衡阳市农科所初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

衡阳市农科所初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)等式组的解集在下列数轴上表示正确的是()。

A. B.
C. D.
【答案】B
【考点】在数轴上表示不等式(组)的解集,解一元一次不等式组
【解析】【解答】解:不等式可化为:.
即-3<x≤2;
在数轴上表示为:
故答案为:B.
【分析】先分别求得两个不等式的解集,再在数轴上表示出两个解集,这两个解集的公共部分就是不等式的解集.
2、(2分)晓影设计了一个关于实数运算的程序:输入一个数后,输出的数总是比该数的平方小1,晓影按照此程序输入后,输出的结果应为()
A. 2016
B. 2017
C. 2019
D. 2020
【答案】B
【考点】实数的运算
【解析】【解答】输出的数为,故答案为:B.
【分析】根据运算程序法则即可求解。

3、(2分)下列各组数中互为相反数的是()
A. 5和
B. -|-5|和-(-5)
C. -5和
D. -5和
【答案】B
【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,算术平方根,立方根及开立方
【解析】【解答】A、,它们相等,因此A不符合题意;
B、-|-5|=-5,-(-5)=5,-|-5|和-(-5)是相反数,因此B符合题意;
C、=-5,它们相等,因此C不符合题意;
D、-5和是互为负倒数,因此D不符合题意;
故答案为:B
【分析】根据算术平方根、立方根、绝对值、相反数的定义,对各选项逐一判断即可得出答案。

4、(2分)如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是()
A.25°
B.35°
C.45°
D.50°
【答案】D
【考点】平行线的性质
【解析】【解答】解:∵CD∥EF,AB∥EF
∴∠C=∠CFE,∠A=∠AFE
∵FC平分∠AFE
∴∠AFE=50°,
即∠A=50°
故答案为:D。

【分析】根据平行线的性质,两直线平行,内错角相等以及角平分线的性质,进行求解即可。

5、(2分)在这些数中,无理数有()个.
A. 1
B. 2
C. 3
D. 4【答案】B
【考点】无理数的认识
【解析】【解答】解:依题可得:
无理数有:-,,
∴无理数有2个.
故答案为:B.
【分析】无理数定义:无限不循环小数,由此即可得出答案.
6、(2分)如图,在“A”字型图中,AB、AC被DE所截,则∠ADE与∠DEC是()
A. 内错角
B. 同旁内角
C. 同位角
D. 对顶角【答案】A
【考点】同位角、内错角、同旁内角
【解析】【解答】解:如图,∠ADE与∠DEC是AB、AC被DE所截的内错角.故答案为:A.
【分析】根据图形可知∠ADE与∠DEC是直线AB、AC被直线DE所截的角,它们在直线DE的两侧,在直线AB、AC之间,即可得出它们是内错角。

7、(2分)三元一次方程组消去一个未知数后,所得二元一次方程组是()
A. B. C. D.
【答案】D
【考点】三元一次方程组解法及应用
【解析】【解答】解:,
②−①,得3a+b=3④
①×3+③,得5a−2b=19⑤
由④⑤可知,选项D不符合题意,
故答案为:D.
【分析】观察各选项,排除C,而A、B、D的方程组是关于a、b的二元一次方程组,因此将原方程组中的c 消去,观察各方程中c的系数特点,因此由②−①,①×3+③,就可得出正确的选项。

8、(2分)一元一次不等式的最小整数解为()
A.
B.
C.1
D.2
【答案】C
【考点】一元一次不等式的特殊解
【解析】【解答】解:
∴最小整数解为1.
故答案为:C.
【分析】先解不等式,求出不等式的解集,再从中找出最小整数即可。

9、(2分)π、,﹣,,3.1416,0. 中,无理数的个数是()
A. 1个
B. 2个
C. 3个
D. 4个【答案】B
【考点】无理数的认识
【解析】【解答】解:在π、,﹣,,3.1416,0. 中,
无理数是:π,- 共2个.
故答案为:B
【分析】本题考察的是无理数,根据无理数的概念进行判断。

10、(2分)学校买来一批书籍,如图所示,故事书所对应的扇形的圆心角为()
A. 45°
B. 60°
C. 54°
D. 30°【答案】C
【考点】扇形统计图
【解析】【解答】解:15÷(30+23+15+32)×360°=54°.
故答案为:C
【分析】计算故事书所占的百分比,然后乘以360°可得对应的圆心角的度数.
11、(2分)下列各组数中①;②;③;④是方程的解的有()
A.1个
B.2个
C.3个
D.4个
【答案】B
【考点】二元一次方程的解
【解析】【解答】解:把①代入得左边=10=右边;
把②代入得左边=9≠10;
把③代入得左边=6≠10;
把④代入得左边=10=右边;
所以方程的解有①④2个.
故答案为:B
【分析】能使二元一次方程的左边和右边相等的未知数的值就是二元一次方程的解,二元一次方程有无数个解,根据定义将每一对x,y的值分别代入方程的左边算出答案再与右边的10比较,若果相等,x,y的值就是该方程的解,反之就不是该方程的解。

12、(2分)如图,工人师傅在工程施工中需在同一平面内弯制一个变形管道ABCD,使其拐角
∠ABC=150°,∠BCD=30°,则()
A. AB∥BC
B. BC∥CD
C. AB∥DC
D. AB与CD相交
【答案】C
【考点】平行线的判定
【解析】【解答】解:∵∠ABC=150°,∠BCD=30°
∴∠ABC+∠BCD=180°
∴AB∥DC
故答案为:C
【分析】根据已知可得出∠ABC+∠BCD=180°,根据平行线的判定,可证得AB∥DC。

二、填空题
13、(1分)解方程组,小明正确解得,小丽只看错了c解得,则当x=﹣1时,代数式ax2﹣bx+c的值为________.
【答案】6.5
【考点】代数式求值,解二元一次方程组
【解析】【解答】解:把代入方程组得:,
解②得:c=5,
把代入ax+by=6得:﹣2a+b=6③,
由①和③组成方程组,
解得:a=﹣1.5,b=3,
当x=﹣1时,ax2﹣bx+c=﹣1.5×(﹣1)2﹣3×(﹣1)+5=6.5,
故答案为:6.5.
【分析】先将小明求的方程组的解代入方程组,求出c的值,再将小丽求得的解代入方程组中的第一个方程,然后建立方程组,求出方程组的解,然后将a、b的值代入代数式求值。

14、(1分)若= =1,将原方程组化为的形式为________.
【答案】
【考点】二元一次方程组的其他应用
【解析】【解答】解:原式可化为:=1和=1,
整理得,.
【分析】由恒等式的特点可得方程组:=1,=1,去分母即可求解。

15、(1分)已知,那么=________。

【答案】-11
【考点】解二元一次方程组,非负数之和为0
【解析】【解答】解:∵,且,
∴,
∴,
∴m=-3,n=-8,
∴m+n=-11.
故答案是:-11
【分析】根据几个非负数之和为0的性质,可建立关于m、n的方程组,再利用加减消元法求出方程组的解,然后求出m与n的和。

16、(3分)同一平面内的三条直线a,b,c,若a⊥b,b⊥c,则a ________c .若a∥b,b∥c,则a ________c .若a∥b,b⊥c,则a ________c.
【答案】∥;∥;⊥
【考点】平行公理及推论
【解析】【解答】解:∵a⊥b,b⊥c,
∴a∥c;
∵a∥b,b∥c,
∴a∥c;
∵a∥b,b⊥c,
∴a⊥c.
故答案为:∥;∥;⊥.
【分析】根据垂直同一条直线的两条直线平行可得a∥c;
根据平行于同一条直线的两条直线平行可得a∥c;
根据垂直同一条直线的两条直线平行逆推即可.
17、(1分)如果a4=81,那么a=________.
【答案】3或﹣3
【考点】平方根
【解析】【解答】∵a4=81,∴(a2)2=81,
∴a2=9或a2=﹣9(舍),
则a=3或a=﹣3.
故答案为3或﹣3.
【分析】将已知条件转化为(a2)2=81,平方等于81的数是±9,就可得出a2(a2≥0)的值,再求出a的值即可。

18、(1分)如图,AB∥CD,EF分别交AB,CD于G,H两点,若∠1=50°,则∠EGB=________.
【答案】50°
【考点】对顶角、邻补角,平行线的性质
【解析】【解答】解:∵AB∥CD,
∴∠1=∠AGF,
∵∠AGF与∠EGB是对顶角,
∴∠EGB=∠AGF,
∴∠1=∠EGB,
∵∠1=50°,
∴∠EGB=50°.
故答案为:50°.
【分析】根据平行线性质得∠1=∠AGF,由对顶角定义得∠EGB=∠AGF,等量代换即可得出答案.
三、解答题
19、(5分)把下列各数填在相应的括号内:
①整数{ };
②正分数{ };
③无理数{ }.
【答案】解:∵
∴整数包括:|-2|,,-3,0;
正分数:0.,,10%;
无理数:2,,1.1010010001(每两个1之间依次多一个0)
【考点】实数及其分类
【解析】【分析】根据实数的相关概念和分类进行判断即可得出答案。

20、(5分)阅读下面情境:甲、乙两人共同解方程组由于甲看错了方程①中的a,得到方程组的解为乙看错了方程②中的b,得到方程组的解为试求出a、b的正确值,并计算a2 017+(-b)2 018的值.
【答案】解:根据题意把代入4x﹣by=﹣2得:﹣12+b=﹣2,解得:b=10,把代入ax+5y=15
得:5a+20=15,解得:a=﹣1,所以a2017+(﹣b)2018=(﹣1)2017+(﹣×10)2018=0.
【考点】代数式求值,二元一次方程组的解
【解析】【分析】根据甲看错了方程①中的a,因此将甲得到的方程组的记为代入方程②求出b的值,而乙看错了方程②中的b,因此将乙得到的方程组的解代入方程①求出a的值,然后将a、b的值代入代数式计算求
值。

21、(10分)近年来,由于乱砍滥伐,掠夺性使用森林资源,我国长江、黄河流域植被遭到破坏,土地沙化严重,洪涝灾害时有发生,沿黄某地区为积极响应和支持“保护母亲河”的倡议,建造了长100千米,宽0.5千米的防护林.有关部门为统计这一防护林共有多少棵树,从中选出10块防护林(每块长1km、宽0.5km)进行统计.
(1)在这个问题中,总体、个体、样本各是什么?
(2)请你谈谈要想了解整个防护林的树木棵数,采用哪种调查方式较好?说出你的理由.
【答案】(1)解:总体:建造的长100千米,宽0.5千米的防护林中每块长1km、宽0.5km的树的棵树;个体:一块(每块长1km、宽0.5km)防护林的树的棵树;
样本:抽查的10块防护林的树的棵树
(2)解:采用抽查的方式较好,因为数量较大,不容易调查
【考点】全面调查与抽样调查,总体、个体、样本、样本容量
【解析】【分析】(1)总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量,根据总体、个体和样本的定义即可解答;
(2)一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,根据抽样调查和普查的定义及特征进行选择即可.
22、(5分)如图,AB∥CD.证明:∠B+∠F+∠D=∠E+∠G.
【答案】证明:作EM∥AB,FN∥AB,GK∥AB,
∵AB∥CD,
∴AB∥ME∥FN∥GK∥CD,
∴∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,
∴∠B+∠3+∠4+∠D=∠1+∠2+∠5+∠6,
又∵∠E+ ∠G=∠1+∠2+∠5+∠6,
∠B+ ∠F+ ∠D=∠B+ ∠3+∠4+ ∠D,
∴∠B+ ∠F+ ∠D=∠E+ ∠G.
【考点】平行公理及推论,平行线的性质
【解析】【分析】作EM∥AB,FN∥AB,GK∥AB,根据平行公理及推论可得AB∥ME∥FN∥GK∥CD,再由平行线性质得∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,相加即可得证.
23、(15分)学校以班为单位举行了“书法、版画、独唱、独舞”四项预选赛,参赛总人数达480人之多,下面是七年级一班此次参赛人数的两幅不完整的统计图,请结合图中信息解答下列问题:
(1)求该校七年一班此次预选赛的总人数;
(2)补全条形统计图,并求出书法所在扇形圆心角的度数;
(3)若此次预选赛一班共有2人获奖,请估算本次比赛全学年约有多少名学生获奖?
【答案】(1)解:6÷25%=24(人).故该校七年一班此次预选赛的总人数是24人
(2)解:24﹣6﹣4﹣6=8(人),书法所在扇形圆心角的度数8÷24×360°=120°;
补全条形统计图如下:
(3)解:480÷24×2=20×2
=40(名)
故本次比赛全学年约有40名学生获奖
【考点】扇形统计图,条形统计图
【解析】【分析】(1)先根据版画人数除以所占的百分比可得总人数;
(2)先根据(1)中的总人数减去其余的人数可得书法参赛的人数,然后计算圆心角,补全统计图即可;(3)根据总数计算班级数量,然后乘以2可得获奖人数.
24、(5分)如图,已知DA⊥AB,DE平分∠ADC,CE平分∠BCD,∠1+ ∠2=90°.求证:BC ⊥ AB.
【答案】证明:∵DE平分∠ADC,CE平分∠BCD,
∴∠1=∠ADE,∠2=∠BCE,
∵∠1+∠2=90°,
即∠ADE+∠BCE=90°,
∴∠DEC=180°-(∠1+∠2)=90°,
∴∠BEC+∠AED=90°,
又∵DA ⊥AB,
∴∠A=90°,
∴∠AED+∠ADE=90°,
∴∠BEC=∠ADE,
∵∠ADE+∠BCE=90°,
∴∠BEC+∠BCE=90°,
∴∠B=90°,
即BC⊥AB.
【考点】垂线,三角形内角和定理
【解析】【分析】根据角平分线性质得∠1=∠ADE,∠2=∠BCE,结合已知条件等量代换可得∠1+∠2=∠ADE+∠BCE=90°,根据三角形内角和定理和邻补角定义可得∠BEC=∠ADE,代入前面式子即可得∠BEC+∠BCE=90°,由三角形内角和定理得∠B=90°,即BC⊥AB.
25、(9分)某中学对本校500名毕业生中考体育加试测试情况进行调查,根据男生1 000m及女生800m 测试成绩整理、绘制成如下不完整的统计图(图①、图②),请根据统计图提供的信息,回答下列问题:
(1)该校毕业生中男生有________人,女生有________人;
(2)扇形统计图中a=________,b=________;
(3)补全条形统计图(不必写出计算过程).
【答案】(1)300;200
(2)12;62
(3)解:由图象,得8分以下的人数有:500×10%=50人,
∴女生有:50﹣20=30人.
得10分的女生有:62%×500﹣180=130人.
补全图象为:
【考点】扇形统计图,条形统计图
【解析】【解答】解:⑴由统计图,得男生人数有:20+40+60+180=300人,女生人数有:500﹣300=200人.
故答案为:300,200;
⑵由条形统计图,得
60÷500×100%=12%,
∴a%=12%,
∴a=12.
∴b%=1﹣10%﹣12%﹣16%,
∴b=62.
故答案为:12,62;
【分析】(1)根据条形统计图对应的数据相加可得男生人数,根据调查的总数减去男生人数可得女生人数;(2)根据条形统计图计算8分和10分所占的百分比即可确定字母a、b的值;
(3)根据两个统计图计算8分以下的女生人数和得分是10分的女生人数即可补全统计图.
26、(5分)如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)
理由是:▲ .
【答案】解:垂线段最短。

【考点】垂线段最短
【解析】【分析】直线外一点到直线上所有点的连线中,垂线段最短。

所以要求水池M和河流之间的渠道最短,过点M作河流所在直线的垂线即可。

27、(5分)一个三位数的各位数字的和等于18,百位数字与个位数字,的和比十位数字大14,如果把百位数字与个位数字对调,所得新数比原数大198,求原数!
【答案】解:设原数的个位数字为x,十位数字为y,百位数字为z根据题意得:
解这个方程组得:
所以原来的三位数是729
【考点】三元一次方程组解法及应用
【解析】【分析】此题的等量关系为:个位数字+十位数字+百位数字=18;百位数字+个位数字-十位数字=14;新的三位数-原三位数=198,设未知数,列方程组,解方程组求解,就可得出原来的三位数。

相关文档
最新文档