t
S D dS q
对比几种特例:
S B dS 0
D H J t B E t

电磁场理论-04 时变电磁场

电磁场理论-04 时变电磁场
2
例: 计算铜中的位移电流密度和传导电流之比
值。设电场为 E0 sin2ft,铜的电导率为 5.8 107 s/m, 0
J 传导 E E0 sin 2 ft 解: D E Jd 2 fE0 cos 2 ft t t Jd 2 f 2 f 0 19 9.6 10 f J 传导
√ ? √
L
H dl J 传导 ds I
S1
L
H dl J 传导 ds 0
S2
×
S2
L
H dl
S2
J
传导
J d ds J d ds I
证明: H dl J d ds I
B r , t ds 0 D r , t ds
S S
磁通连续性定律
自由 r , t dv
V
高斯定律
注:若场矢量不随时间变化,就是静态场方程
二、麦克斯韦方程的微分形式: D r , t H r , t J 传导 r , t t B r , t E r ,t t B r ,t 0
E in
E in
I
L
四、法拉第电磁感应定律
d d B L Ein dl in dt dt S B ds S t ds B L Ein dl S t ds
2、微分形式 1、积分形式
B S Ein ds L Ein dl S t ds B Ein t
• 结构方程
D E
• 意义:全面体现了电场(包括库仑电场和旋涡 电场)与它的源(电荷、变化磁场)的关系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作业06_第四章时变电磁场-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII
第四章 时变电磁场
1. 在无源的自由空间中,已知磁场强度597.210cos(31010)A/m y H t z e -=⨯⨯-,求位移电流密度。

2. 在电导率310S/m γ=、介电常数06εε=的导电媒质中,已知电场强度
58210sin(10)x E t e -=⨯π,计算在92.510s t -=⨯时刻,媒质中的传导电流密度c J 和位移电流密度d J 。

3. 在无源区域,已知电磁场的电场强度90.1cos(6.281020.9)V/m x E t z e =⨯-,求空间
任一点的磁场强度H 和磁感应强度B 。

4. 一个同轴圆柱型电容器,其内、外半径分别为11cm r =、24cm r =,长度0.5m l =,极板间介质介电常数为04ε,极板间接交流电源,电压为
V u t =π。

求极板间任意点的位移电流密度。

5.一个球形电容器的内、外半径分别为a 和b ,内、外导体间材料的介电常数为ε,电导率为γ,在内、外导体间加低频电压sin m u U t ω=。

求内、外导体间的全电流。

6. 已知自由空间中电磁波的两个场量表达式为 20002)V/m x E =t z e ωβ-, 5.32sin()A/m y H =t z e ω
β-
式中,20MHz f =,0.42rad/m β==。

求(1)瞬时坡印亭矢量;(2)平均坡印亭矢量;(3)流入图示的平行六面体(长为2m ,横截面积为0.5m 2)中的净瞬时功率。

7. 一个平行板电容器的极板为圆形,极板面积为S ,极板间距离为d ,介质的介电常数和电导率分别为ε,
γ,试问:
(1). 当极板间电压为直流电压U 时,求电容器内任一点的坡印亭矢量;
(2). 如果电容器极板间的电压为工频交流电压cos314u t =,求电容器内任一点的坡印亭矢量及电容器的有功功率和无功功率。

8. 在时变电磁场中,已知矢量位函数m e cos()z x A A t z e αωβ-=-,其中m A 、α和β均是常数。

试求电场强度E 和磁感应强度B 。

x
9. 在均匀的非导电媒质中(0γ=),已知时变电磁场分别为 430cos()V/m 3z E =t y e ωπ-,410cos()A/m 3
x H =t y e ω- 且媒质的1r μ=,由麦克斯韦方程求出ω和r ε。

10. 证明在无源空间(0f ρ=,0C J =)中,可引入一个矢量位m A 和标量位m ϕ,定义为
m D A =-∇⨯,m m A H t
ϕ∂=-∇-∂, 并在线性各向同性均匀媒质条件下推导m A 和m ϕ满足的微分方程。

11. 在某一区域中有1r r με==和0γ=,给定推迟位函数为(c )V x z t ϕ=-和()Wb/m c z z A x t
e =-,其中为常数。

(1) 证明A t
ϕμε∂∇⋅=-∂; (2) 求B 、H 、E 和D ;
12. 已知区域I (0z <)的媒质参数为10εε=、10μμ=、10γ=;区域II (0z >)的媒质参数为205εε=、202μμ=、20γ=。

区域I 中的电场强度为
88160cos(15105)20cos(15105)e V/m x E t z t z ⎡⎤=⨯-+⨯+⎣⎦
区域II 中的电场强度为
82cos(15105)e V/m x E A t z =⨯-
求: (1) 常数A ;
(2) 磁场强度1H 与2H ;
(3) 证明在0z =处1H 与2H 满足边界条件;
13. 在一个圆形平行平板电容器的极板间加上低频电压cos m u U t ω=,设极板间距为d ,极板间绝缘材料的介电常数为ε,试求极板间的磁场强度。

14. 如图所示,同轴线的内导体半径为a ,外导体的内半径为b ,其间填充均匀的理想介质。

设内、外导体间外加缓变电压cos m u U t ω=,导体中流过缓变电流为cos m i I t ω=。

设电流方向为z e ,导体径向方向为e ρ(指向外侧),与电流成右手螺旋方向为e ϕ。

(1)在导体为理想导体的情况下,计算同轴线中传输的平均功率;(2)当导体的电导率γ为有限值时,定性分析对传输功率的影响。

L
Z。

相关文档
最新文档