近红外光谱的李果实褐变鉴别方法研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近红外光谱的李果实褐变鉴别方法研究
赵志磊;王艳伟;贡东军;牛晓颖;程卫;顾玉红
【期刊名称】《光谱学与光谱分析》
【年(卷),期】2016(36)7
【摘要】在采后冷藏过程中,李果实很容易发生褐变,这是影响其品质的重要因素之一。
有关李果实褐变的传统检验手段绝大多数为破坏性检验,且主观性强、一致性差。
为此,使用了近红外光谱的方法来实现对李果实褐变和非褐变的无损、快速鉴别。
采集4000~12500 cm -1波长范围内的124个李果实样品(褐变样品70个,非褐变样品54个)的近红外漫反射光谱,基于主成分分析的马氏距离判别分析和反向传播人工神经网络定性鉴别模型,通过比较和考察上述模型对褐变样品和非褐变样品识别的准确程度,筛选出能够有效鉴别李果实褐变的新方法。
结果表明:在对样品全波段光谱数据做主成分分析后,以前10主成分得分作为输入变量所建立起来的马氏距离判别分析和反向传播人工神经网络模型均能够对李果实褐变与否进行有效识别,且后者判别效果更佳,其校正集和预测集的判别正确率分别为100%和97.56%,对非褐变样品和褐变样品的判别正确率分别达到100%和98.57%。
因此,采用近红外光谱分析技术并结合化学计量学方法能够对李果实是否褐变进行快速、无损、有效的鉴别。
%Flesh browning mostly happens in plum fruit during the post‐harvest storage period ,which is an important factor af‐fecting the storage quality of plum fruits .Traditional methods used to discriminate plum browning involve the destruction of the intact fruit ,which are highly subjective and error‐prone .Therefore ,the near‐infrared (NIR) spectroscopy technique was applied to achieve rapid and
non‐destructive identification of plum browning and non‐browning in this paper .The near infrared diffuse reflectance spectroscopy of 124 plum samples were collected in the band number of 4 000~12 500 cm -1 .These samples were classified into two groups ,browning (n=70) and non‐browning (n=54) .In order to find a new way to effectively discriminate plum fruits with flesh browning ,three qualitative identification
methods :the qualitative test ,Mahalanobis distances discriminate analysis (DA) and Back Propagation‐artificial neural networks (BP‐AN N) were used to compare their capacity of recognizing browning plums and non‐browning oneswhile the last two approaches were based on the principal component analysis (PCA) method .These results showed that DA and BP‐ANN could be used to conctruct effective classification models for identifying plum browning ,and the first ten principal components extracted from original spectra were applied as input variables to build DA and BP‐ANN models .The optimal method was obtained with BP‐
ANN ,which gained an accuracy of 100% for calibration set and 97 .56% for prediction set ,and the identification accuracy rate reached 100% and
98 .57% for non‐browning samples and browning ones ,respectively .It could be concluded that NIR spectroscopy technique combined with chemometrics methods has great potential to recognize plums of browning and non‐browning rapidly ,non‐destructively and effectively .【总页数】5页(P2089-2093)
【作者】赵志磊;王艳伟;贡东军;牛晓颖;程卫;顾玉红
【作者单位】河北大学质量技术监督学院,河北保定 071002; 河北农业大学生命科学学院,河北保定 071000;河北大学质量技术监督学院,河北保定 071002; 河北农业大学生命科学学院,河北保定 071000;河北大学质量技术监督学院,河北保定 071002; 河北农业大学生命科学学院,河北保定 071000;河北大学质量技术监督学院,河北保定 071002; 河北农业大学生命科学学院,河北保定 071000;河北大学质量技术监督学院,河北保定 071002; 河北农业大学生命科学学院,河北保定 071000;河北大学质量技术监督学院,河北保定 071002; 河北农业大学生命科学学院,河北保定 071000
【正文语种】中文
【中图分类】TS255.1
【相关文献】
1.近红外光谱和聚类分析法无损快速鉴别蓝桉果实 [J], 刘玉明;柴逸峰;亓云鹏;范国荣;吴玉田
2.利用精密色差仪测定板栗果实褐变的方法研究 [J], 张树航;李颖;王广鹏;郭燕;张馨方
3.利用数码相机测定板栗果实褐变的方法研究 [J], 张京政;齐永顺;王同坤;李晓丽
4.近红外光谱和聚类分析法无损快速鉴别蓝桉果实 [J], 刘玉明; 柴逸峰; 亓云鹏; 范国荣; 吴玉田
5.基于近红外光谱技术与化学计量学的绿茶无损鉴别方法研究 [J], 李杰;李尚科;蒋立文;刘霞;丁胜华;李跑
因版权原因,仅展示原文概要,查看原文内容请购买。