华容区民族中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华容区民族中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1.已知函数,函数,其中b∈R,若函数y=f(x)﹣g(x)恰有4个零点,则b的取值范围是()
A.B.C.D.
2.某程序框图如图所示,则输出的S的值为()
A.11B.19C.26D.57
3.函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是()
A.a>0,b<0,c>0,d>0B.a>0,b<0,c<0,d>0
C.a<0,b<0,c<0,d>0D.a>0,b>0,c>0,d<0
4.已知点F1,F2为椭圆的左右焦点,若椭圆上存在点P使得,则此椭圆的离心率的取值范围是()
A.(0,)B.(0,]C.(,]D.[,1)
5.若函数f(x)=3﹣|x﹣1|+m的图象与x轴没有交点,则实数m的取值范围是()
A.m≥0或m<﹣1B.m>0或m<﹣1C.m>1或m≤0D.m>1或m<0
6. 定义运算:,,a a b
a b b a b
≤⎧*=⎨
>⎩.例如121*=,则函数()sin cos f x x x =*的值域为( )
A
.⎡⎢⎣ B .[]1,1- C
.⎤⎥⎦
D
.⎡-⎢⎣7. 已知全集,,,则(
){}1,2,3,4,5,6,7U ={}2,4,6A ={}1,3,5,7B =()U A B = ðA .
B .
C .
D .{}2,4,6{}1,3,5{}2,4,5{}
2,58. 已知函数,关于的方程()有3个相异的实数根,则的
()x e f x x
=x 2()2()10f x af x a -+-=a R Îa 取值范围是(

A .
B .
C .
D .21(,)21e e -+¥-21(,21e e --¥-21(0,)21e e --2121e e ìü-ïï
íý
-ïïîþ
【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力.
9. 设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若平面α∥β,l ⊂α,m ⊂β,则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则β⊥α,则下列命题为真命题的是( )
A .p 或q
B .p 且q
C .¬p 或q
D .p 且¬q
10.已知x ∈R ,命题“若x 2>0,则x >0”的逆命题、否命题和逆否命题中,正确命题的个数是( )
A .0
B .1
C .2
D .3
11.设为虚数单位,则
( )
A .
B .
C .
D .
12.将y=cos (2x+φ)的图象沿x 轴向右平移个单位后,得到一个奇函数的图象,则φ的一个可能值为( )A .
B .﹣
C .﹣
D .
二、填空题
13.将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,
则S 的最小值是 .
14.圆柱形玻璃杯高8cm,杯口周长为12cm,内壁距杯口2cm的点A处有一点蜜糖.A点正对面的外壁(不
是A点的外壁)距杯底2cm的点B处有一小虫.若小虫沿杯壁爬向蜜糖饱食一顿,最少要爬多少 cm.(不计杯壁厚度与小虫的尺寸)
15.已知点M(x,y)满足,当a>0,b>0时,若ax+by的最大值为12,则+的最小值是

16.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3中的任何一个,允许重复.若填
入A方格的数字大于B方格的数字,则不同的填法共有 种(用数字作答).
A B
C D
17.对于映射f:A→B,若A中的不同元素有不同的象,且B中的每一个元素都有原象,则称f:A→B为一
一映射,若存在对应关系Φ,使A到B成为一一映射,则称A到B具有相同的势,给出下列命题:
①A是奇数集,B是偶数集,则A和B具有相同的势;
②A是平面直角坐标系内所有点形成的集合,B是复数集,则A和B不具有相同的势;
③若区间A=(﹣1,1),B=R,则A和B具有相同的势.
其中正确命题的序号是 .
18.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药
量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=()t﹣a(a为常数),
如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室.
三、解答题
19.本小题满分12分如图,在边长为4的菱形中,,点、分别在边、上.点ABCD 60BAD ∠=
E F CD CB 与点、不重合,,,沿将翻折到的位置,使平面E C D EF AC ⊥EF AC O = EF CEF ∆PEF ∆PEF ⊥平面.
ABFED Ⅰ求证:平面;
BD ⊥POA Ⅱ记三棱锥的体积为,四棱锥的体积为,且
,求此时线段的长.P ABD -1V P BDEF -2V 124
3
V V =PO 20.已知抛物线C :x 2=2y 的焦点为F .
(Ⅰ)设抛物线上任一点P (m ,n ).求证:以P 为切点与抛物线相切的方程是mx=y+n ;
(Ⅱ)若过动点M (x 0,0)(x 0≠0)的直线l 与抛物线C 相切,试判断直线MF 与直线l 的位置关系,并予以证明. 
21.在△ABC 中,D 为BC 边上的动点,且AD=3,B=.
(1)若cos ∠ADC=
,求AB 的值;
(2)令∠BAD=θ,用θ表示△ABD 的周长f (θ),并求当θ取何值时,周长f (θ)取到最大值?
P
A
C
D
O E
F F
E
O D
C
A
22.已知等差数列{a n}中,a1=1,且a2+2,a3,a4﹣2成等比数列.
(1)求数列{a n}的通项公式;
(2)若b n=,求数列{b n}的前n项和S n.
23.甲、乙两位选手为为备战我市即将举办的“推广妈祖文化•印象莆田”知识竞赛活动,进行针对性训练,近8次的训练成绩如下(单位:分):
甲 83 81 93 79 78 84 88 94
乙 87 89 89 77 74 78 88 98
(Ⅰ)依据上述数据,从平均水平和发挥的稳定程度考虑,你认为应派哪位选手参加?并说明理由;(Ⅱ)本次竞赛设置A、B两问题,规定:问题A的得分不低于80分时答题成功,否则答题失败,答题成功可获得价值100元的奖品,问题B的得分不低于90分时答题成功,否则答题失败,答题成功可获得价值300元的奖品.答题顺序可自由选择,但答题失败则终止答题.选手答题问题A,B成功与否互不影响,且以训练
成绩作为样本,将样本频率视为概率,请问在(I)中被选中的选手应选择何种答题顺序,使获得的奖品价值更高?并说明理由.
24.
19.已知函数f(x)=ln.
华容区民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】D
【解析】解:∵g(x)=﹣f(2﹣x),
∴y=f(x)﹣g(x)=f(x)﹣+f(2﹣x),
由f(x)﹣+f(2﹣x)=0,得f(x)+f(2﹣x)=,
设h(x)=f(x)+f(2﹣x),
若x≤0,则﹣x≥0,2﹣x≥2,
则h(x)=f(x)+f(2﹣x)=2+x+x2,
若0≤x≤2,则﹣2≤﹣x≤0,0≤2﹣x≤2,
则h(x)=f(x)+f(2﹣x)=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2,
若x>2,﹣x<﹣2,2﹣x<0,
则h(x)=f(x)+f(2﹣x)=(x﹣2)2+2﹣|2﹣x|=x2﹣5x+8.
作出函数h(x)的图象如图:
当x≤0时,h(x)=2+x+x2=(x+)2+≥,
当x>2时,h(x)=x2﹣5x+8=(x﹣)2+≥,
故当=时,h(x)=,有两个交点,
当=2时,h(x)=,有无数个交点,
由图象知要使函数y=f(x)﹣g(x)恰有4个零点,
即h(x)=恰有4个根,
则满足<<2,解得:b∈(,4),
故选:D.
【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键. 
2.【答案】C
【解析】解:模拟执行程序框图,可得
S=1,k=1
k=2,S=4
不满足条件k>3,k=3,S=11
不满足条件k>3,k=4,S=26
满足条件k>3,退出循环,输出S的值为26.
故选:C.
【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的k,S的值是解题的关键,属于基本知识的考查.
3.【答案】A
【解析】解:f(0)=d>0,排除D,
当x→+∞时,y→+∞,∴a>0,排除C,
函数的导数f′(x)=3ax2+2bx+c,
则f′(x)=0有两个不同的正实根,
则x1+x2=﹣>0且x1x2=>0,(a>0),
∴b<0,c>0,
方法2:f′(x)=3ax2+2bx+c,
由图象知当当x<x1时函数递增,当x1<x<x2时函数递减,则f′(x)对应的图象开口向上,
则a>0,且x1+x2=﹣>0且x1x2=>0,(a>0),
∴b<0,c>0,
故选:A
4.【答案】D
【解析】解:由题意设=2x,则2x+x=2a,
解得x=,故||=,||=,
当P与两焦点F1,F2能构成三角形时,由余弦定理可得
4c2=+﹣2×××cos∠F1PF2,
由cos∠F1PF2∈(﹣1,1)可得4c2=﹣cos∠F1PF2∈(,),
即<4c2<,∴<<1,即<e2<1,∴<e<1;
当P与两焦点F1,F2共线时,可得a+c=2(a﹣c),解得e==;
综上可得此椭圆的离心率的取值范围为[,1)
故选:D
【点评】本题考查椭圆的简单性质,涉及余弦定理和不等式的性质以及分类讨论的思想,属中档题.
5.【答案】A
【解析】解:∵函数f(x)=3﹣|x﹣1|+m的图象与x轴没有交点,
∴﹣m=3﹣|x﹣1|无解,
∵﹣|x﹣1|≤0,
∴0<3﹣|x﹣1|≤1,
∴﹣m≤0或﹣m>1,
解得m≥0或m>﹣1
故选:A.
6.【答案】D
【解析】
考点:1、分段函数的解析式;2、三角函数的最值及新定义问题.
7.【答案】A
考点:集合交集,并集和补集.
【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目.
8.【答案】
D
第Ⅱ卷(共90分)
9.【答案】C
【解析】解:在长方体ABCD﹣A1B1C1D1中
命题p:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,
显然满足α∥β,l⊂α,m⊂β,而m与l异面,故命题p不正确;﹣p正确;
命题q:平面AC为平面α,平面A1C1为平面β,
直线A1D1,和直线AB分别是直线m,l,
显然满足l∥α,m⊥l,m⊂β,而α∥β,故命题q不正确;﹣q正确;
故选C.
【点评】此题是个基础题.考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力.
10.【答案】C
【解析】解:命题“若x2>0,则x>0”的逆命题是“若x>0,则x2>0”,是真命题;
否命题是“若x2≤0,则x≤0”,是真命题;
逆否命题是“若x≤0,则x2≤0”,是假命题;
综上,以上3个命题中真命题的个数是2.
故选:C
11.【答案】C
【解析】【知识点】复数乘除和乘方
【试题解析】
故答案为:C
12.【答案】D
【解析】解:将y=cos(2x+φ)的图象沿x轴向右平移个单位后,得到一个奇函数y=cos=cos(2x+φ﹣
)的图象,
∴φ﹣=kπ+,即φ=kπ+,k∈Z,则φ的一个可能值为,
故选:D.
二、填空题
13.【答案】 .
【解析】解:设剪成的小正三角形的边长为x,则:S==,(0<x<
1)
令3﹣x=t,t∈(2,3),
∴S===,当且仅当t=即t=2时等号成立;
故答案为:.
14.【答案】 10 cm
【解析】解:作出圆柱的侧面展开图如图所示,设A关于茶杯口的对称点为A′,
则A′A=4cm,BC=6cm,∴A′C=8cm,
∴A′B==10cm.
故答案为:10.
【点评】本题考查了曲面的最短距离问题,通常转化为平面图形来解决.
15.【答案】 4 .
【解析】解:画出满足条件的平面区域,如图示:

由,解得:A(3,4),
显然直线z=ax+by过A(3,4)时z取到最大值12,
此时:3a+4b=12,即+=1,
∴+=(+)(+)=2++≥2+2=4,
当且仅当3a=4b时“=”成立,
故答案为:4.
【点评】本题考查了简单的线性规划,考查了利用基本不等式求最值,解答此题的关键是对“1”的灵活运用,是基础题.
16.【答案】 27 
【解析】解:若A方格填3,则排法有2×32=18种,
若A方格填2,则排法有1×32=9种,
根据分类计数原理,所以不同的填法有18+9=27种.
故答案为:27.
【点评】本题考查了分类计数原理,如何分类是关键,属于基础题.
17.【答案】 ①③ .
【解析】解:根据一一映射的定义,集合A={奇数}→B={偶数},不妨给出对应法则加1.则A→B是一一映射,故①正确;
对②设Z点的坐标(a,b),则Z点对应复数a+bi,a、b∈R,复合一一映射的定义,故②不正确;
对③,给出对应法则y=tan x ,对于A ,B 两集合可形成f :A →B 的一一映射,则A 、B 具有相同的势;
∴③正确.故选:①③
【点评】本题借助考查命题的真假判断,考查一一映射的定义,属于基础题型,考查考生对新定义题的理解与应用能力.
18.【答案】0.6
【解析】解:当t >0.1时,可得1=()0.1﹣a
∴0.1﹣a=0a=0.1
由题意可得y ≤0.25=,即(
)t ﹣0.1≤,
即t ﹣0.1≥解得t ≥0.6,
由题意至少需要经过0.6小时后,学生才能回到教室.故答案为:0.6
【点评】本题考查函数、不等式的实际应用,以及识图和理解能力.易错点:只单纯解不等式,而忽略题意,得到其他错误答案. 
三、解答题
19.【答案】
【解析】Ⅰ证明:在菱形中,ABCD ∵,∴. BD AC ⊥BD AO ⊥∵,∴,
EF AC ⊥PO EF ⊥∵平面⊥平面,平面平面,且平面,PEF ABFED PEF ABFED EF =PO ⊂PEF ∴平面,
PO ⊥ABFED ∵平面,∴.BD ⊂ABFED PO BD ⊥∵,∴平面.
AO PO O = BD ⊥POA Ⅱ设.由Ⅰ知,平面, AO BD H = PO ⊥ABFED ∴为三棱锥及四棱锥的高,
PO P ABD -P BDEF -∴,∵,
1211
,33ABD BFED V S PO V S PO ∆=⋅=⋅梯形1243
V V =
∴,∴, 3344ABD CBD BFED S S S ∆∆=
=梯形1
4
CEF CBD S S ∆∆=∵,
,BD AC EF AC ⊥⊥∴,∴∽. ∴, //EF BD CEF ∆CBD ∆21
(
)4
CEF CBD S CO CH S ∆∆==∴
∴.
111
222
CO CH AH ===⨯=PO OC ==20.【答案】
【解析】证明:(Ⅰ)由抛物线C :x 2=2y 得,y=x 2,则y ′=x ,∴在点P (m ,n )切线的斜率k=m ,∴切线方程是y ﹣n=m (x ﹣m ),即y ﹣n=mx ﹣m 2,又点P (m ,n )是抛物线上一点,∴m 2=2n ,
∴切线方程是mx ﹣2n=y ﹣n ,即mx=y+n …(Ⅱ)直线MF 与直线l 位置关系是垂直.
由(Ⅰ)得,设切点为P (m ,n ),则切线l 方程为mx=y+n ,∴切线l 的斜率k=m ,点
M (,0
),又点F (0,),此时,k MF =
=== …
∴k •k MF =m ×()=﹣1,
∴直线MF
⊥直线
l

【点评】本题考查直线与抛物线的位置关系,导数的几何意义,直线垂直的条件等,属于中档题. 
21.【答案】
【解析】(本小题满分12分)解:(1
)∵,
∴,
∴…2分(注:先算∴sin ∠ADC 给1分)∵
,…3分
∴,…5分
(2)∵∠BAD=θ,
∴, (6)
由正弦定理有,…7分
∴,…8分
∴,…10分
=,…11分
当,即时f(θ)取到最大值9.…12分
【点评】本题主要考查了诱导公式,同角三角函数基本关系式,正弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题.
22.【答案】
【解析】解:(1)由a2+2,a3,a4﹣2成等比数列,
∴=(a2+2)(a4﹣2),
(1+2d)2=(3+d)(﹣1+3d),
d2﹣4d+4=0,解得:d=2,
∴a n=1+2(n﹣1)=2n﹣1,
数列{a n}的通项公式a n=2n﹣1;
(2)b n===(﹣),
S n=[(1﹣)+(﹣)+…+(﹣)],
=(1﹣),
=,
数列{b n}的前n项和S n,S n=.
23.【答案】
【解析】解:(I)记甲、乙两位选手近8次的训练的平均成绩分别为、,方差分别为、.
,.…

.…
因为,,所以甲、乙两位选手的平均水平相当,但甲的发挥更稳定,故应派甲参加.…(II)记事件C表示为“甲回答问题A成功”,事件D表示为“甲回答问题B成功”,则P(C)=,P(D)=,
且事件C与事件D相互独立.…
记甲按AB顺序获得奖品价值为ξ,则ξ的可能取值为0,100,400.
P(ξ=0)=P()=,P(ξ=100)=P()=,P(ξ=400)=P(CD)=.
即ξ的分布列为:
ξ0100400
P
所以甲按AB顺序获得奖品价值的数学期望.…
记甲按BA顺序获得奖品价值为η,则η的可能取值为0,300,400.
P(η=0)=P()=,P(η=300)=P()=,P(η=400)=P(DC)=,
即η的分布列为:
η0300400
P
所以甲按BA顺序获得奖品价值的数学期望.…
因为Eξ>Eη,所以甲应选择AB的答题顺序,获得的奖品价值更高.…
【点评】本小题主要考查平均数、方差、古典概型、相互独立事件的概率、离散型随机变量分布列、数学期望等基础知识,考查数据处理能力、运算求解能力、应用意识,考查必然与或然思想、分类与整合思想.
24.【答案】
【解析】解:(1)∵f(x)是奇函数,
∴设x>0,则﹣x<0,
∴f(﹣x)=(﹣x)2﹣mx=﹣f(x)=﹣(﹣x2+2x)
从而m=2.
(2)由f(x)的图象知,若函数f(x)在区间[﹣1,a﹣2]上单调递增,
则﹣1≤a﹣2≤1
∴1≤a≤3
【点评】本题主要考查函数奇偶性的应用以及函数单调性的判断,利用数形结合是解决本题的关键.。

相关文档
最新文档