现代控制理论离散系统

合集下载

现代控制理论-离散

现代控制理论-离散

这里
0 G= 0 − 6
1 0 −5
0 1 − 2
0 h = 0 1
c = [1 1 − 1
]
10
d =2
二、连续系统的时间离散化
1、离散化的必要性
–计算机所需要的输入和输出信号是数字式的 ,时间上是离散的; –当采样周期极短时,离散系统可近似地用连 续系统特性来描述
二、连续系统的时间离散化
4、连续时间系统的离散化模型
–于是可得
x[( k + 1)T ] = Φ (T ) x ( kT ) + ∫
0 T ( k +1 )T kT
Φ [( k + 1)T − τ ]dτ Bu( kT )
=Φ (T ) x( kT ) − ∫ Φ ( t )dtBu( kT ) T Φ ( t )dt Bu( kT ) =Φ (T ) x( kT ) + ∫ 0
一、离散系统的状态空间描述
–经典控制理论中,线性离散系统的动力学方 程是用标量差分方程或脉冲传递函数来描述 的。线性定常离散系统差分方程一般形式为
y ( k + n ) + an−1 y ( k + n − 1) + ⋯a1 y ( k + 1) + a0 y ( k ) = bnu ( k + n ) + bn−1u ( k + n − 1) + ⋯ + b1u ( k + 1) + b0u ( k )
• 离散系统状态方程描述了(k+1)T时刻的状态与 离散系统状态方程描述了(k+1)T时刻的状态与 kT时刻的状态、输入量之间的关系; kT时刻的状态、输入量之间的关系; • 离散系统输出方程描述了 kT时刻的输出量与 kT时刻的输出量与 时刻的状态、输入量之间的关

现代控制理论最优控制课件

现代控制理论最优控制课件

04 离散时间系统的最优控制
CHAPTER
离散时间系统的最优控制问题的描述
定义系统
离散时间系统通常由差分方程描述,包括状 态转移方程和输出方程。
确定初始状态
最优控制问题通常从一个给定的初始状态开 始,我们需要确定这个初始状态。
确定控制输入
在离散时间系统中,控制输入是离散的,我 们需要确定哪些控制输入是可行的。
工业生产领域
02 现代控制理论在工业生产领域中也得到了广泛的应用
,如过程控制、柔性制造等。
社会经济领域
03
现代控制理论在社会经济领域中也得到了广泛的应用
,如金融风险管理、能源调度等。
02 最优控制基本概念
CHAPTER
最优控制问题的描述
确定受控系统的状态和输入,以便在 给定条件下使系统的性能指标达到最 优。
LQR方法
利用LQR(线性二次调节器)设计最优控制 器。
线性二次最优控制的应用实例
经济巡航控制
在航空航天领域,通过线性二次最优控制实现燃料消 耗最小化。
电力系统控制
在电力系统中,利用线性二次最优控制实现稳定运行 和最小化损耗。
机器人控制
在机器人领域,通过线性二次最优控制实现轨迹跟踪 和避障等任务。
03
02
时变控制系统
04
非线性控制系统
如果系统的输出与输入之间存在 非线性关系,那么该系统就被称 为非线性控制系统。
这类系统的特点是系统的参数随 时间而变化。
静态控制系统
这类系统的特点是系统的输出与 输入之间没有时间上的依赖关系 。
发展历程
古典控制理论
这是最优控制理论的初级阶段,其研究的主 要对象是单输入单输出系统,主要方法是频 率分析法和根轨迹法。

现代控制理论第三章-02-关于离散

现代控制理论第三章-02-关于离散

8/17/2017 8:03 PM
Modern Control Theory
5
Ⅰ-3. 对连续系统采样而得到的离散系统
∑[A(t), B(t)] →(采样后) ∑[G(k), H(k)]
1 由 ∑[A(t), B(t)]的状态空间模型导出
0
这也就是连续系统∑[A(t), B(t)] 的离散化问题
( discretization )
Book 50
进一步,当采样周期远远小于系统中最小时间常数 T0 <<Tmin, 且系统离散化要求也不高时,则可用近似简化模型: G(k )=G TA+I; Book 50
H(k ) H TB; C(k ) C, D(k ) D
下面,我们用一个实例给予说明
8/17/2017 8:03 PM
于是,可以有以下方法推出:
1 部分分式法 注意 :单极点 → 导出对角线规范形
0
重极点 →导出Jordan 规范形
8/17/2017 8:03 PM
Modern Control Theory
4
2 z-域框图法
0
注意:
最简传函形式为:
ki a i (z bi e ci T0 )
, 其中
ai 0
X(k 1) G (k)x(k) H (k)u(k) [G (k), H(k)] Y(k) C(k)x(k) D(k)u(k ) 注意到: t t 0 , k 0; t t 0 T0 , k 1; t = t 0 2T0 , k 2, 这样:G(k )=Φ[(k +1)T0 ,kT0 ] or Φ[( k+1),k ] 或 e k 一般, H (k)

《现代控制理论》第一章

《现代控制理论》第一章

q1(t) h1(t)
R1 q 2(t)
h2(t)
R2 q 3(t)
h3(t)
R3 q 4(t)
返回
[例2]:图示阻容电路。输入量:输入电压u1(t)。输出流量:电容上的 电压u2(t)。列写状态空间表达式。
R1
R2
u1(t)
i1(t) L
i2(t) C
u2(t)
返回
四. 根据微分方程或传递函数建立状态空间表达式
a0
状态空间表达式为:
0 1 0 0
x


0
0
1

x

0u
a0 a1 a2 1
y b0 b1 b2 x b3u
返回
2、控制系统的原始模型为传递函数的零极点分布形式
(1)无重极点;
Y(s)
F (s)
ABC
U (s) (s a)(s b)(s c) (s a) (s b) (s c)
xynm11((tt))
f [x(t),u(t),t] g[ x(t ), u (t ), t ]
• 输入向量、输出向量、状态向量
• 状态方程为一阶微分方程组的向量矩阵表示形式
• 输出方程为代数方程组的向量矩阵表示形式
• 研究重点为线性定常系统(A、B、C、D常数矩阵)
2. 控制系统结构图
二、控制系统中状态空间表达式及结构框图 1.状态空间表达式的一般形式(四种)
(1) 线性定常系统状态空间表达式 (2) 线性时变系统状态空间表达式
yx nm11((tt))ACnmnnxxnn11((tt))BDnmrururr1(1t()t)
yx nm11((tt))

现代控制理论(第二章)

现代控制理论(第二章)

(1)
若初始时刻 时的状态给定为
则式(1)有唯一确定解:
若初始时刻从
开始,即
(2) 则其解为:
证明: 级数形式
和标量微分方程求解类似,先假设式(1)的解
(3) 为 的矢量幂
(4) 代入式(1)得:
(5)
既然式(4)是式(1)的解,则式(5)对任意时刻 都成立,故 的同次 幂项的系数应相等,有:
在式(4)中,令
e t e 2 t e t 2 e 2 t
x ( t ) L 1 ( s I A ) 1 x ( 0 ) L 1 ( s I A ) 1 B ( s ) U
s3
1
sIA1bU(s)(s1)(s2)
2
(s1)s(s2)1 01s
(s1)(s2) (s1)(s2)
eAtPeAtP1Pe0 1t
e0 2tP111
1et 20
02 1 e2t1 1
et e2t 2 1 2et e2t
et e2t
et 2e2t1 12et 2e2t et 2e2t
3)用拉氏变换法求解 e A tL 1 (s I A ) 1
s3
sIA1 2s
11 s3
(s
1)(s 2

(1)

2.5.2 Z 变换法
(2)
对于线性定常离散系统的状态方程,也可以来用 Z 变换法来求解。
设定常离散系统的状态方程是:
对上式两端进行 Z 变换,有: 或
线性时变系统的非齐次状态方程为:

的元素在时间区间
(17) 内分段连续,则其解为:
(18)
证明 线性系统满足叠加原理,故可将式(17)的解看成由初始状态

现代控制原理2-3离散系统

现代控制原理2-3离散系统
−T −T −T
−T −T
−T
)
−T
z 2 − (1 + e −T ) z + e −T
)
0 x( k + 1) = −T -e
0 x ( k ) + u( k ) −T 1+ e 1 1
y( k ) = 1 − e −T − Te − T
T − 1 + e −T x( k )
x(k+1) = [I +TA]x(k) + TBu(k) G = I +TA H =TB
17
0 1 0 & 的近似离散化方程。 例2-13 求 x = x + 1 u 的近似离散化方程。 0 −2
解: G = I + TA = 1 0 + 0 − T = 1 − T 0 1 0 − 2T 0 1 − 2T
x( k + 1) = G ( k ) x( k ) + H ( k )u( k ) y( k ) = C ( k ) x ( k ) + D( k )u( k )
2
2.结构图 2.结构图
3
3.差分方程和脉冲传递函数与离散状态空间表 3.差分方程和脉冲传递函数与离散状态空间表 达式之间的转换 在单变量离散系统中, 在单变量离散系统中,数学模型分为差分方程 和脉冲传递函数两类, 和脉冲传递函数两类,它们与离散状态空间表达式 之间的变换,和连续系统分析相类似。 之间的变换,和连续系统分析相类似。 离散 差分方程 连续 D.E
x1 ( k ) y ( k ) = [1 −4 ] + u( k ) x2 ( k )

现代控制理论3 第三章 线性系统的可控性和可观测性

现代控制理论3 第三章 线性系统的可控性和可观测性

A'
0
0
0
a0 a1 a2
0
0 可
0
0
B'
控 标
1
an1
0 1
准 形
AT=A’
BT=B’
0 0 0 1 0 0 A 0 1 0
a0
a1
C 0
0 1
0 0
a2
可观标准形
1 an1
结论:状态方程具有可观测标准形的系统一定可观测。
C 0 0
CA
0
0
V
CA2
3.2线性定常系统的可观测性
1.线性定常离散系统状态可观测性
(1) 离散系统可观测定义
x(k 1) Gx(k) Hu(k ) y(k) Cx(k) Du(k)
已知输入u(0),…,u(n-1)的情况下,通过在
有限个采样周期内测量到的输出y(0),y(1),…, y(n-1),能唯一地确定任意初始状态x(0)的n个分量, 则称系统是完全可观测的,简称系统可观测。
(2) 线性定常连续系统可控性判据
若线性定常连续系统的状态方程为
x Ax Bu
则该系统可控的充分必要条件为其可控性矩阵
Sc B AB
满秩,即 rankSc n
An1B
示例
(3) 可控标准形
结论:状态方程具有可控标准形的系统一定可控。
x1 0
x2
0
xn
1
0
xn a0
使上述方程组有解的充分必要条件是
Sc' Gn1H
GH H
满秩,且 rankSc' n
亦即 Sc H GH
Gn1H 且rankSc n
离散可控性例题

现代控制理论第二章

现代控制理论第二章

第二章 控制系统状态空间表达式的解建立了控制系统状态空间表达式之后,就是讨论求解的问题,本章重点讨论状态转移矩阵的定义,性质和计算方法,从而导出状态方程的求解公式并讨论连续时间系统状态方程的离散化的问题。

§2-1线性定常齐次状态方程的解(自由解)所谓自由解是指系统输入为零时,由初始状态引起的自由运动。

状态方程为齐次矩阵微分方程:AX X= (2-1)若初始时刻0t 时的状态给定为00)(x t x =,则式(2-1)有唯一确定解。

0)(0)(x e t x t t A -=,0t t ≥(2-2)若初始时刻从0=t 开始,即0)0(x x =,则其解为:0)(x e t x At =, 0t t ≥(2-3)证:先假设式(2-1)的解)(t x 为t 的矢量幂级数形式,即:+++++=k k t b t b t b b t x 2210)((2-4)对上式求导: ++++=-1232132)(k k t kb t b t b b t x代人式(2-1)得:A x= ( +++++kk t b t b t b b 2210) (2-5)既然式(2-4)是(2-1)的解,则式(2-5)对任意时刻t 都成立,故t 的同次幂项的系数应相等,有:01Ab b =,0212!2121b A Ab b ==,0323!3131b A Ab b ==,… 01!11b A k Ab kb k k k ==-,… 在式(2-4)中,令0=t ,可得:00)0(x x b == 将以上结果代人式(2-4),故得:022)!1!211()(x t A k t A At t x k k +++++= (2-6)括号内的展开式是n n ⨯矩阵,它是一个矩阵指数函数,记为At e221112!!At k ke At A t A t K =+++++ (2-7)式(2-6)可表示为:0()At x t e x =再用)(0t t -代替)0(-t ,即在代替t 的情况下,同样证明0)(0)(x e t x t t A -=的正确性。

现代控制理论 第1章 状态空间描述

现代控制理论 第1章 状态空间描述

得动态方程组 1 x2 x k b 1 x 2 y y u y m m m k b 1 x1 x2 u m m m y x 1
问题:到底有 何区别?
13
状态空间表达式为
1 0 x k x 2 m

如果将储能元件的物理变量选为系统的状态变量,则状态变量的个数 等于系统中独立储能元件的个数
5
基本概念

状态方程:系统状态方程描述的结构图如下图所示
假设:causal system ——现在的输出只取决 于现在和过去的输入, 而与将来的输入无关。
输入引起状态的变化是一个动态过程,每个状态变量的一阶导数与所有 状态变量和输入变量的数学表达(常微分方程ODE)称为状态方程,一般形式 为:
1896192019872006状态变量和状态空间表达式状态变量和状态空间表达式化输入化输入输出方程为状态空间表达式输出方程为状态空间表达式系统的线性变换对角线标准型和约当标准型系统的线性变换对角线标准型和约当标准型由状态空间表达式导出传递函数阵由状态空间表达式导出传递函数阵离散时间系统的状态空间表达式离散时间系统的状态空间表达式时变系统的状态空间表达式时变系统的状态空间表达式从系统黑箱的输入输出因果关系中获悉系统特性传递函数描述属系统的外部描述系统的内部描述白箱系统完整地表征了系统的动力学特征状态空间表达式属系统的内部描述状态变量
x1 f1 ( x1 , x2 f 2 ( x1 , xn f n ( x1 , , xn , u1 , , xn , u1 , , xn , u1 , , um , t ) , um , t ) , um , t )
标量形式,繁琐!
6
矢量形式

现代控制理论课后习题答案

现代控制理论课后习题答案

前言本书是为了与张嗣瀛院士等编写的教材《现代控制理论》相配套而编写的习题解答。

本书对该教材中的习题给予了详细解答,可帮助同学学习和理解教材的内容。

由于习题数量较多,难易程度不同,虽然主要对象是研究型大学自动化专业本科学生,但同时也可以作使用其它教材的专科、本科、以及研究生的学习参考书。

书中第5、6、8章习题由高立群教授组织编选和解答;第4、7 章由井元伟教授组织编选和解答,第1、2章由郑艳副教授组织编选和解答。

由于时间比较仓促,可能存在错误,请读者批评、指正。

另外有些题目解法和答案并不唯一,这里一般只给出一种解法和答案。

编者 2005年5月第2章 “控制系统的状态空间描述”习题解答2.1有电路如图P2.1所示,设输入为1u ,输出为2u ,试自选状态变量并列写出其状态空间表达式。

图P2.1解 此题可采样机理分析法,首先根据电路定律列写微分方程,再选择状态变量,求得相应的系统状态空间表达式。

也可以先由电路图求得系统传递函数,再由传递函数求得系统状态空间表达式。

这里采样机理分析法。

设1C 两端电压为1c u ,2C 两端的电压为2c u ,则212221c c c du u C R u u dt++= (1) 112121c c c du u duC C dt R dt+= (2) 选择状态变量为11c x u =,22c x u =,由式(1)和(2)得:1121121121212111c c c du R R C u u u dt R R C R C R C +=--+ 2121222222111c c c du u u u dt R C R C R C =--+ 状态空间表达式为:12111211212121212122222221111111R R C x x x u R R C R C R C x x x u R C R C R C y u u x +⎧=--+⎪⎪⎪=--+⎨⎪⎪==-⎪⎩即: 12121121211112222222211111R R C R C R R C R C x x u x x R C R C R C +⎡⎤⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦--⎢⎥⎢⎥⎣⎦⎣⎦[]11210x y u x ⎡⎤=-+⎢⎥⎣⎦2.2 建立图P22所示系统的状态空间表达式。

现代控制理论 离散时间系统、 时变系统和非线性系统的状态空间表达式

现代控制理论 离散时间系统、 时变系统和非线性系统的状态空间表达式

《现代控制理论》MOOC课程1.5 离散时间系统、时变系统和非线性系统的状态空间表达式一. 时间离散系统离散系统的状态空间表达式可用差分方程组表示为x(k +1)=Gx(k)+Hu (k)y k =Cx k +Du(k)二. 线性时变系统其系数矩阵的元素中至少有一个元素是时间t 的函数;线性时变系统的状态空间表达式为:x =A t x +A t u y=C t x +D t u三. 非线性系统x =f (x,u , t )y=g (x,u,t)1.非线性时变系统的状态空间表达式式中,f ,g 为函数向量;x =f (x,u )y=g (x,u)2.非线性定常系统的状态空间表达式当非线性系统的状态方程中不显含时间t 时,则称为非线性定常系统3.非线性系统的线性化x =f (x,u )y =g (x,u)设是非线性系统x 0,u 0的一个平衡状态, 即。

f (x 0,u 0)=0 , y 0=g (x 0,u 0)若只考虑附近小范围的行为,则可将非线性系统取一次近似而予以线性化。

x 0,u 0,y 0将非线性函数f 、g 在附近作泰勒级数展开,并忽略高次项,仅保留一次项:x 0,u 0f x,u =f x 0,u 0+቟ðf ðx x 0,u 0δx +቟ðf ðu x 0,u 0δu g x,u =g x 0,u 0+቟ðg ðx x 0,u 0δx +቟ðg ðu x 0,u 0δu则非线性系统的一次线性化方程可表示为:δx =x −x 0=቟ðf ðx x 0,u 0δx +቟ðf ðu x0,u 0δu δy =y −y 0=቟ðg ðx x 0,u 0δx +቟ðg ðu x 0,u 0δu 将微增量用符号表示,线性化状态方程就表示为:δx ,δu ,δy ෥x ,෥u ,෥y ෥x=A ෥x +B ෥u ෥y=C ෥x +D ෥u 其中,A =቟ðf ðx x 0,u 0,B =቟ðf ðu x 0,u 0,቟C =ðg ðx x 0,u 0,D =቟ðg ðu x 0,u 0第一章控制系统的状态空间表达式第一章小结状态变量、状态空间、状态空间表达式的定义建立系统状态空间表达式的方法,特别是状态变量选取的方法;状态空间表达式非奇异线性变换的方法;由状态空间表达式导出传递函数矩阵的方法;组合系统状态空间表达式的建立方法;离散系统、非线性系统状态空间的基本形式;。

现代控制理论基础-第2章-控制系统的状态空间描述精选全文完整版

现代控制理论基础-第2章-控制系统的状态空间描述精选全文完整版

(2-18)
解之,得向量-矩阵形式的状态方程
(2-19)
输出方程为
(2-20)
(5) 列写状态空间表达式
将式(2-19)和式(2-20)合起来即为状态空间表达式,若令
则可得状态空间表达式的一般式,即
(2-21)
例2.2 系统如图
取状态变量:
得:
系统输出方程为:
写成矩阵形式的状态空间表达式为:
1.非线性系统
用状态空间表达式描述非线性系统的动态特性,其状态方程是一组一阶非线性微分方程,输出方程是一组非线性代数方程,即
(2-7)
2. 线性系统的状态空间描述
若向量方程中 和 的所有组成元都是变量 和 的线性函数,则称相应的系统为线性系统。而线性系统的状态空间描述可表示为如下形式: (2-8) 式中,各个系数矩阵分别为 (2-9)
4.线性定常系统的状态空间描述
式中的各个系数矩阵为常数矩阵
当系统的输出与输入无直接关系(即 )时,称为惯性系统;相反,系统的输出与输入有直接关系(即 )时,称为非惯性系统。大多数控制系统为惯性系统,所以,它们的动态方程为
(2-11)
1.系统的基本概念 2. 动态系统的两类数学描述 3. 状态的基本概念
2.2 状态空间模型
2.2.1状态空间的基本概念
1.系统的基本概念
■系统:是由相互制约的各个部分有机结合,且具有一定功能的整体。 ■静态系统:对于任意时刻t,系统的输出惟一地取决于同一时刻的输入,这类系统称为静态系统。静态系统亦称为无记忆系统。静态系统的输入、输出关系为代数方程。 ■动态系统:对任意时刻,系统的输出不仅与t时刻的输入有关,而且与t时刻以前的累积有关(这种累积在t0(t0<t)时刻以初值体现出来),这类系统称为动态系统。由于t0时刻的初值含有过去运动的累积,故动态系统亦称为有记忆系统。动态系统的输入、输出关系为微分方程。

(完整版)现代控制理论

(完整版)现代控制理论

第一章线性离散系统第一节概述随着微电子技术,计算机技术和网络技术的发展,采样系统和数字控制系统得到广泛的应用。

通常把采样系统,数字控制系统统称为离散系统。

一、举例自动测温,控温系统图;加热气体图解:1. 当炉温h变化时,测温电阻R变化→R∆,电桥失去平衡状态,检流计指针发生偏转,其偏转角度为)e;(t2. 检流计是个高灵敏度的元件,为防磨损不允许有摩擦力。

当凸轮转动使指针),接触时间为τ秒;与电位器相接触(凸轮每转的时间为T3. 当炉温h 连续变化时,电位器的输出是一串宽度为τ的脉冲信号e *τ(t);4.e *τ(t)为常值。

加热气体控制阀门角度调速器电动机放大器h →→→→→→ϕ 二、相关定义说明(通过上例来说明) 1. 信号采样偏差)(t e 是连续信号,电位器的输出的e *τ(t)是脉冲信号。

连续信号转变为脉冲信号的过程,成为采样或采样过程。

实现采样的装置成为采样器。

To —采样周期,f s =--To1采样频率,W s =2πf s —采样角频率 2.信号复现因接触时间很小,τo T 〈〈τ,故可把采样器的输出信号)(t e *近似看成是一串强度等于矩形脉冲面积的理想脉冲,为了去除采样本身带来的高额分量,需要把离散信号)(t e *恢复到原信号)(t e 。

实现方法:是在采样器之后串联一个保持器,及信号复现滤波器。

作用:是把)(t e *脉冲信号变成阶梯信号e h (t)3.采样系统结构图r(t),e(t),c(t),y(t)为连续信号,)(t e *为离散信号)(s G h ,)(s G p ,)(s H 分别为保持器,被控对象和反馈环节的传递函数。

(t)r4.采样系统工作过程⇒由保持器5. 采样控制方式采样周期To ⎪⎩⎪⎨⎧=≠=⇒相位不同步采样常数常数6. 采样系统的研究方法(或称使用的数字工具)因运算过程中出现s 的超越函数,故不用拉式变换法,二采用z 变换方法,状态空间法。

现代控制理论--3控制系统的状态方程求解

现代控制理论--3控制系统的状态方程求解
xteA t t0xt0tt0
7
小结:
1.齐次状态方程的解表示了系统在初始条件作用 下的自由运动,又称为零输入解;
2.系统状态的变化实质上是从初始状态开始的状
态转移,而转移规律取决于 eAt ,eA(t-t0) 故称其
为状态转移矩阵.一般用
x
(t) eAt (t t0) eA(tt0)
来表示。 x 0
2 ! 3 !
AA2t1A3t2L 2!
A(I At 1 A2t2 L ) 2!
AeAt eAt A
13
所以当 Φ(t)=eAt时, &(t)A(t) 又因为 Φ(t)=eAt (t=0时) eA0 =I+A0+...=I 所以 Φ(0)=I 故 eAt 是状态转移矩阵Φ(t)
(2)状态转移矩阵Φ(t)是A阵同阶的方阵,其元 素均为时间函数.
sX(s)-x0=AX(s)+BU(s)

X(s)=(sI-A)-1[x0+BU(s)]
其中X(s)和U(s)分别为x(t)和u(t)的拉氏变换。
对上式两边取拉氏反变换,并利用卷积分公式,则有
x ( t ) L 1 ( s A ) I 1 x 0 L 1 ( s A ) I 1 B ( s )U
1 0 3x1u
试求:x(0)=0,u(t)=1(t) 时的状态解。
解:1.求 eAt : 由前例得:
eAt
2et 2et
e2t 2e2t
et e2t et 2e2t
25
2. 求x(t)
x(t)eA tx00 teA (t )B u ()d
t2 e (t )e 2 (t ) e (t ) e 2 (t ) 0
由于状态空间表达式由两部分组成,即 x& Ax Bu y Cx Du

控制理论与控制系统的发展历史及趋势

控制理论与控制系统的发展历史及趋势

控制理论与控制系统的发展历史及趋势控制论一词Cybernetics,来自希腊语,原意为掌舵术,包含了调节、操纵、管理、指挥、监督等多方面的涵义。

因此“控制”这一概念本身即反映了人们对征服自然与外在的渴望,控制理论与技术也自然而然地在人们认识自然与改造自然的历史中发展起来。

根据控制理论的理论基础及所能解决的问题的难易程度,我们把控制理论大体的分为了三个不同的阶段。

这种阶段性的发展过程是由简单到复杂、由量变到质变的辩证发展过程。

一、经典控制论阶段(20世纪50年代末期以前)经典控制理论,是以传递函数为基础,在频率域对单输入---单输入控制系统进行分析与设计的理论。

1、控制系统的特点单输入---单输出系统的,线性定常或非线性系统中的相平面法也只含两个变量的系统。

2、控制思路基于频率域内传递函数的“反馈”和“前馈”控制思想,运用频率特性分析法、根轨迹分析法、描述函数法、相平面法、波波夫法,解决稳定性问题。

3、发展事件回顾1)我国古人发明的指南车就应用了反馈的原理2)1788年J.Watt在发明蒸汽机的同时应用了反馈思想设计了离心式飞摆控速器,这是第一个反馈系统的方案。

3)1868年J.C.Maxwell为解决离心式飞摆控速器控制精度和稳定性之间的矛盾,发表《论调速器》,提出了用基本系统的微分方正模型分析反馈系统的数学方法。

4)1868年,韦士乃格瑞斯克阐述了调节器的数学理论。

5)1875年E.J.Routh和A.Hurwitz提出了根据代数方程的系数判断线性系统稳定性方法6)1876年俄国学者N.A.维什涅格拉诺基发表著作《论调速器的一般理论》,对调速器系统进行了全面的理论阐述。

7)1895年劳斯与古尔维茨分别提出了基于特征特征根和行列式的稳定性代数判别方法。

8)1927年H.S.Black发现了采用负反馈线路的放大器,引入负反馈后,放大器系统对扰动和放大器增益变化的敏感性大为降低。

9)1932年H.Nyquest采用频率特性表示系统,提出了频域稳定性判据,很好地解决了Black 放大器的稳定性问题,而且可以分析系统的稳定裕度,奠定了频域法分析与综合的基础。

《现代控制理论》 教案大纲

《现代控制理论》 教案大纲

《现代控制理论》教案大纲第一章:绪论1.1 课程背景与意义1.2 控制系统的基本概念1.3 控制理论的发展历程1.4 控制理论的应用领域第二章:控制系统数学模型2.1 连续控制系统数学模型2.2 离散控制系统数学模型2.3 状态空间描述2.4 系统矩阵的性质与运算第三章:线性系统的时域分析3.1 系统的稳定性3.2 系统的瞬时性3.3 系统的稳态性能3.4 系统的动态性能第四章:线性系统的频域分析4.1 频率响应的概念4.2 频率响应的性质4.3 系统频率响应的求取方法4.4 系统频域性能指标第五章:线性系统的校正与设计5.1 系统校正的基本概念5.2 常用校正器及其特性5.3 系统校正的方法5.4 系统校正实例分析第六章:非线性控制系统分析6.1 非线性系统的基本概念6.2 非线性系统的数学模型6.3 非线性系统的稳定性分析6.4 非线性系统的控制策略第七章:状态反馈与观测器设计7.1 状态反馈控制的基本原理7.2 状态反馈控制器的设计方法7.3 观测器的设计与分析7.4 状态反馈控制系统应用实例第八章:先进控制策略8.1 鲁棒控制8.2 自适应控制8.3 最优控制8.4 智能控制第九章:最优控制理论9.1 最优控制的基本概念9.2 线性二次调节器(LQR)9.3 离散时间最优控制9.4 最优控制的应用第十章:现代控制理论在工程应用10.1 现代控制理论在自动化领域的应用10.2 现代控制理论在控制中的应用10.3 现代控制理论在航空航天领域的应用10.4 现代控制理论在其他领域的应用第十一章:鲁棒控制理论11.1 鲁棒控制的基本概念11.2 鲁棒控制的设计方法11.3 鲁棒控制的应用实例11.4 鲁棒控制在实际系统中的性能评估第十二章:自适应控制理论12.1 自适应控制的基本概念12.2 自适应控制的设计方法12.3 自适应控制的应用实例12.4 自适应控制在复杂系统中的应用与挑战第十三章:数字控制系统设计13.1 数字控制系统的概述13.2 数字控制器的设计方法13.3 数字控制系统的仿真与实验13.4 数字控制系统在实际应用中的案例分析第十四章:控制系统中的计算机辅助设计14.1 计算机辅助设计的基本概念14.2 控制系统CAD工具与方法14.3 基于软件的控制系统设计与仿真14.4 控制系统CAD在现代工程中的应用案例第十五章:现代控制理论的前沿与发展15.1 现代控制理论的最新研究动态15.2 控制理论与其他领域的交叉融合15.3 未来控制理论的发展趋势15.4 控制理论在解决现实世界问题中的潜力与挑战重点和难点解析本《现代控制理论》教案大纲涵盖了现代控制理论的基本概念、方法与应用,分为十五个章节。

现代控制理论离散系统

现代控制理论离散系统

数字信号处理系统
数字信号处理系统
数字信号处理算法
数字信号处理系统的应 用
数字信号处理系统是一种基于计算机 技术的信号处理平台,可以对各种信 号进行采集、分析、处理和传输。
数字信号处理算法包括滤波、频谱分 析、频域变换、逆变换等。这些算法 能够对信号进行精确的分析和处理, 以满足各种应用需求。
数字信号处理系统广泛应用于音频、 图像、视频处理等领域。在音频处理 方面,数字信号处理系统可以对声音 进行降噪、增强、混响等处理;在图 像和视频处理方面,可以对图像和视 频进行压缩、增强、识别等处理,以 满足各种应用需求。
感谢您的观看
THANKS
信号处理
对数字信号处理算法进行离散化仿 真,验证其效果和性能。
数字电路设计
对数字电路设计进行离散化仿真, 验证电路的功能和性能。
04
05
离散系统的优化设计
离散系统优化设计的方法
数学规划法
01
通过建立离散系统的数学模型,利用数学优化方法(如线性规
划、整数规划等)来求解最优解。
智能优化算法
02
如遗传算法、粒子群算法、模拟退火算法等,通过模拟自然界
LabVIEW
由美国国家仪器公司开发的图形化编程环境, 适用于离散系统仿真和测试。
Modelica
基于方程的仿真语言,适用于多领域物理系 统建模和仿真。
Scilab
开源工程计算软件,支持离散系统仿真和数 值计算。
离散系统仿真的步骤
参数设置
设置仿真时间、步 长等参数。
仿真运行
根据设定的参数进 行仿真,并记录输 出结果。
最优控制
最优控制是在满足一定约束条件下,寻找使某个性能指标达到最优的控制 策略。

现代控制理论第3章能观测性及其判据讲义资料

现代控制理论第3章能观测性及其判据讲义资料

A
对A的每一个特征值λi之秩为n。(PBH判别法)
非奇异变换不改变系统的能观测性
定理三:线性定常连续系统,若A 的特征值互异,经非奇异变换后为
1
x
2
x Bu
n
y Cx
系统能观测的充分必要条件是 C 阵中不包含全为零的列
定理四:线性定常连续系统,若A阵具有重特征值,且对应每一个重特征 值只存在一个独立的特征向量,经非奇异变换后为:
设系统能观测,但 W (t0 , t1 ) 是奇异的,即存在非零初态,使
W(t0,t1)x0 0
x0TW(t0,t1)x00
xTt1 0 t0
T (t,t0 )C T (t)C (t)(t,t0 )d tx 0 0
t1 yT(t)y(t)dt 0 t0
y(t) 0
2:线性定常系统 定理一:对于线性定常系统,其能观测的充要条件是
观测的,简称不能观测。
定x 由(t义)于 :( 设t nt0 维)x 系(t0 ) 统 的tt0 动(t态 方)B 程(为) u d u (xty) C A((tt))xx11s x1(B D 0)((ttx)1)uu
x2 (0) 1
x2
y(t)
s
2
若可对见状系态统空的间状中态的x(t任)的一能状观态测x(t0),存在一有限时间t1-t0,使得由控制输入 u性(t与0,tx1)(和t0)输的出能y观(t测0,t1性)的是信等息价足的以确定x(该t0)系,统则是称不系能统观在测t0时的刻是完全能观测的。
1 0 0 4 1 10
ranckQ 3
系统是能控的
1 2
令x(1)=0 x(0)G1Hu(0)0 2
1 2 1 2 x1(0)

现代控制理论--3控制系统的状态方程求解-离散化

现代控制理论--3控制系统的状态方程求解-离散化

0 1 0 x x u 0 2 1
解 首先求出连续系统的状态转移矩阵:
2t s 1 1 ( 1 e ) / 2 1 1 1 Φ(t ) L [( sI - A) ] L 2t 0 s 2 0 e 1
1 1 G 0 1
0 H 1
2. 当T=0.001s时,精确法的计算结果为 0.5 106 1 0.000999 G H 0 . 000999 0 0.998002
近似离散化方法(6/6)—例3-12
近似法的计算结果为 1 0.001 G 0 0.998
比较,可知两式对任意的x(kT)和u(kT)成立的条件为 G(T)=(T)=eAT
H (T ) Φ(t )dtB e At dtB
0 0
T
T
上两式即为精确离散化法的计算式。
精确离散化方法(3/4)—例3-11
例3-11 试用精确离散化方法写出下列连续系统的离散化系 统的状态方程:
1 T 0 x(k 1) x( k ) u ( k ) 0 1 - 2T T
近似离散化方法(5/6)—例3-12
对上述近似离散化法的精度可检验如下: 1. 当T=1s时,精确法的计算结果为 1 0.432332 0.283834 G H 0 0.135335 0.432332 近似法的计算结果为
在计算机仿真、计算机辅助设计中利用数字计算机 分析求解连续系统的状态方程,或者进行计算机控制 时,都会遇到离散化问题。
线性连续系统状态空间模型的离散化(3/5)
图3-3所示为连续系统化为离散系统的系统框图。
u(t) 连续系统 x(t) 保持器 x(k) D/A 数字 计算机 A/D 保持器 y(t)

王孝武主编《现代控制理论基础》(第3版)课件

王孝武主编《现代控制理论基础》(第3版)课件
其中,待定系数为: 0 b3 1 b2 a20 2 b1 a10 a21 3 b0 a00 a11 a22
于是
x1 x2 1u x2 x3 2u x3 a0 x1 a1x2 a2 x3 3u
写成矩阵形式
x1 0 1 0 x1 1
x
x2
0
0
1
x1 x2
xn
0
0
b0
u
系统的状态图如下:
x1
y 1
0
0
xn
1.2.2 微分方程中含有输入信号导数项
(一)待定系数法
首先考察三阶系统,其微分方程为 y a2 y a1 y a0 y b3u b2u b1u b0u
选择状态变量: x1 y 0u x2 y 0u 1u x1 1u x3 y 0u 1u 2u x2 2u
u 为系统输入, y 为系统输出
x1 0 1 0 0 x1 0
x2
0
0
mg M
0
x2
1 M
u
;
x3 x4
0 0
0 0
0
(M m)g Ml
1 0
x3 x4
0
1 Ml
x1
y 1
0
0
0
x2
x3 x4
状态图为
1.2 由微分方程求状态空间表达式
一个系统,用线性定常微分方程描述其输入和输出的关系。通过选 择合适的状态变量,就可以得到状态空间表达式。
2. 线性时变系统: x A(t)x B(t)u y C(t)x D(t)u
3. 非线性定常系统:
x = f(x, u) y = g(x, u)
4. 非线性时变系统:
x = f(x, u, t ) y = g(x, u, t )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Y (z) n1zn1Q(z) 1Q(z) 0Q(z)
设 X1(z) Q(z)
X 2 (z) zQ(z) zX1(z) X n (z) z n Q 1 (z) zX n1(z)
整理ppt
6

znQ(z) a0 X1(z) a1X 2 (z) an1X n (z) U (z)
Y (z) 0 X1(z) 1X 2 (z) n1X n (z) 利用z反变换关系
Z [1 X i (z)] xi (k ) Z [1 zX i (z)] xi (k 1)
整理ppt
7
动态方程为
x1(k 1) x2 (k) x2 (k 1) x3 (k) xn1(k 1) xn (k ) xn (k 1) a0 x1(k) a1x2 (k) a x n1 n (k) u(k)
y(k) 0 1 n1x(k) bnu(k)
整理ppt
9
简记为
x(k 1) Gx(k) hu(k) y(k) cx(k) du(k)
线性定常多输入—多输出离散系统的动态方程为
x(k 1) Gx(k) Hu(k) y(k) Cx(k) Du(k)
整理ppt
10
(2)定常连续动态方程的离散化
y(k ) 0 x1(k ) 1x2 (k ) n1xn (k )
整理ppt
8
向量—矩阵形式为
x1(k 1) 0 1 0 0 x1(k) 0
x2
(k
1)
0
0
1
0
x2
(k
)
0
u(k)
xn1
(k
1)
0
0
0
1
xn1
(k
)
0
xn (k 1) - a0 - a1 - a2 - an-1xn (k) 1
由于此式避免了矩阵求逆,在判断系统的可 控性时比较方便
整理ppt
18
(2.2)对于多输入系统,设系统的状态方程 为
x(k 1) Gx(k) Hu(k)
1 线性定常离散系统的可控性 (1)定义:n阶线性定常离散系统
x(k 1) Gx(k) Hu(k) 若存在控制序列 u(k),u(k 1)u(l 1能) 将第 k步其是是l中能的 能控某 控是的的个大,。状于那若态l 么系在的此统第有系在限l步k统第数到是,达步能那零上控么状的的就态k所,称,有称此及状为状x态(能态)都=控0, 系统
记 G(t) k(Tk1)T [(k 1)T ]Bd
整理ppt
12
故离散化状态方程为
x(k 1) (T )x(k) G(T )u(k)
式中 (T ) 与连续系统状态转移矩阵(T ) 的
关系为
(T ) (t) tT
离散化系统的输出方程仍为
y(k) Cx(k) Du(k)
整理ppt
13
二 线性定常离散事件系统的可控性与可观性
bn
zn
n1z n1 1z 0
an1z n1 a1z
a0
bn
N(z) D(z)
整理ppt
4
在N(z)/D(z)的串联分解中引入中间变量Q(z)
u
1
zn
a z n1 n1
a1z
a0
z
n1zn1 1z 0
y
整理ppt
5
可以得到
znQ(z) an1zn1Q(z) a1zQ(z) a0Q(z) U (z)
b uk n bn 1uk n 1 b0uk k 0, 1, 2, n
整理ppt
3
考虑初始条件为零时的z变换关系有
Z[ y(k)] Y (z)
Z[ y(k i)] zY (z)
对式两端取z变换加以整理,可得G(z)来自Y (z) U (z)
bnz n bn zn an
1z n1 b1z b0 1z n1 a1z a0
一 线性离散定常系统状态方程的建立 二 线性离散定常系统能控能观性
整理ppt
1
一 线性离散系统状态表达式的建立及 方程
1 离散系统的特点 系统中的各个变量被处理成为只在 离散时刻取值,其状态空间描述只 反映离散时刻的变量组间的因果关 系和转换关系,因而这类系统通常 称为离散时间系统,简称为离散系 统。
整理ppt
14
(2)可控性判据 (2.1)设单输入线性定常系统的状态方程为
x(k 1) Gx(k) hu(k)
状态方程的解为
x(k
)
G
k
x(0)
G k 1
k
1i hu (i )
i0
根据可控性定义,假定k=n时,x(n)=0,将式 两端左乘G-n则有
整理ppt
15
x(0) n1G1ihu(i) i0 [G1hu(0) G2hu(1) Gnhu(n 1)]
rank S’1=n 或矩阵S’1的行列式不为零
detS’1≠0 或矩阵S’1是非奇异的
整理ppt
17
由于满秩矩阵与另一满秩矩阵Gn相乘其秩不 变, 故
rankS1'
rank[G
n
S' 1
]
rank G h n1 Gh h n
交换矩阵的列,且记为S1其秩也不变,故有
rankS1 rankh Gh G h n1 n
整理ppt
2
2 线性离散系统的动态方程可以利用系统的 差分方程建立,也可以利用线性连续动态 方程的离散化得到
(1)由差分方程建立动态方程 在经典控制理论中离散时间系统通常用差 分方程或脉冲传递函数来描述。单输入— 单输出线性定常差分方程的一般形式为
yk n an 1 yk n 1 a yk 1 a0 yk 1
u(0)
G h 1
G2h
Gnh
u(1)
u(n 1)

S' 1
G h 1
G2h Gnh
整理ppt
16
称S’1为n×n可控矩阵。由线性方程组解的 存在性定理可知,当矩阵s’1的秩与增广矩 阵[S’|x(0)]的秩相等时,方程组有唯一解, 否则无解。在x(0)为任意的情况下,使方程 组有解的充分必要条件是矩阵S’1满秩,即
已知定常连续系统动态方程

x Ax Bu
在x(t0)及u(t)作用下的解为
x(t
)
(t
t0
)
x(t0
)
tt 0
(t
)
Bu(
)d

t0 kT
整理ppt
11

x(t0) x(kT ) x(k)
在区间 t [k,k 1) 内,u(t) u(k) 常数,于 是其解化为
x(k 1) [(k 1)T kT ]x(k) k(Tk1)T [(k 1)T ]Bd • u(k)
相关文档
最新文档