运筹学第7章 最大流问题(精简)
最大流问题的求解方法及应用
最大流问题的求解方法及应用
最大流问题,是指在一个有向图中,从源点 s 到汇点 t 的最大
流量。
在实际应用中,最大流问题往往用于描述网络传输、油管输送等流量分配问题。
求解最大流问题的方法包括以下几种:
1. 网络流算法:这是一种基于图论和线性规划的算法。
通过构建网络流图,将最大流问题转化为最小割问题,再利用线性规划求解最小割问题的对偶问题来求解最大流问题。
2. 增广路算法:这是一种经典的最大流算法,其基本思想是不断找到增广路径,即从源点 s 到汇点 t 的一条路径,沿途边权
均有剩余容量,使得该路径上的边的剩余容量中的最小值最大化,最终得到最大流。
3. 矩阵树定理:这是一种基于图论和矩阵运算的算法,适用于有向图和无向图。
通过计算图的拉普拉斯矩阵的行列式等方法,求得图的生成树个数,从而计算最大流。
4. Dinic算法:是对增广路算法的改进。
在增广路算法中,每
次查找增广路径的过程需要遍历整个图,为了提高效率,
Dinic算法引入了分层图的概念,将图分层之后只在图的一层
中查找增广路径,最终求得最大流。
这些方法在实际应用中常常被用来解决路由选择、网络流量优化、模拟电路分析等问题。
例如,最大流可以被用来优化数据传输、流水线设计、流量管道的运营和管理,提高资源利用率和数据传输速度。
《运筹学最大流问题》课件
实际应用效果:在实际应用中,最大流问题可以有效地解决物流运输中的路径规划、车辆调度等问 题,提高物流运输效率,降低运输成本。
网络流量优化中的最大流问题
背景:随着互联网 技术的发展,网络 流量优化成为重要 问题
预流推进法的实现
预流推进法是一种求解最大流问题的算法 基本思想:通过寻找增广路径,逐步增大流值
实现步骤:初始化、寻找增广路径、更新流值、重复以上步骤直到找不到增广路径
优点:效率较高,适用于大规模网络流问题
Dinic算法的实现
初始化:设置源 点s和汇点t,初 始化网络流网络
寻找增广路径: 使用BFS寻找从 s到t的增广路径
汇报人:
EdmondsKarp算法等
扩展问题:最小 费用最大流问题 的扩展问题包括 最小费用最大流 问题、最小费用 最大流问题等。
多终端最大流问题
定义:在一个网络中,有多个源点和多个汇点,每个源点和汇点之间都有一条或多条边相连,每条边上都有一个容 量限制,求从源点到汇点的最大流量。
应用场景:多终端最大流问题在物流、交通、网络等领域有广泛的应用。
电力分配中的最大流问题
电力分配:将电力从发电站分配到各个用户 最大流问题:在电力分配中,需要找到一种最优的分配方案,使得电力分配达到最大 实际应用:在实际电力分配中,可以使用最大流算法来寻找最优的分配方案 应用效果:使用最大流算法可以大大提高电力分配的效率和准确性,降低电力损耗和成本
感谢您的观看
更新流量:沿 着增广路径更 新流量
重复步骤2和3, 直到找不到增 广路径
输出最大流值: 计算从s到t的 最大流值
Ford-Fulkerson算法的实现
运筹学_最大流问题(精选)共15页文档
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
运筹学_最大流问题(精选)
46、法律有权打破平静。——马·格林 47、在一千磅法律里,没有一盎司仁 爱。— —英国
48、法律一多,公正就少罚才能 使犯罪 得到偿 还。— —达雷 尔
50、弱者比强者更能得到法律的保护 。—— 威·厄尔
谢谢你的阅读
运筹学最大流问题
它决定了整个网络的最大通过能力。
四、最大匹配问题
|M |表示集合M中M的边数。
一个图的最大匹配中所含边数是确定的, 但匹配方案可以不同。
定义23 二部图G=(X,Y,E), M是边集E的子集, 若M中的任意
若不存在另一匹配M1, 使得|M1|>|M|, 则称M为最大匹配.
x5
y1x3y2x2y3x1
y4
x4
y5
x5
y1
x3
y2
x2
y3
x1
y4
x4
y5
vs
vt
1
1
1
1
1
1
1
1
1
1
1
1
如图,要求设计一个方案,使量多的人能就业。
(1,3)
(2,4)
(4,3)
(1,2)
(3,2)
(3,t)
(2,4)
(3,t)
(4,3)
(4,t)
(1,3)
(3,t)
15
(4,t)
21
17
18
19
24
14
25
15
割
容量
4-3、最大流-最小割定理
定理
定理2 (最大流-最小割定理) 任一网络G中, 从vs 到 vt 的
定义
设 f 为网络G=(V, E, C)的任一可行流, 流量为W ,
未标号点集合为 S = {v1, v2, v4, v5, v6, v7}
割集(S, S )= {(vs, v1), (vs, v2), (v3, v6)}
割集容量
可得到一个最小割. 见图中虚线.
华南理工大学 运筹学 第7章 图论-2(简) 工商管理学院
节点标号—对已标号未检查的节点v1,对与其相邻 、未标号的节点v4(前向非饱和弧)进行标号。
[+vs,4]
(7,3) v1 (7,2)
[+v1,4]
v4 (9,6)
(5,1) v2
[-, ∞]
vs
(8,4)
(4,0) (7,1) (16,5) (6,4) v5
18
(10,4)
vt
(4,0)
(10,4)
[-, ∞]
vs
(10,4)
(4,0) (10,4) v3
(16,5)
(6,4) v5
22
Ford-Fulkerson标号算法示例1
(第2轮迭代) 1-搜索过程:
节点标号—对节点v4(前向非饱和弧)进行标号。
[+vs,1]
(7,6) v1 (7,5)
[+v1,1]
v4 (9,9)
(5,1) v2
图G为流量网络。
2
最大流问题示例1
Petro公司的天然气管道输送网络:vs为Petro公 司的制气厂,vt为输送目的地的储气库,其它 中间节点为流量检测和控制站。各点间的弧代 表输送管道,其权值的两个数字分别表示容量 和当前的流量。问:如何利用输送管道,可以 使从制气厂运输到目的地的天然气最多?
(1) 已标号已检查;(2)已标号未检查;(3)未标号。
检查是指从一个已取得标号、未检查的节点vi 出发,搜寻与之邻接的其它未取得标号的节点 vj ,并根据vi的标号计算得到vj的标号。
7
Ford-Fulkerson标号算法
节点vj的标号为[+vi,θj]或[−vi,θj]:
运筹学最大流问题例题
运筹学最大流问题例题摘要:I.引言- 介绍运筹学最大流问题- 问题的背景和实际应用II.最大流问题的定义- 给定图和容量- 源点和汇点- 中间点III.最大流问题的求解方法- 增广链法- 最小费用最大流问题IV.例题详解- 例题一- 例题二- 例题三V.结论- 总结最大流问题的求解方法和应用- 展望未来研究方向正文:I.引言运筹学最大流问题是运筹学中的一个经典问题,主要研究在给定的有向图中,如何从源点向汇点输送最大流量。
最大流问题广泛应用于运输、通信、网络等领域,具有重要的理论和实际意义。
本文将介绍运筹学最大流问题的相关概念和方法,并通过例题进行详细解析。
II.最大流问题的定义最大流问题给定一个有向图G(V, E),其中包含一个源点(vs)、一个汇点(vt) 和若干个中间点。
对于图中的每一条边(vi, vj),都有一个非负容量cij。
我们需要从源点向汇点输送流量,使得总流量最大。
III.最大流问题的求解方法最大流问题的求解方法主要有增广链法和最小费用最大流问题。
1.增广链法增广链法是一种基于动态规划的方法。
假设我们已经找到了从源点到汇点的最大流量f,现在要寻找一条增广链,使得流量可以增加。
增广链的定义是:从源点出发,经过若干条边,最后到达汇点的路径,且这条路径上所有边的容量之和c > f。
如果找到了这样的增广链,我们可以将源点与增广链的起点之间的边(vs, v1) 的容量增加c,同时将增广链上所有边的容量减少c,从而得到一个新的最大流量f",满足f" > f。
不断寻找增广链,直到无法找到为止,此时的最大流量即为所求。
2.最小费用最大流问题最小费用最大流问题是在最大流问题的基础上,要求源点向汇点输送的流量所经过的路径的费用最小。
求解方法是在增广链法的基础上,每次寻找增广链时,不仅要满足c > f,还要满足从源点到汇点的路径费用最小。
IV.例题详解以下是三个最大流问题的例题详解:例题一:给定一个有向图,源点vs 的入次为0,汇点vt 的出次为0,其他点的入次和出次均为1。
运筹学最大流问题例题
运筹学最大流问题例题运筹学中的最大流问题是一种重要的优化问题,它在网络流量分配、路径规划等领域有着广泛的应用。
下面我将给出两个较为详细的最大流问题例题,以帮助读者更好地理解。
例题一:假设有一个有向图,其中包含一个源点S和一个汇点T,其他节点分别表示供给点和需求点。
每条边的容量表示该路径上的最大流量。
现在我们需要确定从S到T的最大流量。
其中,源点S有一个供给量为10的容器,汇点T有一个需求量为10的容器。
其他节点没有容器。
图中各点之间的边的容量如下:S -> A: 5S -> B: 3A -> C: 4A -> D: 2B -> E: 2B -> F: 4C -> T: 3D -> T: 1E -> T: 1F -> T: 5求解:通过构建网络流图,我们可以将这个问题转化为一个最大流问题。
首先,我们为每条边都添加一个容量属性,然后为S和T之间添加一个超级源点和超级汇点。
图示如下所示:```S/ | \A B C/ | | \D E F T```超级源点S0与源点S之间的边的容量为源点S的供给量10,超级汇点T0与汇点T之间的边的容量为汇点T的需求量10。
接下来,我们要找到从超级源点到超级汇点的最大流量,即求解这个网络流图的最大流。
解答:根据这个网络流图,我们可以使用Ford-Fulkerson算法求解最大流问题。
具体步骤如下:1. 初始化网络流为0。
2. 在剩余容量大于0的路径上增广流量:从超级源点出发,找到一条路径到达超级汇点,该路径上的流量不超过路径上边的最小容量。
3. 更新剩余容量:将路径上的每条边的剩余容量减去增广流量。
4. 将增广流量加到网络流中。
5. 重复步骤2-4,直到找不到从超级源点到超级汇点的路径。
通过应用Ford-Fulkerson算法,我们可以得到从超级源点到超级汇点的最大流量为8。
因此,从源点S到汇点T的最大流量也为8。
北邮运筹学ch7-4 最大流问题
去掉所有标号,重新标号
标号不能继续进行,说明不存在从发点到收点的增广链, 得到最大流.
66
∞①
83
1
44
②
11
④ 76
41
60
⑥
22
93
③
5
22
⑤
最大流量 运筹学 北京邮电大学 v=6+3=9
§7.4 最大流问题
Maximum Flow Problems
Ch7 Graph and Network
__
截集 将图G=(V,E)的点集分割成两部分 V1、V 1 并且
__
__
__
vs V1及vt V 1,则箭尾在V1箭头在V 1的弧集合(V1,V 1〕
称为一个截集,截集中所有弧的容量之和称为截集的截量。
下图所示的截集为 (V1,V1) (1,2), (3,4), (3,5) 截量C(V1,V1) 6 2 2 10
74 92
⑥7
§7.4 最大流问题
Maximum Flow Problems
Ch7 Graph and Network
2020/2/15
Page 10 of 12
4.求调整量
2② 4 2
min ,6,2,1,71 ∞ ① 6 4
10 42
5.调整可行流
82
22
去掉所有标号,重新标号
Ch7 Graph and Network
2020/2/15
Page 7 of 12
【定理】可行流是最大流当且仅当不存在发点到收点的增广链
最大流的标号算法
步骤 1. 找出第一个可行流,例如所有弧的流量fij =0 2. 用标号的方法找一条增广链 A1:发点标号(∞), A2:选一个点 vi 已标号并且另一端未标号的弧沿着某 条链向收点检查: 如果弧的方向向前并且有fij<Cij,则vj标号(Cij-fij) 如果弧的方向指向vi并且有fji>0,则vj标号(fji) 当收点不能得到标号时,说明不存在增广链,计算结束。
运筹学第7章最大流问题 PPT
调整过程:在增广链上,前向边流量增加l(vt),后 向边流量减少l(vt)。
下面用实例说明具体的操作方法:例
v2 (4,3) (3,3)
vs (5,1)
(1,1) (1,1)
v1 (2,2)
v4 (5,3)
(3,0) vt (2,1)
v3
在图中给出的可行 流的基础上,求vs 到vt的最大流。
(-vv21,1)(4,3)
(3,3)
(v2,1)
v4 (5,3)
(,+∞)
vs (5,1)
(1,1) (1,1)
(v3,1)
下图中已经标示出了一个可行流,求最大流
v[2vs, 4] (4, 0)
(4, 0)
[, ∞] vs
(1, 0) (1, 0)
[v2,v44]
(3, 2)
(5, 2)
vs [v4, 3]
(2, 0)
(5, 2)
v1
[vs, 3]
(2, 2)
v5
(4, 0)
v3
[-v4, 2]
如图已经得到增广链,然后进行调整。
网络的总流量。
可行流总是存在的,例如f={0}就是一个流量为0的可 行流。
所谓最大流问题就是在容量网络中寻找流量最大的可 行流。
一个流f={fij},当fij=cij,则称f对边(vi, vj)是饱和的, 否则称f对边(vi, vj)不饱和。对于不饱和的,其间隙为 δij=cij-fij
最大流问题实际上是一个线性规划问题。
运筹学最大流问题实验报告
运筹学最大流问题实验报告一、实验目的1. 学习最大流问题的基本概念。
2. 掌握最大流问题的求解算法。
3. 通过程序模拟求解,加深对最大流问题的理解。
二、实验原理最大流问题是在一个有向图中,给定一条源点到汇点的路径以及每一条边的最大容量,求最大流量的问题。
在网络流中,每个有向边都表示一定的流量,其中每个边的构成是(开始节点,结束节点,最大容量)。
最大流问题通常使用增广路算法或Ford-Fulkerson算法来求解。
1.增广路算法增广路算法是一种贪心算法。
该算法不断寻找一条增广路,并将增广路中的最小流量分配给这条增广路的每一条边。
当不存在增广路时,算法结束,返回最大流量。
2.Ford-Fulkerson算法Ford-Fulkerson算法是一种经典的解法,它是基于增广路径的算法。
但是这种算法是暴力寻求增广路径,时间复杂度较高。
需要借助一个可行函数,用来判断剩余网络中是否还有增广路。
一个网络的可行函数应该满足:当且仅当所有的边都满足限制的时候,可行函数有唯一最大值。
可行函数常常构建为距离标号(下面会讲到)。
三、实验步骤使用Python语言,实现最大流问题的求解算法。
算法采用增广路算法。
1. 构建有向图,每个节点可以表示为一个数字。
源点的编号为0,汇点的编号为N-1。
有向边的构成是(开始节点,结束节点,最大容量)。
2. 实现BFS广度优先搜索算法寻找增广路径。
3. 实现对路径上节点的最小流量计算并更新网络。
4. 不断循环执行2、3步骤,直到不存在增广路径为止。
5. 输出最大流量。
四、实验结果下面是一个简单的实例,以验证程序的正确性。
在这个网络中,从源点0到汇点5,可以有两条不同路径:0→1→2→4→5和0→1→3→4→5。
这两条路径中,最小容量的路径是第一条,容量为3。
在执行完毕后,程序输出了最大流量为3。
五、实验结论通过本实验,我们学习了最大流问题的基本概念,掌握了最大流问题的求解算法,并且通过程序模拟成功地求解了一个基本问题,加深了对最大流问题的理解。
最大流问题
• 证明 设 f 是一个最大流,流量为W,用下 面的方法定义点集 S • 令 vs S ; vj S , • 若点 vi S ,且 fij cij则令 f 0, • 若点 vi S 且 则令 , v S ji j v v S • 在这种定义下, t 一定不属于 S ,若否, t 则得到一条从vs 到 vt的链 ,规定vs 到 vt 为链 的方向,链上与 方向一致的边叫前向边, 与 方向相反的边称为后向边,即 如图542中 为前向边 为后向边。 v1 , v2 v3 , v2 中的前向边 vi , v j • 根据 S 的定义, 上必有 fij cij ,后向边上必有 fij 0
取 min ij ,显然 0。 f • 我们把 f 修改为 1 : f ij vi , v j 为 上前向边 f1 f ij vi , v j 为 后向边 其余 f ij f • 不难验证 1 仍为可行流(即满足容量限制条件与 平衡条件),但是 f1的总流量等于 f 的流加 , 这与 f 为最大流矛盾,所以 vt不属于 S 。
• 转入调整过程,令 vt 2 为调整量,从 vt点 v4 开始,由逆增广链方向按标号 v4 , 2找到点, 令 f 4t f。 4t 2 • 再由 v4 点标号 v1, 2找到前一个点 v1 ,并 令 f14 f14 2。按 v1 点标号找到点v5 。 f15 2 • 由于标号为 v5 , v5 , v1 为反向边,令 f15 f 25 2 。 • 由 v5 点的标号在找到 v2 ,令 f25 • 由 v2 点找到 vs,令 f s2 f s 2 2 • 调整过程结束,调整中的可增广链见图544,调整后的可行流见图5-45。
运筹学最大流问题例题
运筹学最大流问题例题一、问题描述在运筹学领域,最大流问题是一种重要的网络流问题,其目标是在给定有向图中,找到从源点到汇点的最大流量。
求解最大流问题可以应用于许多实际场景,比如物流调度、电力网络分配等。
二、问题分析最大流问题可以通过使用流网络模型来求解。
流网络由一组有向边和节点组成,其中每条边都带有一个容量值,代表该边所能通过的最大流量。
流量值表示通过该边的实际流量。
为了求解最大流问题,我们需要使用网络流算法,其中最著名的算法是Ford-Fulkerson算法和Edmonds-Karp算法。
这些算法通过不断寻找增广路径来增加流量,直到无法找到增广路径为止。
三、问题实例为了更好地理解最大流问题,以下是一个具体的例子:假设有一个物流网络,由多个节点和边构成。
每条边都带有一个容量值,表示该边所能通过的最大流量。
网络中有一个源点和一个汇点,我们需要找到从源点到汇点的最大流量。
节点和边的关系如下:源点 -> A: 容量为5源点 -> B: 容量为3A -> C: 容量为2A -> D: 容量为4B -> C: 容量为2B -> E: 容量为3C -> 汇点: 容量为4D -> 汇点: 容量为5E -> 汇点: 容量为3根据以上描述,我们可以通过使用Ford-Fulkerson算法来求解最大流问题。
算法的基本步骤如下:1. 初始化流网络,将所有边上的流量设为0。
2. 寻找增广路径:通过深度优先搜索或广度优先搜索,寻找从源点到汇点的一条路径,使得路径上的边上仍有剩余容量。
3. 计算路径上的最小容量值,即可通过的最大流量。
4. 更新路径上的边的流量,即增加最小容量值。
5. 重复步骤2-4,直到无法找到增广路径为止。
6. 最后,计算源点流出的总流量,即为最大流量。
通过以上例子,我们可以清楚地了解最大流问题的基本思想和求解步骤。
在实际应用中,可以根据具体情况使用不同的网络流算法来求解最大流问题。
运筹学最大流问题例题
运筹学最大流问题例题摘要:一、运筹学最大流问题的基本概念二、最大流问题的求解方法三、最大流问题例题详解四、总结与展望正文:一、运筹学最大流问题的基本概念运筹学最大流问题是一种在网络中寻找最大流量的问题。
给定一个有向图G(V,E),其中仅有一个点的入次为零称为发点(源),记为vs;仅有一个点的出次为零称为收点(汇),记为vt;其余点称为中间点。
对于G 中的每一条边(vi,vj),相应地给一个数cji(cji 0),称为边(vi,vj) 的容量。
最大流问题的目标是找到从源点到汇点的最大流量。
二、最大流问题的求解方法求解最大流问题的方法主要有两种:一种是基于图论的方法,如Ford-Fulkerson 算法;另一种是基于线性规划的方法,如Maximum Flow Problem with Linear Programming。
1.Ford-Fulkerson 算法Ford-Fulkerson 算法是一种基于图论的贪心算法,用于求解最大流问题。
它通过不断寻找增广链并扩充流量来逐步改进解,直至找不到增广链为止。
算法步骤如下:(1) 初始化流量为零;(2) 对于所有中间点i,找到所有出边(i,j) 中容量最大的边,将流量沿该边增加到最大容量;(3) 重复步骤(2),直至找不到增广链;(4) 得到的流量即为最大流量。
2.Maximum Flow Problem with Linear ProgrammingMaximum Flow Problem with Linear Programming 是一种基于线性规划的方法,用于求解最大流问题。
它将最大流问题转化为线性规划问题,并采用线性规划求解器求解。
具体步骤如下:(1) 将有向图G 转换为网络;(2) 设定变量:设置容量变量cji 和流量变量fij;(3) 建立目标函数:目标是求解最大流量,即求max {∑fij};(4) 建立约束条件:流量平衡约束、容量约束和流量非负约束;(5) 采用线性规划求解器求解线性规划问题,得到最大流量。
运筹学最大流问题例题
运筹学最大流问题例题摘要:1.运筹学最大流问题简介2.最大流问题的基本概念和方法3.最大流问题的求解步骤4.最大流问题在实际应用中的案例分享5.总结与展望正文:【提纲1:运筹学最大流问题简介】运筹学最大流问题是一种求解网络中最大流量的问题。
在有向图中,有一个发点(源)和一个收点(汇),其他点称为中间点。
给定每条边的容量,我们需要找到一条从发点到收点的路径,使得这条路径上的流量最大。
最大流问题在物流、交通、通信等领域具有广泛的应用。
【提纲2:最大流问题的基本概念和方法】在最大流问题中,我们需要了解以下几个基本概念:1.流量:表示在一条边上流动的单位数量。
2.容量:表示一条边能承受的最大流量。
3.增广链:从发点到收点的路径,路径上的每条边都有剩余容量。
求解最大流问题的基本方法是:1.初始化:将所有边的流量设为0。
2.寻找增广链:在图中寻找一条从发点到收点的路径,使得路径上的每条边都有剩余容量。
3.更新流量:将找到的增广链上的流量增加,同时更新路径上其他边的剩余容量。
4.重复步骤2和3,直到无法再找到增广链。
【提纲3:最大流问题的求解步骤】以下是求解最大流问题的具体步骤:1.构建网络图:根据题目给出的条件,构建有向图。
2.初始化:将所有边的流量设为0,记录发点和收点。
3.寻找增广链:使用深度优先搜索或广度优先搜索等算法,在图中寻找一条从发点到收点的路径。
4.更新流量:找到增广链后,将路径上的流量增加,同时更新路径上其他边的剩余容量。
5.重复步骤3和4,直到无法再找到增广链。
6.输出结果:最大流即为所有增广链上的流量之和。
【提纲4:最大流问题在实际应用中的案例分享】最大流问题在实际应用中具有广泛的价值,例如:1.物流配送:通过最大流问题优化配送路线,降低物流成本。
2.交通规划:通过最大流问题优化交通网络,提高出行效率。
3.通信网络:通过最大流问题优化网络资源分配,提高通信质量。
【提纲5:总结与展望】运筹学最大流问题是一种重要的优化问题,其在实际应用中具有广泛的价值。
最大流问题求解算法_运筹学_[共4页]
下面介绍寻找网络最大流的 Ford-Fulkerson 标号法。 Ford-Fulkerson 算法是由 Ford 和 Fulkerson 于 1956 年提出的,其实质是判断是否有增广链 存在,并设法把增广链找出来,也称为 Ford-Fulkerson 标号法。基本思想是,从一个可行流出 发,寻找自 v1 的增广链可以到达的所有顶点集合 S ,若 vn ∈ S ,则有 v1 到 vn 的增广链,修改 增广链上的流量,得到一个流量更大的可行流,重复这个过程,直到 vn∈S 为止。 从一个可行流出发,经过标号过程与调整过程。 1.标号过程 在这个过程中,网络中的点或者是标号点(又分为已检查和未检查两种),或者是未标号 点。每个标号点的标号包含两个部分:第一个标号表明它的标号是从哪一点得到的,以便找 出增广链;第二个标号是为确定增广链的调整量 θ 用的。 标号过程开始,先给 v1 标上(0, +∞),这时 v1 是标号而未检查的点,其余都是未标号点。 一般地,取一个标号而未检查的点 vi ,对一切未标号点 vj : (1)若 在 弧(vi,v j)上 , 有 xij < wij , 则 给 定 v j 标 号(vi,(l v j)), 这 里 就 有 l(v j ) = min ⎡⎣(l vi),wij − xij ⎤⎦ ,这时点 vj 成为标号而未检查的点; (2)若 在 弧(vj,vi)上 , 有 x ji > 0 , 则 给 v j 标 号(− vi,(l v j)), 这 里 就 有(l v j)= min ⎡⎣(l vi),x ji ⎤⎦ ,这时点 vj 成为标号而未检查的点。 于是 vi 成为标号而已检查过的点。重复上述步骤,一旦 vn 被标上号,表明得到一条从 v1 到 vn 的增广链 μ ,转入调整过程。 若所有标号均已检查过,而标号过程进行不下去,则算法结束,这时的可行流就是最大流。
最大流问题最大流问题的数学模型可行流和分割集合流量与容量流量
最大流判定和性质
最大流 伴随增量网络中不含有任何从 vs到vt的的路径.对应于原网络,即不存在 从vs到vt的流量增广链. 分割定义 性质
性质说明
φ(Q,P)=0. 若不然,φ([u,v])>0, u∈ Q, v∈ P, 则在伴随增量网络中包含一条从v到u的逆 向弧,从而u可达.这与u ∈ Q矛盾.
Ford-Fulkerson方法原理
依据最大流问题的要求,为网络分配一个 可行流,可以取零流. 若这一可行流的流量就是最大流量,则问 题已经解决; 若不是最大流量,则增加流量获得流量更 大的可行流.
Ford-Fulkerson方法流图
求一个初始可行流
Ford-Fulkerson方法关键
关键问题:如何增加流量?怎样判断是否 需要增加流量?
v4 11,10 vt
算法讨论
算法只对整数容量适用. 最大流解不唯一.如下图
v2
7,7 4,4 3,0 9,9 5,3
5,3 9,9
10,10 v5
v3 v2
11 4 vs 9 3
6,6
7 4 2 3
v4 10 1 vt 10
v4
11,10
v2 vt vs
15,11 3,0 9,9
vs
15,11
v2 v2
15,10 vs 3,1 5,2 9,6 10,7 v5 3 7 4 2 3 6 1 3 3 2 v4 9 2 3 7 v5 9,9 vt vs 3,1 15,10 3 vs 7,7 4,4 v4 11,9 vt vs 6 10 5 2 1
运筹学最大流
定理2 在网络中s→t的最大流量等于它的最小割集的容量,
即:
v* (f ) = c *(V, V´)
网络的最大流
Page 8
增广链 在网络的发点和收点之间能找到一条链,在该链上所
有指向为s→t的弧,称为前向弧,记作μ+,存在f<c;所有指向 为t→s的弧,称为后向弧,记做μ-,若f>0,则称这样的链为
v1
1(1)
4(3)
(∞)
3(2)
s
3(2) 4(3)
(1)
v5
10(6)
fs2 1
3(2) 5(3)
f 25 1
f53 1
v2
4(4)
(4)
v4
7(6)
(1)
2(2)
●t
8(5) f3t 1
v3
(1)
网络的最大流
(6) 擦除原标号
v1
1(1)
4(3)
(∞)
3(2)
s
3(2) 4(3)
(1)
(2) 修改增广链上的流量,非增广链上的流量不变,得到新的可行
流。
v1
1(1)
v4
4(3)
(∞)
3(2)
s
3(2) 4(3) v5
7(6)
(2)
2(2)
●t
10(4)
fs2 2
3(2) 5(3)
v2
4(2)
(6)
f 23 2
8(3)
v3
f3t 2
(2)
网络的最大流
(3) 擦除原标号,重新搜寻增广链。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
标号过程: (1)给vs标号(,+∞),vs成为已标号未检查的点,其余都是未标号点。 (2)取一个已标号未检查的点vi,对一切未标号点vj:若有非饱和边(vi,vj),则vj标 号(vi,l(vj)),其中l(vj)=min[l(vi),cij – fij],vj成为已标号未检查的点;若有非零边 (vj,vi),则vj标号(-vi,l(vj)),其中l(vj)=min[l(vi), fji],vj成为已标号未检查的点。vi成
可行流总是存在的,例如f={0}就是一个流量为0的可行流。 所谓最大流问题就是在容量网络中寻找流量最大的可行流。 一个流f={fij},当fij=cij,则称f对边(vi, vj)是饱和的,否则称f对边(vi, vj)不饱和。对
于不饱和的,其间隙为δij=cij-fij 最大流问题实际上是一个线性规划问题。 但利用它与图的密切关系,可以利用图直观简便地求解。
最大流问题
Байду номын сангаас
基本概念
v2 3
4 v4 5
vs
1
1
3
vt
5
2
v1
2 v3
给定一个有向图G=(V,E),其中仅有一个点的入次为零称为发点(源),记为vs, 仅有一个点的出次为零称为收点(汇),记为vt,其余点称为中间点。
对于G中的每一条边(vi,vj),相应地给一个数cij(cij≥0),称为边(vi,vj)的容 量。我们把这样的网络 G称为容量网络 ,记为G=(V,E,C)。
v2 (4,3) (3,3)
vs (5,1)
(1,1) (1,1)
v1 (2,2)
v4 (5,3)
(3,0)
vt
(2,1)
v3
在图中给出的可行 流的基础上,求vs
到vt的最大流。
(-vv21,1)(4,3)
(3,3)
(v2,1)
v4 (5,3)
(,+∞)
vs
(5,1)
(1,1) (1,1)
(v3,1)
网络上的流,是指定义在边集E上的 函数f={f(vi,vj)},并称f(vi,vj)为边
(vi,vj)上的流量,简记为fij。
v2 3,1
4,1 v4 5,2
vs
1,0
5,2 v1
1,0
3,1
vt
2,1
2,2 v3
标示方式:每条边上标示两个数字,第一个是容量,第二 是流量
可行流、可行流的流量、最大流。
可行流是指满足如下条件的流:
(1)容量限制条件:对G中每条边(vi,vj), 有
0 fij cij
(2)平衡条件:
对中间点,有:
fij fki
j
k
(即中间点vi的物资输入量等于输出量)
对收点vt与发f点sivs,有:f jt W
i
j
(即vs发出的物资总量等于vt接收的物资总量),W是网络的总流量。
为已标号已检查的点。 (3)重复步骤(2),直到vt成为标号点或所有标号点都检查过。若vt成为标号点, 表明得到一条vs到vt的增广链,转入调整过程;若所有标号点都检查过,表明这
时的可行流就是最大流,算法结束。 调整过程:在增广链上,前向边流量增加l(vt),后向边流量减少l(vt)。
下面用实例说明具体的操作方法:例
给定容量网络G=(V,E,C),若点集V被剖
分为两个非空集合V1和V2,使 vs∈V1 ,vt∈V2,
则把边集(V1,V2)称为(分离vs和vt的)割集。
v2 3
4 v4 5
vs
1
1
3
vt
5
2
v1
2 v3
显然,若把某一割集的边从网络中去掉,
则从vs到vt便不存在路。所以,直观上说,割 集是从vs到vt的必经之路。
v2 3
vs
1
5 v1
4 v4
5
1
3
vt
2
2 v3
在容量网络的所有割集中,割集容量最小的割集称为最小割集(最小割)。
对于可行流f={fij},我们把网络中使fij=cij的
边称为饱和边,使fij<cij的边称为非饱和边;把
使fij=0的边称为零流边,使fij>0的边称为非零
流边。
若μ 是联结发点
vs
(4, 3) [, ∞] vs
(1, 0) (1, 0)
(5, 2)
v1
[vs, 3]
(2, 2)
[v2,v14 ]
(5, 5)
vs
[v5, 1]
(3,0)
vt
(2,1)
v1 (2,2)
v3
(vs,4)
(-v2,1)
(3,3) v2 (4,3)
(,+∞)
vs
(1,0) (1,0)
(5,2)
v1 (2,2)
(vs,3)
v4(5,3)
(3,0)
vt
(2,2)
v3
得增广链,标号结束, 进入调整过程
无增广链,标号结束,得 最大流。同时得最小割。
下图中已经标示出了一个可行流,求最大流
v2 3,1
1,0 5,2
4,1 1,0
v4 5,2
3,1
vs和收点vt的一条链,
我们规定链的方向是
2,1 vt 从vs到vt,则链上的
v1
2,2 v3
边被分成两类:前向
边、后向边。
设f是一个可行流,μ是从vs到vt的一条链,若μ 满足前向边都是非饱和边,后向边都是都是非零
流边,则称μ是(可行流f的)一条可增广链。
[vv2 s, 4] (4, 0)
(4, 0) [, ∞] vs
(1, 0) (1, 0)
[v2,
4]
v4
(3, 2)
(5, 2)
vs
[v4, 3]
(2, 0)
(5, 2)
v5
v1
[vs, 3]
(2, 2)
(4, 0)
v3
[-v4, 2]
如图已经得到增广链,然后进行调整。
调整后的可行流如下图:
[vv2s, 1] (4, 3)
对最大流问题有下列定理:
定理1 容量网络中任一可行流的流量 不超过其任一割集的容量。
定理2(最大流-最小割定理)任一容 量网络中,最大流的流量等于最小割集
的割量。
推论1 可行流f*={fij*}是最大流,当且 仅当G中不存在关于f*的增广链。
求最大流的标号法
标号法思想是:先找一个可行流。 对于一个可行流,经过标号过程得到 从发点vs到收点vt的增广链;经过调整 过程沿增广链增加可行流的流量,得 新的可行流。重复这一过程,直到可
v1
v2
vs
v3
vt
v4
边集(vs,v1),(v1,v3),(v2,v3),(v3,vt),(v4,vt)是G的割集。其顶点 分别属于两个互补不相交的点集。去掉这五条边,则图不连通,去掉这五条边中的任
意1-4条,图仍然连通。
割集的容量(简称割量) 最小割集
割集(V1, V2)中所有起点在V1,终点在V2的边的容量的和称为割集容量。例如下 图中所示割集的容量为5