雕庄初中2018-2019学年七年级下学期数学第一次月考试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

雕庄初中2018-2019学年七年级下学期数学第一次月考试卷
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.(2分)如果方程组与有相同的解,则a,b的值是()
A.
B.
C.
D.
【答案】A
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:由已知得方程组,
解得,
代入,
得到,
解得.
【分析】先将只含x、y的的方程组成方程组,求出方程组的解,再将x、y的值代入另外的两个方程,建立关于a、b的方程组,解方程组,求出a、b的值。

2.(2分)下列各数中最小的是()
A. -2018
B.
C.
D. 2018
【答案】A
【考点】实数大小的比较
【解析】【解答】解:∵-2018<-<<2018,
∴最小的数为:-2018,
故答案为:A.
【分析】数轴左边的数永远比右边的小,由此即可得出答案.
3.(2分)下列各数中,2.3,,3.141141114…,无理数的个数有()
A. 2个
B. 3个
C. 4个
D. 5个
【答案】B
【考点】无理数的认识
【解析】【解答】解:∵
∴无理数有:、、3.141141114…一共3个
故答案为:B
【分析】根据无限不循环的小数是无理数;开方开不尽的数是无理数,含的数是无理数,就可得出答案。

4.(2分)如图,AB∥CD,CD∥EF,则∠BCE等于()
A.∠2-∠1
B.∠1+∠2
C.180°+∠1-∠2
D.180°-∠1+∠2
【答案】C
【考点】平行线的性质
【解析】【解答】解:∵AB∥CD,
∴∠BCD=∠1,
又∵CD∥EF,
∴∠2+∠DCE=180°,
∴∠DCE=180°-∠2,
∴∠BCE=∠BCD+∠DCE,
=∠1+180°-∠2.
故答案为:C.
【分析】根据平行线的性质得∠BCD=∠1,∠DCE=180°-∠2,由∠BCE=∠BCD+∠DCE,代入、计算即可得出答案.
5.(2分)在数轴上标注了四段范围,如图,则表示的点落在()
A. 段①
B. 段②
C. 段③
D. 段④
【答案】C
【考点】实数在数轴上的表示,估算无理数的大小
【解析】【解答】解:∵2.62=6.76,2.72=7.29,2.82=7.84,2.92=8.41,32=9,
∴7.84<8<8.41,
∴2.8<<2.9,
∴表示的点落在段③
故答案为:C
【分析】分别求出2.62,2.72,2.82,2.92,32值,就可得出答案。

6.(2分)如图,长方形ABCD的边AD长为2,边AB长为1,AD在数轴上,以原点D为圆心,对角线BD的长为半径画弧,交正半轴于一点,则这个点表示的实数是()
A. B. C. D.
【答案】A
【考点】实数在数轴上的表示
【解析】【解答】解:∵长方形ABCD的边AD长为2,边AB长为1,
∴,
∴这个点表示的实数是:,
故答案为:A.
【分析】首先根据勾股定理算出DB的长,然后根据同圆的半径相等及原点右边表示的是正数即可得出答案。

7.(2分)若a=-0.32,b=(-3)-2,c=,d=,则()
A.a<b<c<d
B.a<b<d<c
C.a<d<c<b
D.c<a<d<b
【答案】B
【考点】实数大小的比较
【解析】【解答】解:∵a=-0.32=-0.9,
b=(-3)-2=,
c=(-)-2=(-3)2=9,
d=(-)0=1,
∴9>1>>-0.9,
∴a<b<d<c.
故答案为:B.
【分析】根据幂的运算和零次幂分别计算出各值,比较大小,从而可得答案.
8.(2分)早餐店里,小明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;小红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x元,包子每个y元,则所列二元一次方程组正确的是()
A.
B.
C.
D.
【答案】B
【考点】二元一次方程组的其他应用
【解析】【解答】解:若馒头每个x元,包子每个y元,由题意得:

故答案为:B
【分析】由题意可知5个馒头,3个包子的原价之和为11元;8个馒头,6个包子的原价之和为20元,列方程组即可。

9.(2分)下列各组数中,是方程2x-y=8的解的是()
A.
B.
C.
D.
【答案】C
【考点】二元一次方程的解
【解析】【解答】解:先把原方程化为y=2x-8,然后利用代入法可知:当x=1时,y=-6,当x=2时,y=-4,当x=0.5时,y=-7,当x=5时,y=2.
故答案为:C.
【分析】能使方程的左边和右边相等的未知数的值就是方程的解,首先将方程变形为用含x的式子表示y,再分别将每个答案中的x的值代入算出对应的y的值,将计算的y的值与每个答案中给出的y的值进行比较,如果相等,该答案就是方程的解,反之就不是方程的解。

10.(2分)代入法解方程组有以下步骤:(1)由①,得2y=7x-3③;(2)把③代入①,得7x-7x-3=3;(3)整理,得3=3;(4)∴x可取一切有理数,原方程组有无数组解.以上解法造成错误步骤是()
A.第(1)步
B.第(2)步
C.第(3)步
D.第(4)步
【答案】B
【考点】解二元一次方程组
【解析】【解答】解:错的是第步,应该将③代入②.
故答案为:B.
【分析】用代入法解二元一次方程组的时候,由原方程组中的①方程变形得出的③方程只能代入原方程组的②方程,由原方程组中的②方程变形得出的③方程只能代入原方程组的①方程,不然就会出现消去未知数得到恒等式。

11.(2分)二元一次方程7x+y=15有几组正整数解()
A.1组
B.2组
C.3组
D.4组
【答案】B
【考点】二元一次方程的解
【解析】【解答】解:方程可变形为y=15﹣7x.
当x=1,2时,则对应的y=8,1.
故二元一次方程7x+y=15的正整数解有,,共2组.
故答案为:B
【分析】将原方程变形,用一个未知数表示另一个未知数可得x=,因为方程的解是正整数,所以15-y 能被7整除,于是可得15-y=14或7,于是正整数解由2组。

12.(2分)在期末复习课上,老师要求写出几个与实数有关的结论:小明同学写了以下5个:
①任何无理数都是无限不循环小数;②有理数与数轴上的点一一对应;③在1和3之间的无理数有且只有
这4个;④是分数,它是有理数;⑤由四舍五入得到的近似数7.30表示大于或等于7.295,而小于7.305的数.
其中正确的个数是()
A. 1
B. 2
C. 3
D. 4
【答案】B
【考点】实数在数轴上的表示,无理数的认识
【解析】【解答】①任何无理数都是无限不循环小数,故①正确;
②实数与数轴上的点一一对应,故②错误;
③在1和3之间的无理数有无数个,故③错误;
④是无理数,故④错误;
⑤由四舍五入得到的近似数7.30表示大于或等于7.295,而小于7.305的数,故⑤正确;
故答案为:B.
【分析】无理数的定义:无限不循环小数统称为无理数,所以①正确;又因为无理数都是小数,所以1和3之间有无数个;因为是无理数,所以也是无理数;最后一项考查的是四舍五入。

二、填空题
13.(1分)点A,B在数轴上,以AB为边作正方形,该正方形的面积是49.若点A对应的数是-2,则点B对应的数是________.
【答案】5
【考点】数轴及有理数在数轴上的表示,算术平方根
【解析】【解答】解:∵正方形的面积为49,
∴正方形的边长AB==7
∵点A对应的数是-2
∴点B对应的数是:-2+7=5
故答案为:5
【分析】根据正方形的面积求出正方形的边长,就可得出AB的长,然后根据点A对应的数,就可求出点B 表示的数。

14.(1分)若则x+y+z=________.
【答案】3
【考点】三元一次方程组解法及应用
【解析】【解答】解:在中,由①+②+③得:,
∴.
【分析】方程组中的三个方的x、y、z的系数都是1,因此由(①+②+③)÷2,就可求出结果。

15.(1分)小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回这个数=________.
【答案】-2
【考点】解二元一次方程组
【解析】【解答】解:把x=5代入2x-y=12得2×5-y=12,解得y=-2.
∴★为-2.
故答案为-2.
【分析】将x=5代入两方程,就可求出结果。

16.(3分)的绝对值是________,________的倒数是,的算术平方根是________.
【答案】;3;2
【考点】绝对值及有理数的绝对值,有理数的倒数,算术平方根
【解析】【解答】解:(1);(2)的倒数是3;(3),4的算术平方根是2;
【分析】一个负数的绝对值等于它的相反数;一个分数的倒数,只需要将这个分数的分子分母交换位置;将
先化简为4,再根据算数平方根的意义算出4的算数平方根即可。

17.(1分)若= =1,将原方程组化为的形式为________.
【答案】
【考点】二元一次方程组的其他应用
【解析】【解答】解:原式可化为:=1和=1,
整理得,.
【分析】由恒等式的特点可得方程组:=1,=1,去分母即可求解。

18.(1分)如果是关于的二元一次方程,那么=________
【答案】
【考点】二元一次方程的定义
【解析】【解答】解:∵是关于的二元一次方程

解之:a=±2且a≠2
∴a=-2
∴原式=-(-2)2-=
故答案为:
【分析】根据二元一次方程的定义,可知x的系数≠0,且x的次数为1,建立关于a的方程和不等式求解即可。

三、解答题
19.(5分)阅读下面情境:甲、乙两人共同解方程组由于甲看错了方程①中的a,得到方程组的解为乙看错了方程②中的b,得到方程组的解为试求出a、b的正确值,并计算a2 017+(-b)2 018的值.
【答案】解:根据题意把代入4x﹣by=﹣2得:﹣12+b=﹣2,解得:b=10,把代入ax+5y=15
得:5a+20=15,解得:a=﹣1,所以a2017+(﹣b)2018=(﹣1)2017+(﹣×10)2018=0.
【考点】代数式求值,二元一次方程组的解
【解析】【分析】根据甲看错了方程①中的a,因此将甲得到的方程组的记为代入方程②求出b的值,而乙看
错了方程②中的b,因此将乙得到的方程组的解代入方程①求出a的值,然后将a、b的值代入代数式计算求值。

20.(5分)在数轴上表示下列各数,并用“<”连接。

3, 0,,,.
【答案】解:数轴略,
【考点】实数在数轴上的表示,实数大小的比较
【解析】【解答】解:∵=-2,(-1)2=1,
数轴如下:
由数轴可知:<-<0<(-1)2<3.
【分析】先画出数轴,再在数轴上表示各数,根据数轴左边的数永远比右边小,用“<”连接各数即可. 21.(15分)“节约用水、人人有责”,某班学生利用课余时间对金辉小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,并且将5月份各户居民的节水量统计整理成如图所示的统计图表
节水量/立方米1 1.52.53
户数/户5080a70
(1)写出统计表中a的值和扇形统计图中2.5立方米对应扇形的圆心角度数.
(2)根据题意,将5月份各居民的节水量的条形统计图补充完整.
(3)求该小区300户居民5月份平均每户节约用水量,若用每立方米水需4元水费,请你估算每户居民1年可节约多少元钱的水费?
【答案】(1)解:由题意可得,a=300﹣50﹣80﹣70=100,
扇形统计图中2.5立方米对应扇形的圆心角度数是:=120°
(2)解:补全的条形统计图如图所示:
(3)解:由题意可得,5月份平均每户节约用水量为:=2.1(立方米),
2.1×12×4=100.8(元),
即求该小区300户居民5月份平均每户节约用水量2.1立方米,若用每立方米水需4元水费,每户居民1年可节约100.8元钱的水费
【考点】扇形统计图,条形统计图
【解析】【分析】(1)根据总数减去节水量对应的数据和可得a的值,利用节水量是2.5立方米的百分比乘以360°可得对应的圆心角的度数;
(2)根据(1)中a的值即可补全统计图;
(3)利用加权平均数计算平均每户节约的用水量,然后乘以需要的水费乘以12个月可得结论.
22.(5分)把下列各数填在相应的括号内:
①整数{ };
②正分数{ };
③无理数{ }.
【答案】解:∵
∴整数包括:|-2|,,-3,0;
正分数:0.,,10%;
无理数:2,,1.1010010001(每两个1之间依次多一个0)
【考点】实数及其分类
【解析】【分析】根据实数的相关概念和分类进行判断即可得出答案。

23.(5分)如图,直线AB、CD相交于O点,∠AOC=80°,OE⊥AB,OF平分∠DOB,求∠EOF的度数.
【答案】解:∵∠AOC=80°,∴∠BOD=∠AOC=80°,∵OF平分∠DOB,∴∠DOF= ∠DOB=40°,∵OE⊥AB,∴∠AOE=90°,∵∠AOC=80°,∴∠EOD=180°-90°-80°=10°,∴∠EOF=∠EOD+∠DOF=10°+40°=50°.
【考点】角的平分线,角的运算,对顶角、邻补角
【解析】【分析】根据图形和已知求出∠EOD的度数,再由角平分线性质、对顶角相等和角的和差,求出∠EOF=∠EOD+∠DOF的度数.
24.(15分)南县农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜.南县农业部门对2014年的油菜籽生产成本、市场价格、种植面积和产量等进行了调查统计,并绘制了如下统计表与统计图:
每亩生产成本每亩产量油菜籽市场价格种植面积
310元130千克5元/千克500000亩
请根据以上信息解答下列问题:
(1)种植油菜每亩的种子成本是多少元?
(2)农民冬种油菜每亩获利多少元?
(3)2014年南县全县农民冬种油菜的总获利为多少元?(结果用科学记数法表示)
【答案】(1)解:根据题意得:1﹣10%﹣35%﹣45%=10%,310×10%=31(元),
答:种植油菜每亩的种子成本是31元
(2)解:根据题意得:130×5﹣310=340(元),答:农民冬种油菜每亩获利340元
(3)解:根据题意得:340×500 000=170 000 000=1.7×108(元),
答:2014年南县全县农民冬种油菜的总获利为1.7×108元
【考点】统计表,扇形统计图,科学记数法—表示绝对值较大的数
【解析】【分析】(1)先根据扇形统计图计算种子的百分比,然后乘以每亩的成本可得结果;
(2)根据产量乘单价再减去生产成本可得获利;
(3)根据(2)中的利润乘以种植面积,最后用科学记数法表示即可.
25.(5分)初中一年级就“喜欢的球类运动”曾进行过问卷调查,每人只能报一项,结果300人回答的情况如下表,请用扇形统计图表示出来,根据图示的信息再制成条形统计图。

排球25
篮球50
乒乓球75
足球100
其他50
【答案】解:如图:
【考点】扇形统计图,条形统计图
【解析】【分析】由统计表可知,喜欢排球、篮球、乒乓球、足球、其他的人数分别为25、50、75、100、50,据此可画出条形统计图;同时可得喜欢排球、篮球、乒乓球、足球、其他的所占比,从而可算出各扇形圆心角的度数,据此画出扇形统计图。

26.(10分)为了解用电量的多少,李明在六月初连续八天同一时刻观察电表显示的度数,记录如下:
(1)估计李明家六月份的总用电量是多少度;
(2)若每度电的费用是0.5元,估计李明家六月份共付电费多少元?
【答案】(1)解:平均每天的用电量= =4度∴估计李明家六月份的总用电量为4×30=120度(2)解:总电费=总度数×每度电的费用=60答:李明家六月份的总用电量为120度;李明家六月份共付电费60元
【考点】统计表
【解析】【分析】(1)根据8号的电表显示和1号的电表显示,两数相减除以7可得平均每天的用电量,然后乘以6月份的天数即可确定总电量;
(2)根据总电费=总度数×每度电的费用代入对应的数据计算即可解答.。

相关文档
最新文档