东阳市实验中学2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
东阳市实验中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 已知函数()2sin()f x x ωϕ=+(0)2
π
ϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最
小距离为
2π
,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2
π D .23π
2. 设集合,,则( ) A B
C
D
3. 下列式子表示正确的是( )
A 、{}00,2,3⊆
B 、{}{}22,3∈
C 、{}1,2φ∈
D 、{}0φ⊆ 4. 已知函数f(x)是定义在R 上的奇函数,当x ≥0时,
.若
,f(x-1)≤f(x),则实数a 的取值范围为
A[] B[] C[]
D[
]
5. 在△ABC 中,b=
,c=3,B=30°,则a=( )
A .
B .2
C .
或2
D .2
6. 已知全集为R ,集合A={x|()x ≤1},B={x|x 2﹣6x+8≤0},则A ∩(∁R B )=( ) A .{x|x ≤0} B .{x|2≤x ≤4}
C .{x|0≤x <2或x >4}
D .{x|0<x ≤2或x ≥4}
7. 给出下列命题:①多面体是若干个平面多边形所围成的图形;②有一个平面是多边形,其余各 面是三角形的几何体是棱锥;③有两个面是相同边数的多边形,其余各面是梯形的多面体是棱台.其中
正确命题的个数是( )
A .0
B .1
C .2
D .3 8. 已知表示数列
的前项和,若对任意的
满足
,且
,则
( )
A .
B .
C .
D . 9. 两个随机变量x ,y 的取值表为
若x ,y 具有线性相关关系,且y ^
=bx +2.6,则下列四个结论错误的是( )
A .x 与y 是正相关
B .当y 的估计值为8.3时,x =6
C .随机误差e 的均值为0
D .样本点(3,4.8)的残差为0.65
10.若集合A ={-1,1},B ={0,2},则集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为( )
A5 B4 C3 D2
A .甲
B .乙
C .丙
D .丁
12.已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,23cos 2A+cos2A=0,a=7,c=6,则b=( ) A .10
B .9
C .8
D .5
二、填空题
13.已知z 是复数,且|z|=1,则|z ﹣3+4i|的最大值为 .
14.已知数列{}n a 的首项1a m =,其前n 项和为n S ,且满足2132n n S S n n ++=+,若对n N *∀∈,1n n a a +< 恒成立,则m 的取值范围是_______.
【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算
能力.
15.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角∠MAN=60°,C 点的仰角∠CAB=45°以及∠MAC=75°;从C 点测得∠MCA=60°.已知山高BC=100m ,则山高MN= m .
16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sinAsinB+sinBsinC+cos2B=1.若C=,则= .
17.设S n 是数列{a n }的前n 项和,且a 1=﹣1,
=S n .则数列{a n }的通项公式a n = .
18.如图是正方体的平面展开图,则在这个正方体中①BM 与ED 平行;②CN 与BE 是异面直线; ③CN 与BM 成60︒角;④DM 与BN 是异面直线.
以上四个命题中,正确命题的序号是 (写出所有你认为正确的命题).
三、解答题
19.【海安县2018届高三上学期第一次学业质量测试】已知函数()()
2x
f x x ax a e =++,其中a R ∈,e 是
自然对数的底数.
(1)当1a =时,求曲线()y f x =在0x =处的切线方程; (2)求函数()f x 的单调减区间;
(3)若()4f x ≤在[]
4,0-恒成立,求a 的取值范围.
20.设函数f(x)=lnx﹣ax+﹣1.
(Ⅰ)当a=1时,求曲线f(x)在x=1处的切线方程;
(Ⅱ)当a=时,求函数f(x)的单调区间;
(Ⅲ)在(Ⅱ)的条件下,设函数g(x)=x2﹣2bx﹣,若对于∀x1∈[1,2],∃x2∈[0,1],使f(x1)≥g(x2)成立,求实数b的取值范围.
21.某公司对新研发的一种产品进行合理定价,且销量与单价具有相关关系,将该产品按事先拟定的价格进行
(1)现有三条y对x的回归直线方程:=﹣10x+170;=﹣20x+250;=﹣15x+210;根据所学的统计学知识,选择一条合理的回归直线,并说明理由.
(2)预计在今后的销售中,销量与单价服从(1)中选出的回归直线方程,且该产品的成本是每件5元,为使公司获得最大利润,该产品的单价应定多少元?(利润=销售收入﹣成本)
22.甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球. (1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?
(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X ,求X 的分布列和数学期望.
23.函数f (x )=sin (ωx+φ)(ω>0,|φ|<)的部分图象如图所示
(Ⅰ)求函数f (x )的解析式
(Ⅱ)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,其中a <c ,f (A )=,且a=,b=
,求△ABC
的面积.
24.(本题满分15分)
正项数列}{n a 满足12
1223+++=+n n n n a a a a ,11=a .
(1)证明:对任意的*
N n ∈,12+≤n n a a ;
(2)记数列}{n a 的前n 项和为n S ,证明:对任意的*
N n ∈,32121
<≤-
-n n S .
【命题意图】本题考查数列的递推公式与单调性,不等式性质等基础知识,意在考查推理论证能力,分析和解决问题的能力.
东阳市实验中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】A
【解析】
考点:三角函数的图象性质.
2.【答案】C
【解析】送分题,直接考察补集的概念,,故选C。
3.【答案】D
【解析】
试题分析:空集是任意集合的子集。
故选D。
考点:1.元素与集合的关系;2.集合与集合的关系。
4.【答案】B
【解析】当x≥0时,
f(x)=,
由f(x)=x﹣3a2,x>2a2,得f(x)>﹣a2;
当a2<x<2a2时,f(x)=﹣a2;
由f(x)=﹣x,0≤x≤a2,得f(x)≥﹣a2。
∴当x>0时,。
∵函数f(x)为奇函数,
∴当x<0时,。
∵对∀x∈R,都有f(x﹣1)≤f(x),
∴2a2﹣(﹣4a2)≤1,解得:。
故实数a的取值范围是。
5.【答案】C
【解析】解:∵b=,c=3,B=30°,
∴由余弦定理b2
=a2+c2﹣2accosB,可得:3=9+a2﹣3,整理可得:a2﹣3a+6=0,
∴解得:a=或2.
故选:C.
6.【答案】C
【解析】解:∵≤1=,
∴x≥0,
∴A={x|x≥0};
又x2﹣6x+8≤0⇔(x﹣2)(x﹣4)≤0,
∴2≤x≤4.
∴B={x|2≤x≤4},
∴∁R B={x|x<2或x>4},
∴A∩∁R B={x|0≤x<2或x>4},
故选C.
7.【答案】B
【解析】111]
试题分析:由题意得,根据几何体的性质和结构特征可知,多面体是若干个平面多边形所围成的图形是正确的,故选B.
考点:几何体的结构特征.
8.【答案】C
【解析】
令得,所以,即,所以是以1为公差的等差数列,首项为,
所以,故选C
答案:C
9.【答案】
【解析】选D.由数据表知A是正确的,其样本中心为(2,4.5),代入y^=bx+2.6得b=0.95,即y^=0.95x+^=8.3时,则有8.3=0.95x+2.6,∴x=6,∴B正确.根据性质,随机误差e的均值为0,∴C正确.样2.6,当y
本点(3,4.8)的残差e^=4.8-(0.95×3+2.6)=-0.65,∴D错误,故选D.
10.【答案】C
【解析】由已知,得{z|z=x+y,x∈A,y∈B}={-1,1,3},所以集合{z|z=x+y,x∈A,y∈B}中的元素的个数为3.
11.【答案】C
【解析】解:∵甲、乙、丙、丁四人的平均环数乙和丙均为8.8环,最大,
甲、乙、丙、丁四人的射击环数的方差中丙最小,
∴丙的射击水平最高且成绩最稳定,
∴从这四个人中选择一人参加该运动会射击项目比赛,
最佳人选是丙.
故选:C.
【点评】本题考查运动会射击项目比赛的最佳人选的确定,是基础题,解题时要认真审题,注意从平均数和方差两个指标进行综合评价.
12.【答案】D
【解析】解:∵23cos2A+cos2A=23cos2A+2cos2A﹣1=0,即cos2A=,A为锐角,
∴cosA=,
又a=7,c=6,
根据余弦定理得:a2=b2+c2﹣2bc•cosA,即49=b2+36﹣b,
解得:b=5或b=﹣(舍去),
则b=5.
故选D
二、填空题
13.【答案】6.
【解析】解:∵|z|=1,
|z﹣3+4i|=|z﹣(3﹣4i)|≤|z|+|3﹣4i|=1+=1+5=6,
∴|z﹣3+4i|的最大值为6,
故答案为:6.
【点评】本题考查复数求模,着重考查复数模的运算性质,属于基础题.
14.【答案】
15 (,)
43
15.【答案】150
【解析】解:在RT△ABC中,∠CAB=45°,BC=100m,所以AC=100m.
在△AMC中,∠MAC=75°,∠MCA=60°,从而∠AMC=45°,
由正弦定理得,,因此AM=100m.
在RT△MNA中,AM=100m,∠MAN=60°,由
得MN=100×=150m.
故答案为:150.
16.【答案】=.
【解析】解:在△ABC中,角A,B,C的对边分别为a,b,c,
∵已知sinAsinB+sinBsinC+cos2B=1,
∴sinAsinB+sinBsinC=2sin2B.
再由正弦定理可得ab+bc=2b2,即a+c=2b,故a,b,c成等差数列.
C=,由a,b,c成等差数列可得c=2b﹣a,
由余弦定理可得(2b﹣a)2=a2+b2﹣2abcosC=a2+b2+ab.
化简可得5ab=3b2,∴=.
故答案为:.
【点评】本题主要考查等差数列的定义和性质,二倍角公式、余弦定理的应用,属于中档题.
17.【答案】.
【解析】解:S n是数列{a n}的前n项和,且a1=﹣1,=S n,
∴S n+1﹣S n=S n+1S n,
∴=﹣1,=﹣1,
∴{}是首项为﹣1,公差为﹣1的等差数列,
∴=﹣1+(n﹣1)×(﹣1)=﹣n.
∴S n=﹣,
n=1时,a1=S1=﹣1,
n≥2时,a n=S n﹣S n﹣1=﹣+=.
∴a n=.
故答案为:.
18.【答案】③④
【解析】
试题分析:把展开图复原成正方体,如图,由正方体的性质,可知:①BM与ED是异面直线,所以是错误
AN AC,由于几何体是正方体,所以三角形ANC 的;②DN与BE是平行直线,所以是错误的;③从图中连接,
AN AC所成的角为60 ,所以是正确的;④DM与BN是异面直线,所以是正确的.为等边三角形,所以,
考点:空间中直线与直线的位置关系.
三、解答题
19.【答案】(1)210x y -+=(2)当2a =时,()f x 无单调减区间;当2a <时,()f x 的单调减区间
是()2,a --;当2a >时,()f x 的单调减区间是(),2a --.(3)2
44,4e ⎡⎤-⎣⎦
【解析】试题分析:(1)先对函数解析式进行求导,再借助导数的几何意义求出切线的斜率,运用点斜式求出切线方程;(2)先对函数的解析式进行求导,然后借助导函数的值的符号与函数单调性之间的关系进行分类分析探求;(3)先不等式()4f x ≤进行等价转化,然后运用导数知识及分类整合的数学思想探求函数的极
值与最值,进而分析推证不等式的成立求出参数的取值范围。
(2) 因为()()()()2
'222x
x
f x x a x a e x a x e ⎡⎤=+++=++⎣⎦,
当2a =时,()()2
'20x
f x x e =+≥,所以()f x 无单调减区间.
当2a ->-即2a <时,列表如下:
所以()f x 的单调减区间是()2,a --.
当2a -<-即2a >时,()()()'2x
f x x x a e =++,列表如下:
所以()f x 的单调减区间是(),2a --.
综上,当2a =时,()f x 无单调减区间;
当2a <时,()f x 的单调减区间是()2,a --; 当2a >时,()f x 的单调减区间是(),2a --.
(3)()()()()2'222x x
f x x a x a e x a x e ⎡⎤=+++=++⎣⎦.
当2a =时,由(2)可得,()f x 为R 上单调增函数,
所以()f x 在区间[]
4,0-上的最大值()024f =≤,符合题意. 当2a <时,由(2)可得,要使()4f x ≤在区间[]
4,0-上恒成立,
只需()04f a =≤,()()2
244f a e --=-≤,解得2442e a -≤<.
当24a <≤时,可得()4a
a
f a e -=
≤,()04f a =≤. 设()a a g a e =,则()1'a a
g a e
-=,列表如下:
所以()()max
114g a g e ⎡⎤==
<⎣⎦
,可得4a a
e
≤恒成立,所以24a <≤. 当4a >时,可得()04f a =≤,无解.
综上,a 的取值范围是2
44,4e ⎡⎤-⎣⎦.
20.【答案】
【解析】解:函数f (x )的定义域为(0,+∞),(2分)
(Ⅰ)当a=1时,f (x )=lnx ﹣x ﹣1,∴f (1)=﹣2,,
∴f ′(1)=0,∴f (x )在x=1处的切线方程为y=﹣2(5分)
(Ⅱ)
=
(6分)
令f′(x)<0,可得0<x<1,或x>2;令f'(x)>0,可得1<x<2
故当时,函数f(x)的单调递增区间为(1,2);单调递减区间为(0,1),(2,+∞).
(Ⅲ)当时,由(Ⅱ)可知函数f(x)在(1,2)上为增函数,
∴函数f(x)在[1,2]上的最小值为f(1)=(9分)
若对于∀x1∈[1,2],∃x2∈[0,1]使f(x1)≥g(x2)成立,等价于g(x)在[0,1]上的最小值不大于f(x)在(0,
e]上的最小值(*)(10分)
又,x∈[0,1]
①当b<0时,g(x)在[0,1]上为增函数,与(*)矛盾
②当0≤b≤1时,,由及0≤b≤1得,
③当b>1时,g(x)在[0,1]上为减函数,,
此时b>1(11分)
综上,b的取值范围是(12分)
【点评】本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性,考查恒成立问题,解题的关键是将对于∀x1∈[1,2],∃x2∈[0,1]使f(x1)≥g(x2)成立,转化为g(x)在[0,1]上的最小值不大于f(x)在(0,e]上的最小值.
21.【答案】
【解析】(1)=(8+8.2+8.4+8.6+8.8+9)=8.5,=(90+84+83+80+75+68)=80;
∵(,)在回归直线上,
∴选择=﹣20x+250;
(2)利润w=(x﹣5)(﹣20x+250)=﹣20x2+350x﹣1250=﹣20(x﹣8.75)2+281.25,
∴当x=8.75元时,利润W最大为281.25(万元),
∴当单价定8.75元时,利润最大281.25(万元).
22.【答案】
【解析】解:(1)设事件A为“两手所取的球不同色”,
则P(A)=1﹣.
(2)依题意,X的可能取值为0,1,2,
左手所取的两球颜色相同的概率为=,
右手所取的两球颜色相同的概率为=.
P(X=0)=(1﹣)(1﹣)==;
P(X=1)==;
P(X=2)==.
∴X的分布列为:
0 1 2
EX=0×+1×+2×=.
【点评】本题考查概率的求法和求离散型随机变量的分布列和数学期望,是历年高考的必考题型.解题时要认真审题,仔细解答,注意概率知识的灵活运用.
23.【答案】
【解析】解:(Ⅰ)∵由图象可知,T=4(﹣)=π,
∴ω==2,
又x=时,2×+φ=+2kπ,得φ=2kπ﹣,(k∈Z)
又∵|φ|<,
∴φ=﹣,
∴f(x)=sin(2x﹣)…6分
(Ⅱ)由f(A)=,可得sin(2A﹣)=,
∵a<c,
∴A为锐角,
∴2A﹣∈(﹣,),
∴2A﹣=,得A=,
由余弦定理可得:a2=b2+c2﹣2bccosA,可得:7=3+c2﹣2,即:c2﹣3c﹣4=0,
∵c>0,∴解得c=4.
∴△ABC的面积S=bcsinA==…12分
【点评】本题主要考查了余弦定理,三角形面积公式,由y=Asin(ωx+φ)的部分图象确定其解析式等知识的应用,属于基本知识的考查.
24.【答案】(1)详见解析;(2)详见解析.。