机器学习PPT(7)

合集下载

机器学习课程讲义和PPT课件(含配套实战案例)

机器学习课程讲义和PPT课件(含配套实战案例)

3
聚类算法
将数据按照相似性分组,如市场细分和社交网络分析。
监督学习和无监督学习
监督学习使用带有标记的数据来训练模型,无监督学习则使用未标记的数据 进行训练。
机器学习的评估方法
准确率: 模型预测与实际结果相符的比例。 召回率: 正确识别的样本数量与所有实际样本数量的比例。 F1值: 综合考虑准确率和召回率的度量指标。 交叉验证: 利用同一数据集进行重复实验,以平均得到更可靠的模型评估结果。
分类和回归的区别
1 分类
根据输入的特征将数据分为不同的类 别,如判断邮件是否为垃圾邮件。
2 回归
根据特征预测输出的连续值,如预测 房价。
SVMБайду номын сангаас持向量机
支持向量机是一种有效的分类和回归算法,通过最大化分类间隔来找到最佳 的决策边界。
决策树和随机森林
决策树
使用树形结构表示决策过程,每个节点代表一个 特征。
随机森林
由多个决策树组成的集成学习算法,通过投票来 作出最终预测。
神经网络与深度学习
神经网络是一种基于生物神经元的模型,深度学习则是利用多层神经网络来 解决复杂的问题。
机器学习课程讲义和PPT课件 (含配套实战案例)
为初学者提供全面的机器学习知识,从基础算法到实战案例全方位掌握。课 程内容涵盖监督学习、无监督学习、神经网络等核心模块。
什么是机器学习
机器学习是一种人工智能领域的应用,通过使用统计和算法模型,让计算机 从数据中学习并改善性能。
机器学习的应用领域
自然语言处理
使用机器学习技术来处理和理解自然语言, 如聊天机器人和语音识别。
图像识别
利用机器学习算法识别和分析图像中的对 象,如人脸识别和物体检测。

《机器学习》ppt课件完整版

《机器学习》ppt课件完整版

软间隔与正则化
为了处理噪声和异常值, 可以引入软间隔,并通过 正则化参数来平衡间隔最 大化和误分类点的惩罚。
决策树与随机森林
决策树 一种易于理解和实现的分类与回归算法, 通过递归地划分特征空间来构建树形结
构。
随机森林
一种集成学习方法,通过构建多棵决 策树并结合它们的输出来提高模型的
泛化性能。
剪枝
为了避免决策树过拟合,可以采用剪 枝技术来简化树结构,包括预剪枝和 后剪枝。
特征重要性
随机森林可以计算每个特征的重要性 得分,用于特征选择和解释模型。
集成学习方法
Bagging
通过自助采样法(bootstrap sampling)生成多个数据集,然 后对每个数据集训练一个基学习 器,最后将所有基学习器的输出 结合起来。
Boosting
一种迭代式的集成学习方法,每 一轮训练都更加关注前一轮被错 误分类的样本,通过加权调整样 本权重来训练新的基学习器。
01
RNN基本原理
解释RNN的基本结构和工作原理, 包括输入、隐藏状态和输出等。
03
序列到序列模型
阐述序列到序列模型在机器翻译、 语音识别等领域的应用。
02
LSTM与GRU
介绍长短时记忆网络(LSTM)和 门控循环单元(GRU)等RNN改进
模型的结构和原理。
04
注意力机制
介绍注意力机制在RNN中的应用, 提高模型对关键信息的关注度。
正则化 为了解决过拟合问题,可以在损失函数中加入正则化项, 如L1正则化(Lasso回归)和L2正则化(Ridge回归)。
支持向量机(SVM)
01
02
03
二分类问题
SVM最初是为二分类问题 设计的,通过寻找一个超 平面来最大化正负样本之 间的间隔。

人工智能课件 -07.机器学习

人工智能课件 -07.机器学习

第五节 类比学习
类比推理形式的说明 设有两个具有相同或相似的论域:源域S和目标域T,
且已知S中的元素a和T中的元素b具有相似的属性P,即 P(a) ≌ P(b),a还具有属性Q,即Q(a)。根据类比推理, b也具有属性Q。即
P(a)∧Q(a), P(a) ≌ P(b) |- Q(b)Q(a)
第五节 类比学习
第四节 归纳学习
2、联想归纳 若已知两个事物a与b有n个属性相似或相同,即 a具有属性P1,b具有属性P1 a具有属性P2,b具有属性P2 …… a具有属性Pn,b具有属性Pn
发现a具有属性Pn+1,则当n足够大时,可归纳出: b也具有属性Pn+1
的结论。
第四节 归纳学习
3、类比归纳 设A、B分别是两类事物的集合:
类比推理是在两个相似域之间进行的:一个是已认识的域, 称为源域,记为 S;另一个是当前尚未完全认识的域,称为 目标域,记为T。类比推理的目的就是从S中选出与当前问题 最近似的问题及其求解方法来求解当前的问题,或者建立起 目标域中已有命题间的联系,形成新知识。
设S1、T1分别表示 S 与 T 中的某一情况,且S1与T1相似, 再假设S2与S1相关,则由类比推理可推出T中的T2,且T2与S2 相似。
第四节 归纳学习
5、消除归纳
当我们对某个事物发生的原因不清楚时,通常会作一
些假设,这些假设之间是析取关系。以后,随着对事物
Байду номын сангаас
认识的不断深化,原先作出的某些假设有可能被否定,
经过若干次否定后,剩下的就可作为事物发生的原因。
这样的思维过程称为消除归纳。
已知:
A1 V A2 V … V An ~A1 ~Ai

机器学习7周志华ppt课件.ppt

机器学习7周志华ppt课件.ppt
七、贝叶斯分类器
1
1
贝叶斯决策论 (Bayesian decision theory)
概率框架下实施决策的基本理论 给定 N 个类别,令 λij 代表将第 j 类样本误分类为第 i 类所产生的 损失,则基于后验概率将样本 x 分到第 i 类的条件风险为:
贝叶斯判定准则 (Bayes decision rule) :
10
xi 的“父属性”
关键是如何确定父属性
10
两种常见方法
? SPODE (Super-Parent ODE): 假设所有属性都依赖于同一属性,称为“超父” (Super-Parent), 然后通过交叉验证等模型选择方法来确定超父属性
? TAN (Tree Augmented na?ve Bayes): 以属性间的条件 ”互信息 ”(mutual information)为边的权重,构建完 全图,再利用最大带权生成树算法,仅保留强相关属性间的依赖性
20
EM算法
如何处理“未观测到的”变量?
例如,西瓜已经脱落的根蒂,无法看出是“蜷缩”还是“坚挺”, 则训练样本的“根蒂”属性变量值未知 未观测变量 ? 隐变量(latent variable)
EM(Expectation-Maximization) 算法是估计隐变量的利器
令 X 表示已观测变量集, Z 表示隐变量集,欲对模型参数21 做 极大似然估计,则应最大化对数似然函数
13
? 训练样本非常充分 ? 性能可能提升
? 有限训练样本 ? 高阶联合概率估计困难
考虑属性间的高阶依赖,需要其他办法
13
贝叶斯网 (Bayesian network; Bayes network)
亦称“信念网” (brief network )

人工智能机器学习ppt课件

人工智能机器学习ppt课件

人类的未来生活和工作,还将有机器人参与。机器人的自主学 习,更离不开人脸识别技术。
2015年3月16日,马云在德国参加活动时,为嘉宾演示了一项 “Smile to Pay”的扫脸技术。在网购后的支付认证阶段,通过 扫脸取代传统的密码,实现“刷脸支付”。
机器学习的基本概念
❖ 机器学习的两大学派
✓ 机器学习:人工智能的重要分支 构造具有学习能力的智能系统 知识、推理、学习 手段:统计,逻辑,代数……
阿法狗的核心技术还包括策略网络的训练和蒙 特卡洛树搜索。
内容提要
第七章:机器学习系统 1.机器学习的基本概念 2.机器学习策略与基本结构 3.归纳学习 4.类比学习 5.解释学习 6.神经网络学习 7.知识发现 8.其他
机器学习是人工智能的核心,通过使机器模
拟人类学习行为,智能化地从过去的经历中获 得经验,从而改善其整体性能,重组内在知识 结构,并对未知事件进行准确的推断。机器学 习在科学和工程诸多领域都有着非常广泛的应 用,例如金融分析、数据挖掘、生物信息学、 医学诊断等。生活中常见的一些智能系统也广 泛使用机器学习算法,例如电子商务、手写输 入、邮件过滤等。
归纳学习
❖归纳学习(Induction Learning)
✓ 归纳学习是目前研究得最多的学习方法,其学习目的 是为了获得新概念、构造新规则或发现新理论。
✓ 根据归纳学习有无教师指导,可把它分为 示例学习:给学习者提供某一概念的一组正例和反 例,学习者归纳出一个总的概念描述(规则),并 使这个描述适合于所有的正例,排除所有的反例。 观察发现学习:
✓ 统计机器学习 从大量样本出发,运用统计方法,发现统计规律 有监督学习、无监督学习、半监督学习 问题:分类,聚类,回归
机器学习的基本概念

《机器学习》PPT课件

《机器学习》PPT课件

6
17.10.2020
重要性:例子—生物信息学
常用技术:
神经网络 支持向量机 隐马尔可夫模型 k近邻 决策树 序列分析 聚类
…… ……
7
重要性(续)
机器学习在过去十年中发展极为迅速,今后会快速稳定地 发展、对科学做出更大贡献的领域 [E.Mjolsness & D. DesCoste, Science 01]
17.10.2020
21
6.1 机器学习概述
学习可能只是一个简单的联想过程,给定了特定 的输入,就会产生特定的输出。如:狗
命令“坐” 行为“坐”
17.10.2020
22
学习的成功是多种多样的:
学习识别客户的购买模式以便能检测出信用卡 欺诈行为,
对客户进行扼要描述以便能对市场推广活动进 行定位,
共性问题:
几乎所有的领域,都希望越准越好
提高泛化能力是永远的追求
目前泛化能力最强的技术:
支持向量机(SVM) 产生途径:理论->实践
集成学习(ensemble learning) 产生途径:实践->理论
17.10.2020
10
挑战问题(1):泛化能力(续)
第一个挑战问题: 今后10年
能否更“准”?
如果能,会从哪儿来?
17.10.2020
11
挑战问题(2):速度
共性问题:
几乎所有的领域,都希望越快越好
加快速度也是永远的追求
“训练速度” vs. “测试速度
训练速度快的往往测试速度慢:k近邻 测试速度快的往往训练速度慢:神经网络
17.10.2020
12
挑战问题(2):速度(续)
第二个挑战问题: 今后10年

机器学习入门介绍PPT课件

机器学习入门介绍PPT课件
且 a具有属性 Pn+1 ,则当 n足够大时,可归纳出 b也具有属性Pn+1。
31
7.4.1 归纳推理
3. 类比归纳
设: Aa1,a2, , Bb 1,b 2, 且 P a i Q b i i1 ,2 ,...
则当A与B中有新元素出现时(设 A 中的a’及B中的 b’ ), 若已知 a’ 有属性,就可得出 b’ 有属性,即
1)学习机理: 对学习机制的研究,即人类获取知识、技能和 抽象概念的天赋能力。
2)学习方法:在生物学习机理进行简化的基础上,用计算的 方法进行再现。
3)学习系统:根据特定任务的要求,建立相应的学习系统。
6
7.1 机器学习的基本概念
7.1.1 学习 7.1.2 机器学习 7.1.3 机器学习系统 7.1.4 机器学习的发展 7.1.5 机器学习的分类
示例学习中,外部环境(教师)提供一组例子(正例和 反例),然后从这些特殊知识中归纳出适用于更大范围的 一般性知识,它将覆盖所有的正例并排除所有反例。
38
7.4.2 示例学习
1. 示例学习的学习模型
验证
示例空间
搜索
解释
形成知识
图7.7 示例学习的学习模型
知识库
39
7.4.2 示例学习
2. 形成知识的方法
P a Q b
32
7.4.1 归纳推理
4. 逆推理归纳:由结论成立推出前提以某种置信度成立。
一般模式: (1)若 H 为真时,则H→ E必为真或以置信度 cf1成立。 (2)观察到 E 成立或以置信度cf2成立。 (3)则 H 以某种置信度 ( cf ) 成立。
用公式表示 : H E
cf1
E
cf2

机器学习ppt课件

机器学习ppt课件

10
ab ab
电子商务系
机器学习
2021/5/13 ‹#›
k-近邻算法 (3)
表8-1的算法返回值是对f(xq)的估计,它是距离xq最近的k 个训练样例中最普遍的f值,结果与k的取值相关。
图8-1图解了一种简单情况下的k-近邻算法,实例是二维 空间中的点,目标函数具有布尔值,1-近邻算法把xq分类 为正例,5-近邻算法把xq分类为反例
v V i1
1 wi d(xq, xi )2
为了处理查询点xq恰好匹配某个训练样例xi,
从的而f(x导q)等致于d(fx(xq,i)x,i)2如为果0的有情多况个,这令样这的种训情练况样下例,
我们使用它们占多数的分类
k
对连续值目标函数进行距离加权
wi f (xi )
ቤተ መጻሕፍቲ ባይዱ
用右边公式替换表8-1中的公式
电子商务系
机器学习
2021/5/13 ‹#›
k-近邻算法
k-近邻算法是最基本的基于实例的学习方法
k-近邻算法假定所有的实例对应于n维空间Rn 中的点,任意的实例表示为一个特征向量
<a1(x), ..., an(x)>
根据欧氏距离定义实例的距离。两个实例xi和
xj的距离d(xi,xj)定义为
n
机器学习
(Machine Learning)
基于实例的学习
电子商务系
机器学习
2021/5/13 ‹#›
提纲
一. 简介 二. k-近邻算法 三. 局部加权回归 四. 基于案例的推理 五. 小结
电子商务系
机器学习
2021/5/13 ‹#›
一、简介
电子商务系
机器学习
2021/5/13 ‹#›

人工智能-7机器学习方法.ppt

人工智能-7机器学习方法.ppt
使用more_general_than偏序的搜索算法
从H中最特殊假设开始,然后在假设覆盖正例 失败时将其一般化
Find-S算法 1. 将h初始化为H中最特殊假设 2. 对每个正例x
对h的每个属性约束ai 如果x满足ai ,那么不做任何处理 否则 将h中ai替换为x满足的另一个更一般约束 3. 输出假设h
如“麻雀会飞”,“燕子会飞”等归纳“鸟会飞(鸵鸟不会飞)”.
归纳学习依赖于经验数据,因此又称为经验学习. 归纳学习的基本操作:泛化,例化;
泛化- 扩展一假设的语义信息,使其能包含更多的正 例,应用于更多的情况; 例化-用于限制概念描述的应用范围。
归纳学习方法
实例空间
选择例子 (例化)
规则空间
解释过程
单概念/多概念学习;
概念学习
许多机器学习涉及到从特殊训练样例中得到一 般概念。
概念,可被看作一个对象或事件集合,它是从 更大的集合中选取的子集,或在这个较大集合 中定义的布尔函数。
概念学习问题的定义
给定一个样例集合以及每个样例是否属于某个概念 的标注,怎样推断出该概念的一般定义。又称从样 例中逼近布尔函数。
假设的一般到特殊
考虑下面两个假设
h1=<sunny, ?, ?, Strong, ?, ?> h2=<Sunny, ?, ?, ?, ?, ?>
任何被h1划分为正例的实例都会被h2划分为正 例,因此h2比h1更一般(h1比h2更特殊)。
利用这个关系,无需列举所有假设,就能 在无限的假设空间中进行彻底的搜索
AirTemp Humidity
Warm
Normal
Warm
High
Cold
High
Warm Warm
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Neural Networks and Learning Machines, Third Edition Simon Haykin
Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.
Figure 7.2 Regularization network.
Neural Networks and Learning Machines, Third Edition Simon Haykin
Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.
Chapter 7 Regularization Theory
Neural Networks and Learning Machines, Third Edition Simon Haykin
Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.
Figure 7.1 Illustration of the mapping of (input) domain X onto (output) range Y.
Neural Networks and Learning Machines, Third Edition Simon Haykin
Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.
Figure 7.9 USPS data classification using (a) RLS algorithm and (b) Laplician RLS algorithm. (Reproduced with the permission of Dr.Vikas Sindhwani.)
Neural Networks and Learning Machines, Third Edition Simon Haykin
Neural Networks and Learning Machines, Third Edition Simon Haykin
Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.
Figure 7.8 Laplacian RLS classification of the double-moon of Fig. 1.8 with distance d = –1 and two labeled data points that are denoted by the markers ∆ and . The intrinsic regularization parameter λI = 0.1.
Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.
Table 7.1
Neural Networks and Learning Machines, Third Edition Simon Haykin
Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.
Figure 7.4 Model of the semisupervised learning process.
Neural Networks and Learning Machines, Third Edition Simon Haykin
Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.
Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.
Figure 7.7 Lapacian RLS classification of the double-moon of Fig. 1.8 with distance d = –1 and two labeled data points per class that are denoted by the markers ∆ and . Intrinsic regularization parameter λI = 0.0001.
Figure 7.3 Radial-basis-function network of reduced complexity.
Neural Networks and Learning Machines, Third Edition Simon Haykin
Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All riection f : X → Y.
Neural Networks and Learning Machines, Third Edition Simon Haykin
Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.
Figure 7.6 Illustrating the relationship between an atlas and its constituent charts. [This figure is adapted from Abraham et al. (1988).]
Neural Networks and Learning Machines, Third Edition Simon Haykin
相关文档
最新文档