博乐市高中2018-2019学年高二上学期第一次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

博乐市高中2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. (2011辽宁)设sin (+θ)=,则sin2θ=( )
A .﹣
B .﹣
C .
D .
2. 已知函数()cos()3
f x x π
=+,则要得到其导函数'()y f x =的图象,只需将函数()y f x =
的图象( ) A .向右平移2π个单位 B .向左平移2π
个单位 C. 向右平移
23
π个单位 D .左平移
23
π
个单位
3. 如图,在正方体1111ABCD A B C D -中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )
A 1
C
A B A.直线 B.圆
C.双曲线
D.抛物线
【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力.
4. 拋物线E :y 2=2px (p >0)的焦点与双曲线C :x 2-y 2=2的焦点重合,C 的渐近线与拋物线E 交于非原点的P 点,则点P 到E 的准线的距离为( ) A .4 B .6 C .8
D .10
5. 已知抛物线C :2
8y x =的焦点为F ,P 是抛物线C 的准线上的一点,且P 的纵坐标为正数,
Q 是直线PF 与抛物线C 的一个交点,若2PQ QF =,则直线PF 的方程为( )
A .20x y --=
B .20x y +-=
C .20x y -+=
D .20x y ++=
6. 已知集合A={x|x 是平行四边形},B={x|x 是矩形},C={x|x 是正方形},D={x|x 是菱形},则( ) A .A ⊆B B .C ⊆B C .D ⊆C D .A ⊆D
7. 在等差数列{a n }中,a 1=2,a 3+a 5=8,则a 7=( ) A .3
B .6
C .7
D .8
8. 设f (x )是定义在R 上的恒不为零的函数,对任意实数x ,y ∈R ,都有f (x )•f (y )=f (x+y ),若a 1=,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围是( )
A .[,2)
B .[,2]
C .[,1)
D .[,1]
9. 设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式<0的解集为( )
A .(﹣1,0)∪(1,+∞)
B .(﹣∞,﹣1)∪(0,1)
C .(﹣∞,﹣1)∪(1,+∞)
D .(﹣1,0)∪(0,1)
10.若1sin(
)34π
α-=
,则cos(2)3π
α+=
A 、78-
B 、14
- C 、14 D 、78
11.下面的结构图,总经理的直接下属是( )
A .总工程师和专家办公室
B .开发部
C .总工程师、专家办公室和开发部
D .总工程师、专家办公室和所有七个部
12.设m ,n 是正整数,多项式(1﹣2x )m +(1﹣5x )n 中含x 一次项的系数为﹣16,则含x 2
项的系数是( ) A .﹣13 B .6 C .79 D .37
二、填空题
13.已知向量(1,),(1,1),a x b x ==-若(2)a b a -⊥,则|2|a b -=( )
A .2
B .3
C .2
D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.
14.设向量=(1,﹣3),=(﹣2,4),=(﹣1,﹣2),若表示向量4,4﹣2,2(﹣),的
有向线段首尾相接能构成四边形,则向量的坐标是.
15.若x,y满足线性约束条件,则z=2x+4y的最大值为.
16.已知函数f(x)=sinx﹣cosx,则=.
17.设数列{a n}的前n项和为S n,已知数列{S n}是首项和公比都是3的等比数列,则{a n}的通项公式
a n=.
18.设()
x
x
f x
e
=,在区间[0,3]上任取一个实数
x,曲线()
f x在点()
00
,()
x f x处的切线斜率为k,则随机事件“0
k<”的概率为_________.
三、解答题
19.如图所示,两个全等的矩形ABCD和ABEF所在平面相交于AB,M AC
∈,N FB
∈,且
AM FN
=,求证://
MN平面BCE.
20.已知数列{a n}的前n项和S n=2n2﹣19n+1,记T n=|a1|+|a2|+…+|a n|.
(1)求S n的最小值及相应n的值;
(2)求T n.
21.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.
(Ⅰ)求出f (5);
(Ⅱ)利用合情推理的“归纳推理思想”归纳出f (n+1)与f (n )的关系式,并根据你得到的关系式求f (n )的表达式.
22.(本小题满分10分) 已知函数()|||2|f x x a x =++-.
(1)当3a =-时,求不等式()3f x ≥的解集; (2)若()|4|f x x ≤-的解集包含[1,2],求的取值范围.
23.已知a>0,b>0,a+b=1,求证:
(Ⅰ)++≥8;
(Ⅱ)(1+)(1+)≥9.
24.(本小题满分12分)某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:
(1
率分布直方图.
(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分.
博乐市高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)
一、选择题
1. 【答案】A
【解析】解:由sin (
+θ)=sin
cos θ+cos
sin θ=
(sin θ+cos θ)=,
两边平方得:1+2sin θcos θ=,即2sin θcos θ=﹣,
则sin2θ=2sin θcos θ=﹣.
故选A
【点评】此题考查学生灵活运用二倍角的正弦函数公式、两角和与差的正弦函数公式及特殊角的三角函数值化简求值,是一道基础题.
2. 【答案】B 【解析】
试题分析:函数()cos ,3f x x π⎛

=+
∴ ⎪⎝
⎭()5'sin cos 36f x x x ππ⎛⎫⎛⎫
=-+=+ ⎪ ⎪⎝⎭⎝⎭
,所以函数 ()cos 3f x x π⎛
⎫=+ ⎪⎝
⎭,所以将函数函数()y f x =的图象上所有的点向左平移2π个单位长度得到
5cos cos 326y x x πππ⎛⎫⎛
⎫=++=+ ⎪ ⎪⎝⎭⎝
⎭,故选B.
考点:函数()sin y A x ωϕ=+的图象变换. 3. 【答案】D.
第Ⅱ卷(共110分)
4. 【答案】
【解析】解析:选D.双曲线C 的方程为x 22-y 22=1,其焦点为(±2,0),由题意得p
2=2,
∴p =4,即拋物线方程为y 2=8x , 双曲线C 的渐近线方程为y =±x ,
由⎩⎪⎨⎪⎧y 2
=8x y =±
x ,解得 x =0(舍去)或x =8,则P 到E 的准线的距离为8+2=10,故选D.
5. 【答案】B 【



考点:抛物线的定义及性质.
【易错点睛】抛物线问题的三个注意事项:(1)求抛物线的标准方程时一般要用待定系数法求p 的值,但首先要判断抛物线是否为标准方程,若是标准方程,则要由焦点位置(或开口方向)判断是哪一种标准方程.(2)注意应用抛物线定义中的距离相等的转化来解决问题.(3)直线与抛物线有一个交点,并不表明直线与抛物线相切,因为当直线与对称轴平行(或重合)时,直线与抛物线也只有一个交点. 6. 【答案】B
【解析】解:因为菱形是平行四边形的特殊情形,所以D ⊂A , 矩形与正方形是平行四边形的特殊情形,所以B ⊂A ,C ⊂A , 正方形是矩形,所以C ⊆B .
故选B .
7. 【答案】B
【解析】解:∵在等差数列{a n }中a 1=2,a 3+a 5=8, ∴2a 4=a 3+a 5=8,解得a 4=4,
∴公差d==,
∴a 7=a 1+6d=2+4=6
故选:B .
8. 【答案】C
【解析】解:∵对任意x ,y ∈R ,都有f (x )•f (y )=f (x+y ), ∴令x=n ,y=1,得f (n )•f (1)=f (n+1),

=
=f (1)=,
∴数列{a n }是以为首项,以为等比的等比数列,
∴a n =f (n )=()n

∴S n ==1﹣()n ∈[,1).
故选C .
【点评】本题主要考查了等比数列的求和问题,解题的关键是根据对任意x ,y ∈R ,都有f (x )•f (y )=f (x+y )得到数列{a n }是等比数列,属中档题.
9. 【答案】D
【解析】解:由奇函数f (x )可知,即x 与f (x )异号,
而f (1)=0,则f (﹣1)=﹣f (1)=0,
又f (x )在(0,+∞)上为增函数,则奇函数f (x )在(﹣∞,0)上也为增函数,
当0<x <1时,f (x )<f (1)=0,得<0,满足;
当x >1时,f (x )>f (1)=0,得
>0,不满足,舍去;
当﹣1<x <0时,f (x )>f (﹣1)=0,得<0,满足;
当x <﹣1时,f (x )<f (﹣1)=0,得>0,不满足,舍去;
所以x 的取值范围是﹣1<x <0或0<x <1. 故选D .
【点评】本题综合考查奇函数定义与它的单调性.
10.【答案】A
【解析】 选A ,解析:2
227
cos[(2)]cos(2)[12sin ()]33
38
π
ππαπαα--=--=---=-
11.【答案】C
【解析】解:按照结构图的表示一目了然, 就是总工程师、专家办公室和开发部. 读结构图的顺序是按照从上到下,从左到右的顺序.
故选C .
【点评】本题是一个已知结构图,通过解读各部分从而得到系统具有的功能,在解读时,要从大的部分读起,一般而言,是从左到右,从上到下的过程解读.
12.【答案】 D
【解析】
二项式系数的性质. 【专题】二项式定理.
【分析】由含x 一次项的系数为﹣16利用二项展开式的通项公式求得2m+5n=16 ①.,再根据m 、n 为正整
数,可得m=3、n=2,从而求得含x 2
项的系数.
【解答】解:由于多项式(1﹣2x )m +(1﹣5x )n
中含x 一次项的系数为(﹣2)+
(﹣5)=﹣16,
可得2m+5n=16 ①.
再根据m 、n 为正整数,可得m=3、n=2,
故含x 2
项的系数是
(﹣2)2
+
(﹣5)2
=37,
故选:D .
【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.
二、填空题
13.【答案】A
【解析】
14.【答案】(﹣2,﹣6).
【解析】解:向量4,4﹣2,2(﹣),的有向线段首尾相接能构成四边形,
则向量=﹣[4+4﹣2+2(﹣)]=﹣(6+4﹣4)=﹣[6(1,﹣3)+4(﹣2,4)﹣4(﹣1,﹣2)]=﹣(2,6)=(﹣2,﹣6),
故答案为:(﹣2,﹣6).
【点评】本题考查了向量的多边形法则、向量坐标运算、线性运算,考查了计算能力,属于基础题.15.【答案】38.
【解析】解:作出不等式组对应的平面区域如图:
由z=2x+4y得y=﹣x+,
平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点A时,
直线y=﹣x+的截距最大,此时z最大,
由,解得,
即A(3,8),
此时z=2×3+4×8=6+32=32,
故答案为:38
16.【答案】 .
【解析】解:∵函数f (x )=sinx ﹣cosx=sin (x ﹣),

=
sin (﹣)=﹣
=﹣

故答案为:﹣

【点评】本题主要考查两角差的正弦公式,属于基础题.
17.【答案】

【解析】解:∵数列{S n }是首项和公比都是3的等比数列,∴S n =3n
. 故a 1=s 1=3,n ≥2时,a n =S n ﹣s n ﹣1=3n
﹣3
n ﹣1
=2•3n ﹣1,
故a n =

【点评】本题主要考查等比数列的通项公式,等比数列的前n 项和公式,数列的前n 项的和Sn 与第n 项an 的关系,属于中档题.
18.【答案】
35
【解析】解析:本题考查几何概率的计算与切线斜率的计算.
001()x x k f x e -'==
,由0()0f x '<得,0
1x >,∴随机事件“0k <”的概率为2
3.
三、解答题
19.【答案】证明见解析.
【解析】
考点:直线与平面平行的判定与证明.
20.【答案】
【解析】解:(1)S n=2n2﹣19n+1=2﹣,
∴n=5时,S n取得最小值=﹣44.
(2)由S n=2n2﹣19n+1,
∴n=1时,a1=2﹣19+1=﹣16.
n≥2时,a n=S n﹣S n﹣1=2n2﹣19n+1﹣[2(n﹣1)2﹣19(n﹣1)+1]=4n﹣21.由a n≤0,解得n≤5.n≥6时,a n>0.
∴n ≤5时,T n =|a 1|+|a 2|+…+|a n |=﹣(a 1+a 2+…+a n )=﹣S n =﹣2n 2
+19n ﹣1.
n ≥6时,T n =﹣(a 1+a 2+…+a 5)+a 6+…+a n
=﹣2S 5+S n =2n 2﹣19n+89.
∴T n =

【点评】本题考查了等差数列的通项公式及其前n 项和公式、不等式的解法、绝对值数列求和问题,考查了分类讨论方法推理能力与计算能力,属于中档题.
21.【答案】
【解析】解:(Ⅰ)∵f (1)=1,f (2)=5,f (3)=13,f (4)=25, ∴f (2)﹣f (1)=4=4×1. f (3)﹣f (2)=8=4×2, f (4)﹣f (3)=12=4×3, f (5)﹣f (4)=16=4×4 ∴f (5)=25+4×4=41.…
(Ⅱ)由上式规律得出f (n+1)﹣f (n )=4n .… ∴f (2)﹣f (1)=4×1, f (3)﹣f (2)=4×2,
f (4)﹣f (3)=4×3, …
f (n ﹣1)﹣f (n ﹣2)=4•(n ﹣2), f (n )﹣f (n ﹣1)=4•(n ﹣1)…
∴f (n )﹣f (1)=4[1+2+…+(n ﹣2)+(n ﹣1)]=2(n ﹣1)•n , ∴f (n )=2n 2
﹣2n+1.…
22.【答案】(1){|1x x ≤或8}x ≥;(2)[3,0]-.
【解析】

题解析:(1)当3a =-时,25,2()1,
2325,3x x f x x x x -+≤⎧⎪
=<<⎨⎪-≥⎩
,当2x ≤时,由()3f x ≥得253x -+≥,解得1x ≤; 当23x <<时,()3f x ≥,无解;当3x ≥时,由()3f x ≥得253x -≥,解得8x ≥,∴()3f x ≥的解集为
{|1x x ≤或8}x ≥.
(2)()|4||4||2|||f x x x x x a ≤-⇔---≥+,当[1,2]x ∈时,|||4|422x a x x x +≤-=-+-=, ∴22a x a --≤≤-,有条件得21a --≤且22a -≥,即30a -≤≤,故满足条件的的取值范围为[3,0]-. 考点:1、绝对值不等式的解法;2、不等式恒成立问题. 23.【答案】
【解析】证明:(Ⅰ)∵a+b=1,a >0,b >0,

+
+
=
=2

)=2


=2
()+4≥4+4=8,(当且仅当a=b 时,取等号),

+
+
≥8;
(Ⅱ)∵(
1+)(
1+)
=1+
+
+,
由(Ⅰ
)知,
+
+≥8,

1+
+
+
≥9,
∴(
1+)(
1+)≥9.
24.【答案】
【解析】解:(1)从统计表看出选择理科的学生的数学平均成绩高于选择文科的学生的数学平均成绩,反映了数学成绩对学生选择文理科有一定的影响,频率分布直方图如下.
(2)从频率分布直方图知,数学成绩有50%小于或等于80分,50%大于或等于80分,所以中位数为80分.
平均分为(55×0.005+65×0.015+75×0.030+85×0.030+95×0.020)×10=79.5,即估计选择理科的学生的平均分为79.5分.。

相关文档
最新文档