线性代数自考知识点汇总.pdf
自考本线性代数知识点总结

自考本线性代数知识点总结一、向量和矩阵1. 向量的定义向量是有向线段的数学表示,通常用加粗的小写字母来表示,如a、b等。
向量有大小和方向,可以表示为一组有序的数值,例如a=(a1, a2, ..., an)。
2. 向量的运算向量可以进行加法、数乘和内积运算。
加法是指对应位置上的数值相加,数乘是指一个标量与向量的每个分量相乘,内积是指两个向量对应位置上的数值相乘后再相加得到一个标量。
3. 矩阵的定义矩阵是一个按照长方阵列排列的复数或实数集合。
矩阵通常用大写字母来表示,如A、B 等,可以表示为一个矩形数表格。
4. 矩阵的运算矩阵可以进行加法、数乘和乘法等运算。
矩阵的加法是指对应位置上的元素相加,数乘是指一个标量与矩阵的每个元素相乘,矩阵的乘法则是一种复杂的运算,需要满足一定的规则。
5. 矩阵的转置和逆矩阵的转置是指将矩阵的行和列互换得到的新矩阵,用A^T表示。
矩阵的逆是指对于一个n阶方阵A,存在一个n阶方阵B,使得A与B的乘积为单位矩阵。
二、行列式和特征值1. 行列式行列式是矩阵的一个重要性质,它可以用来描述矩阵线性变换前后的面积或体积的缩放比例。
行列式的计算是一个重要的线性代数知识点,非常重要。
2. 特征值和特征向量特征值是矩阵的一个重要性质,它是矩阵A的一个标量λ,使得矩阵A减去λ乘以单位矩阵的行列式为0。
特征向量是对应于特征值的非零向量,它可以用来描述矩阵线性变换的方向。
三、线性方程组和矩阵的应用1. 线性方程组线性方程组是由线性方程组成的方程组,它可以用矩阵的形式表示为AX=B,其中A为系数矩阵,X为未知数向量,B为常数向量。
2. 矩阵的应用矩阵在各个领域都有着广泛的应用,如在工程学中可以用来描述结构的受力分布,计算机科学中用来表示图像和二维图形的变换,物理学中用来描述物质的状态等。
四、线性变换和空间1. 线性变换线性变换是指一个向量空间到另一个向量空间的映射,它满足两个性质:对于所有的向量u和v以及标量c,有T(u+v) = T(u) + T(v),T(cu) = cT(u)。
(word完整版)线性代数重要知识点及典型例题答案,推荐文档

线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和n nn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ(奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。
(转置行列式TD D =) ②行列式中某两行(列)互换,行列式变号。
推论:若行列式中某两行(列)对应元素相等,则行列式等于零。
③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。
推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。
④行列式具有分行(列)可加性⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。
克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,。
化为三角形行列式 ⑤上(下)三角形行列式:行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的) 化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵n (零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) ---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0 转置A A T T =)( TT T B A B A +=+)( T T kA kA =)( TT T A B AB =)((反序定理) 方幂:2121k k k kA AA +=2121)(k k k k A A +=对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 数量矩阵:相当于一个数(若……)单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 注:把分出来的小块矩阵看成是元素N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的,|A|=0、伴随矩阵)2.、非零k 乘某一行(列)3、将某行(列)的K 初等变换不改变矩阵的可逆性 初等矩阵都可逆倍乘阵 倍加阵) ⎪⎪⎭⎫ ⎝⎛=O OO I D rr矩阵的秩r(A):满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则r (AB )=r (B ) 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n n ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。
线性代数.pdf

⎜⎛ 1 ⎟⎞
⎜⎛ 1 ⎟⎞
得基础解系
ξ1
=
⎜ ⎜
− −
1 1
⎟ ⎟
,
⎜⎜ ⎝
1
⎟⎟ ⎠
单位化即得 p1
=
1 2
⎜ ⎜
− −
1 1
⎟⎟.
⎜⎜⎝ 1 ⎟⎟⎠
当λ2 = λ3 = λ4 = 1时,解方程(E − A) x = 0,
可得正交的基础解系
nn
x
2 n
+ 2a12 x1 x 2 + 2a13 x1 x3 + ⋯ + 2an−1,n xn−1 xn
取 a ji = aij , 则2 aij xi x j = aij xi x j + a ji x j xi ,于是
f = a11 x12 + a12 x1 x2 + ⋯ + a1n x1 xn
⎪⎪ x2 = p21 y1 + p22 y2 + ⋯ + p2n yn
⎨ ⎪
⋯⋯
⎪⎩ xn = pn1 y1 + pn2 y2 + ⋯ + pnn yn
⎡ x1 ⎤
⎡ y1 ⎤
( ) 记
x
=
⎢ ⎢ ⎢
x2 ⋮
⎥ ⎥ ⎥
y
=
⎢ ⎢ ⎢
y2 ⋮
⎥ ⎥ ⎥
P = pij n×n
⎢ ⎣
x
n
⎥ ⎦
⎢ ⎣
yn
⎜⎝ x3 ⎟⎠
⎜ ⎝
2
3
−2 5 15
0
−2
45
⎟⎞⎜⎛
线代自考知识点总结

线代自考知识点总结一、向量的基本概念1. 向量的定义与性质2. 向量的线性运算3. 向量的数量积与向量积4. 线性相关与线性无关5. 向量组的基和维数向量是线性代数中的基本概念,它是有大小和方向的量。
向量的定义可以通过其几何意义和代数表示两种方式来理解。
在几何意义上,向量可以表示为有向线段,具有模长和方向两个属性。
在代数表示上,向量可以表示为一组有序的实数或复数。
向量的线性运算包括向量的加法和数乘,满足交换律和结合律等性质。
向量的数量积是向量的点乘,其结果是一个实数,表示两个向量的夹角关系。
向量积是向量的叉乘,其结果是一个新的向量,表示两个向量的垂直关系。
线性相关与线性无关是向量组的重要概念,用于刻画向量组之间的线性关系。
向量组的基和维数是向量空间的重要性质,在一定条件下可以用来刻画向量空间的结构。
二、矩阵与行列式1. 矩阵的定义和性质2. 矩阵的运算3. 行列式的定义和性质4. 行列式的性质和应用矩阵是一种重要的数学工具,它可以用来表示线性变换和线性方程组。
矩阵的定义是一个由数构成的矩形阵列,具有行数和列数两个维度。
矩阵的运算包括矩阵的加法、标量乘法和矩阵乘法等。
矩阵乘法是矩阵运算中的基本运算,具有结合律和分配律等性质。
行列式是一个重要的数学概念,它可以用来刻画矩阵的性质和求解线性方程组。
行列式的定义是一个递归定义,它包含二阶和高阶行列式两种情况。
行列式的性质包括对换行列式、倍加行列式和倍减行列式等,这些性质在计算行列式时非常有用。
三、线性方程组1. 线性方程组的概念与解的存在唯一性2. 线性方程组的解的性质3. 线性方程组的解的结构线性方程组是线性代数中的一个重要内容,它可以用来描述多个未知数的线性关系。
线性方程组的解的存在唯一性是一个重要的判别条件,用来判断线性方程组是否有解以及解的唯一性。
线性方程组的解的性质包括解空间的性质、基础解系和特解等,这些性质在求解线性方程组时非常有用。
线性方程组的解的结构是一个重要的理论问题,它可以用来描述线性方程组解的多样性和规律性。
(完整版)《线性代数》知识点归纳整理

《线性代数》知识点归纳整理诚毅学生编01、余子式与代数余子式...............................................................................................................................................- 2 -02、主对角线...................................................................................................................................................................- 2 -03、转置行列式...............................................................................................................................................................- 2 -04、行列式的性质...........................................................................................................................................................- 3 -05、计算行列式...............................................................................................................................................................- 3 -06、矩阵中未写出的元素...............................................................................................................................................- 4 -07、几类特殊的方阵.......................................................................................................................................................- 4 -08、矩阵的运算规则.......................................................................................................................................................- 4 -09、矩阵多项式...............................................................................................................................................................- 6 -10、对称矩阵...................................................................................................................................................................- 6 -11、矩阵的分块...............................................................................................................................................................- 6 -12、矩阵的初等变换.......................................................................................................................................................- 6 -13、矩阵等价...................................................................................................................................................................- 6 -14、初等矩阵...................................................................................................................................................................- 7 -15、行阶梯形矩阵与行最简形矩阵...........................................................................................................................- 7 -16、逆矩阵.......................................................................................................................................................................- 7 -17、充分性与必要性的证明题.......................................................................................................................................- 8 -18、伴随矩阵...................................................................................................................................................................- 8 -19、矩阵的标准形:.......................................................................................................................................................- 9 -20、矩阵的秩:...............................................................................................................................................................- 9 -21、矩阵的秩的一些定理、推论...................................................................................................................................- 9 -22、线性方程组概念.......................................................................................................................................................- 9 -23、齐次线性方程组与非齐次线性方程组(不含向量)...........................................................................................- 9 -24、行向量、列向量、零向量、负向量的概念.........................................................................................................- 11 -25、线性方程组的向量形式.........................................................................................................................................- 11 -26、线性相关与线性无关的概念...........................................................................................................................- 11 -27、向量个数大于向量维数的向量组必然线性相关...............................................................................................- 11 -28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题.......................................- 11 -29、线性表示与线性组合的概念...........................................................................................................................- 11 -30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题...........................................................- 12 -31、线性相关(无关)与线性表示的3个定理.........................................................................................................- 12 -32、最大线性无关组与向量组的秩.............................................................................................................................- 12 -33、线性方程组解的结构.............................................................................................................................................- 12 -01、余子式与代数余子式(1)设三阶行列式D =,则333231232221131211a a a a a a a a a ①元素,,的余子式分别为:M 11=,M 12=,M 13=11a 12a 13a 33322322a a a a 33312321a a a a 32312221a a a a 对M 11的解释:划掉第1行、第1列,剩下的就是一个二阶行列式,这个33322322a a a a 行列式即元素的余子式M 11。
自考线性代数(经管类)公式汇总(精髓版)

第一章 行列式一.行列式的定义和性质1.余子式 M ij 和代数余子式 A ij 的定义2.行列式按一行或一列展开的公式nn1) Aaij na ij A ij , j1,2, n ;( Aaij na ij A ij , i1,2, n )i1j 1nAk j nA k ia ijAika ijAkj2)k;kii 1jj 1测试点 行列式的任意一行 ( 列) 与另一行 ( 列 ) 元素的代数余子式的乘积之和为零.3.行列式的性质1) A TA.2)用数 k 乘行列式的某一行(列)所得新行列式=原行列式的k 倍 . 推论3)互换行列式的任意两行(列)所得新行列式等于原行列式的相反数. 推论4)如果行列式中两行(列)对应元素成比例,则行列式值为0.5)行列式可以按任一行(列)拆开.6)行列式的某一行(列)的 k 倍加到另一行(列)上,所得新行列式与原行列式的值相等.例 设行列式a 1b1=1,a 1 c 1 =2,则 a 1b 1c1=(3 )a 2b 2 a 2c 2a 2b 2c 2二.行列式的计算1.二阶行列式和三角形行列式的计算.2. 对一般数字行列式,利用行列式的性质将其降阶以化成二阶行列式或三角形行列式的计算 .3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开.4.行列式中各行元素之和为一个常数的类型.5. 范德蒙行列式的计算公式12323 3 100 23 3 100 20 3例( 性质 4)24949 9200 49 920040 9 0.(1)( 1)(2)(2) ( 1)(3)367 67 7 300 67 7 300 60 7例(各行元素之和为常数的行列式的计算技巧)x a a a x 3a a a a x 3aa a aDa x a a x 3a x a a0 x a 0 0 ( x 3a)( x a) 3.a a x a x 3a a x a 0 0 x a 0aa a x x 3a a a xx a例(行列式中有一行只有两个元素不为零的行列式的计算和三角形行列式的计算)a b 0 0 0 0 a b 0 00 0 a0 01)n 1M n1a n ( 1)n 1b nD n=aA 11 bA n1 = aM 11 +b( 0 0 0 a b b0 00 a1 x x 2x 31 2 41 2 4 8例D(x)中, x 3 项的系数 A 14 ( 1)5 1 3 9 (3 2)(4 2)(4 3)21 3 9 271 4 161 4 16 64第二章 矩阵一、矩阵的概念1. 要弄清矩阵与行列式的区别2. 两个矩阵相等的概念3. 几种特殊矩阵( 0 矩阵,单位阵,三角阵,对角阵,数量阵)二、矩阵的运算1. 矩阵 A , B 的加、减、乘有意义的充分必要条件2.矩阵运算的性质比较矩阵运算(包括加、减、数乘、乘法等)的性质与数的运算性质的相同点和不同点(加法的交换律和结合律;乘法关于加法的分配律; )重点是矩阵乘法没有交换律(由此产生了矩阵运算公式与数的运算的公式的不同点 .(A B )2 A 2+AB BA B 2 ;(A B )( A - B )A 2+BA - AB - B 2; ( AB)k ABABABA kB k ;( A E)2A 2 2 A E如果 AB O ,可能 AO, BO.例如 A1 12 2 AB O .1, B2都不为零,但123.转置 对称阵和反对称阵1)转置的性质( A B)TA TB T ; ( A)T A T ;( ABC)TC T B T A T2)若 T( T )A A A A ,则称 A 为对称(反对称)阵例 A 为任意 n 阶矩阵,下列矩阵中为反对称矩阵的是(B )A . AA TB .A A TC . AA TD . A T A解析( A A T )T A T (A T )T A TA AA T .故 A A T 为对称阵 .( A A T )TA T A( A A T ).故 A A T 为反对称阵 .( AA T )TAA T .故 AA T 为对称阵 . 同理 A T A 也为对称阵 .4. 方阵的行列式的性质A T A;AnA ; AB A B ;AkA k; A 11; AA n 1 .A5. 逆矩阵1)方阵 A 可逆 ( 也称非异, A 满秩 ) 的充分必要条件是A 0 .A11A 21An1当 A 可逆时, A11A . 其中方阵 A 的伴随阵 A 的定义 AA12 A22A n 2。
线性代数自考知识点汇总

线性代数自考知识点汇总 The Standardization Office was revised on the afternoon of December 13, 2020行列式1. 行列式的性质性质1 行列式与它的转置行列式相等T D D =. 性质2 互换行列式的两行(列),行列式变号.推论1 如果行列式有两行(列)的对应元素完全相同,则此行列式的值为零.如a b ca b c 0a b c'''= 性质3 行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式.如111213111213212223212223313233313233a a a a a a ka ka ka k a a a a a a a a a = 推论2 如果行列式中有两行(列)元素成比例,则此行列式的值为零.如a b ca b c 0ka kb kc'''= 性质4 若行列式的某一行(列)的元素都是两数之和,则这个行列式等于两个行列式之和.如111213111213111213212122222323212223212223313233313233313233a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ''''''+++=+ 性质5 把行列式的某一行(列)的各元素乘以同一数然后加到另一行(列)对应的元素上去,行列式的值不变.如111213111213212223212223313233311132123313a a a a a a a a a a a a a a a a ka a ka a ka =+++2. 余子式与代数余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素ij a 的余子式,记作ij M ,i j ij ij A (1)M +=-叫做元素ij a 的代数余子式.如111213212223313233a a a a a a a a a ,元素23a 的余子式为1112233132a a M a a =,元素23a 的代数余子式为11122323233132a a A (1)M a a +=-=-.3. 行列式按行(列)展开法则定理1 行列式的值等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即1122i i i i in in D a A a A a A =+++或 1122j j j j nj nj D a A a A a A =+++()1,2,,;1,2i n j n ==如111213212223313233a a a a a a a a a 111112121313a A a A a A =++ 定理2 行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即12120,j j i i jn i n a A a A a A +++=或,11220.j j j j nj nj a A a A a A i j +++=≠()1,2,,;1,2i n j n ==4. 行列式的计算 (1)二阶行列式1112112212212122a a a a a a a a =- (2)三阶行列式111213212223313233a a a a a a a a a 112233122331132132132231122133112332a a a a a a a a a a a a a a a a a a =++---(3)对角行列式1212n nλλλλλλ=,n(m 1)21212n n(1)λλλλλλ-=-(4)三角行列式1111121n 2122222n 1122nn n1n2nnnna a a a a a a a a a a a a a a ==111,n 11n1n n(n 1)212,n 12,n 12n 21n 2,n 1n1n1n1n2nna a a a a a a a (1)a a a a a a a -----==-(5)消元法:利用行列式的性质,将行列式化成三角行列式,从而求出行列式的值. (6)降阶法:利用行列式的性质,化某行(列)只有一个非零元素,再按该行(列)展开,通过降低行列式的阶数求出行列式的值.(7)加边法:行列式每行(列)所有元素的和相等,将各行(列)元素加到第一列(行),再提出公因式,进而求出行列式的值.矩阵1. 常见矩阵1)对角矩阵:主对角线以外的元素全为0的方阵,称为对角矩阵.记作Λ. 2)单位矩阵:主对角线上的元素全为1的对角矩阵,称为单位矩阵.记作E.3)上三角矩阵:对角线以下的元素全为0的方阵.如11121n 222n nn a a a a a a ⎛⎫⎪⎪⎪ ⎪⎝⎭ 4)下三角矩阵:对角线以上的元素全为0的方阵.如112122n1n2nn a a a a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭5)对称矩阵:设A 为n阶方阵,若T A A =,即ij ji a a =,则称A 为对称矩阵.6)反对称矩阵:设A 为n阶方阵,若T A A =-,即ij ji a a =- ,则称A 为反对称矩阵. 7)正交矩阵:设A 为n阶方阵,如果T AA E =或T A A E =,则称A 为正交矩阵. 2. 矩阵的加法、数乘、乘法运算 (1)矩阵的加法如a b c a b c a a b b c c d e f d e f d d e e f f ''''''+++⎛⎫⎛⎫⎛⎫+=⎪ ⎪⎪''''''+++⎝⎭⎝⎭⎝⎭注:① 只有同型矩阵才能进行加减运算;② 矩阵相加减就是对应元素相加减. (2)数乘矩阵如a b c ka kb kc k d e f kd ke kf ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭注:数乘矩阵就是数乘矩阵中的每个元素.(3)矩阵的乘法:设ij m ij n s s A (a ),B (b )⨯⨯==,规定ij m n AB C (c ),⨯== 其中sij i11j i22j is sj ik kj k 1c a b a b a b a b ==+++=∑(i 1,2,,m,j 1,2,,n.)==注:①左矩阵A 的列数等于右矩阵B 的行数;②左矩阵A 的第i 行与右矩阵B 的第j 列对应元素乘积的和是矩阵乘积C 的元素ij c . ③左矩阵A 的行数为乘积C 的行数,右矩阵B 的列数为乘积C 的列数. 如行矩阵乘列矩阵是一阶方阵(即一个数),即()112111121s 111112211s s1s1b ba a a ab a b a b b ⎛⎫ ⎪ ⎪=++⎪ ⎪⎝⎭列矩阵乘行矩阵是s 阶方阵,即()1111111112111s 2121112112211s 11121s s1s111s112s11s a a b a b a b a a b a b a b b b b a a b a b a b ⎛⎫⎛⎫⎪⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭3. 逆矩阵设n 阶方阵A 、B ,若AB=E 或BA=E ,则A ,B 都可逆,且11A B,B A --==.(1)二阶方阵求逆,设a b A c d ⎛⎫= ⎪⎝⎭ ,则1*d b 11A A c a A ad bc --⎛⎫== ⎪--⎝⎭(两调一除法). (2)对角矩阵的逆11111221n n a a a a a a ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭, 111n 2121n1a a a a a a ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭.(3)分块对角阵的逆11111221s s A A A A ;A A ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭111s 2121s1A A A A A A ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭. (4)一般矩阵求逆,初等行变换的方法:()()ERT1A E E A -−−−→.4. 方阵的行列式由n阶方阵A 的元素所构成的行列式(各元素的位置不变)叫做方阵A 的行列式.记作A 或det (A ). 5. 矩阵的初等变换下面三种变换称为矩阵的初等行(列)变换:(1)互换两行(列);(2)数乘某行(列);(3)某行(列)的倍数加到另一行(列). 6. 初等矩阵单位矩阵经过一次初等变换得到的矩阵,称为初等矩阵.如001100100010,0k 0,010100001k 01⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭都是初等矩阵. 7. 矩阵的秩矩阵A 的非零子式的最高阶数,称为矩阵A 的秩.记作R (A )或r (A ). 求矩阵的秩的方法:(1)定义法:找出A 中最高阶的非零子式, 它的阶数即为A 的秩.(2)初等行变换法:ERTA −−−→行阶梯形矩阵,R (A )=R (行阶梯形矩阵)=非零行的行数.8. 重要公式及结论 (1)矩阵运算的公式及结论()()12121212k k k k k k k k k k k k kk 10A B B A,(A B )C A (B C ),(A B )A B(AB )C A(BC ),(A B )C AC BC ,(AB )(A )B A(B )A A A ,(A )A ,(A )A ,E EAB A BA B ,EA AE A,A Eλλλλλλλλ+-+=+++=+++=+=+=+==⋅========()()()()()()T TTT T T T T T TTT nT n n A A,(A B )A B ,A A ,AB B A A A ,AB B A ,AA A A A EA A ,A A ,AB A B BA ,A A ,A B A Bλλλλ*******=+=+===========+≠+矩阵乘法不满足交换律,即一般地A B ≠AB;矩阵乘法不满足消去律,即一般地若AB=AC ,无B=C ;只有当A 可逆时,有B=C.一般地若AB=O ,则无A=O 或B=O.()222A B ?A 2AB B +++.(2)逆矩阵的公式及定理()()()()()()()()11111111n 11111k1k 1T11T 1A A ,A A ,,A A 1A A,A A,A A ,A A AB B A1A A A A AA A ,A λλ----------*-**--**-----===========A 可逆⇔|A |≠0⇔A ~E (即A 与单位矩阵E 等价) (3)矩阵秩的公式及结论()()()T m n R(O )0,R(A )min{m,n },R(A )R(A ),R(kA )R(A ),k 0A 0R(A )n ,R A B R A R B ⨯=≤==≠≠⇔=+≤+R ( AB ) ≤R ( A ), R ( AB ) ≤R ( B ).特别地,当A 可逆时,R(AB)=R(B);当B 可逆时,R(AB)=R(A).()()ET A B A ~B R A R B −−→⇔⇒= 即等价矩阵的秩相等或初等变换不改变矩阵的秩.9. 矩阵方程(1)设 A 为n 阶可逆矩阵,B 为n ×m 矩阵,则矩阵方程AX=B 的解为1X A B -=;解法:① 求出1A -,再计算1A B -;② ()()ERT A B EX −−−→ .(2)设 A 为n 阶可逆矩阵,B 为m ×n 矩阵,则矩阵方程XA=B 的解为1X BA -=;解法:① 求出1A -,再计算1BA -;② ECT A E B X ⎛⎫⎛⎫−−−→ ⎪ ⎪⎝⎭⎝⎭ .10. 矩阵间的关系(1)等价矩阵:如果矩阵A 经过有限次初等变换变成矩阵B ,那么称矩阵A 与B 等价.即存在可逆矩阵P ,Q ,使得PAQ=B.性质:等价矩阵的秩相等.(2)相似矩阵:如果存在可逆矩阵P ,使得1P AP B -=,那么称A 与B 相似. 性质:相似矩阵有相同的特征多项式,相同的特征值,相同的行列式,相同的迹. (3)合同矩阵:如果存在可逆矩阵P ,使得T P AP B =,那么称A 与B 合同. 性质:合同矩阵的秩相等.向量空间1. 线性组合(1)若α=k β,则称向量α与β成比例. (2)零向量O是任一向量组的线性组合.(3)向量组中每一向量都可由该向量组线性表示. 2. 线性相关与线性无关(1) 单独一个向量线性相关当且仅当它是零向量. (2) 单独一个向量线性无关当且仅当它是非零向量. (3) 两向量线性相关当且仅当两向量对应成比例. (4) 两向量线性无关当且仅当两向量不对应成比例. (5) 含有O向量的向量组一定线性相关. (6) 向量组12m ,,,ααα线性相关的充分必要条件是① 齐次线性方程组22m m 11k k 0k ααα+++=有非零解.② 以向量组为列作的矩阵()12m ,,,ααα的秩<向量的个数m.(7)n 个n 维向量12n ,,,ααα线性相关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα=0.(8) 向量组12m ,,,ααα线性无关的充分必要条件是① 齐次线性方程组22m m 11k k 0k ααα+++=只有零解.② 以向量组为列作的矩阵()12m ,,,ααα的秩=向量的个数m.(9) n 个n 维向量12n ,,,ααα线性无关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα≠0.(10)当m>n 时,m 个n 维向量一定线性相关.定理1:向量组 a 1 , a 2 ,……, a m (m ≥2)线性相关的充分必要条件是向量组中至少有一个向量可由其余m-1个向量线性表示.向量组线性无关的充分必要条件是向量组中任何一个向量都不能由其余向量线性表示.定理2:如果向量组A :a 1 , a 2 ,……, a r 线性无关,而向量组 a 1 , a 2 ,……, a r ,α线性相关,则α可由A 线性表示,且表示式唯一.定理3:设向量组2r 1A :,,,ααα,12r r 1m B :,,,,,,ααααα+若A 线性相关,则向量组B 也线性相关;反之,若向量组B 线性无关,则向量组A 也线性无关.(即部分相关,则整体相关;整体无关,则部分无关). 定理4:无关组的截短组无关,相关组的接长组相关. 3. 极大无关组与向量组的秩定义1 如果在向量组 T 中有 r 个向量 a 1 , a 2 ,……, a r ,满足条件: ⑴ 向量组 a 1 , a 2 ,……, a r 线性无关, ⑵ T α∀∈,2r 1,,,,αααα线性相关.那么称向量 a 1 , a 2 ,……, a r 是向量组 T 的一个极大无关组. 定义2 向量组的极大无关组中所含向量的个数,称为向量组的秩.定义3 矩阵的行向量组的秩称为矩阵的行秩;矩阵的列向量组的秩称为矩阵的列秩。
自考本科线性代数(经管类)知识汇总

自考高数线性代数笔记第一章行列式1.1 行列式的定义(一)一阶、二阶、三阶行列式的定义(1)定义:符号叫一阶行列式,它是一个数,其大小规定为:。
注意:在线性代数中,符号不是绝对值。
例如,且;(2)定义:符号叫二阶行列式,它也是一个数,其大小规定为:所以二阶行列式的值等于两个对角线上的数的积之差。
(主对角线减次对角线的乘积)例如(3)符号叫三阶行列式,它也是一个数,其大小规定为例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。
我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。
例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1 a 为何值时,[答疑编号10010101:针对该题提问]解因为所以8-3a=0,时例2 当x 取何值时,[答疑编号10010102:针对该题提问]解:.解得0<x<9所以当0<x<9 时,所给行列式大于0。
(二)n 阶行列式符号:它由n 行、n 列元素(共个元素)组成,称之为n 阶行列式。
其中,每一个数称为行列式的一个元素,它的前一个下标i 称为行标,它表示这个数在第i 行上;后一个下标j 称为列标,它表示这个数在第j 列上。
所以在行列式的第i 行和第j 列的交叉位置上。
自考04184-线性代数(经管类)课堂笔记-红字重点

自考会计本科群 7084 1026,
3
交流经验,资料共享
例 1 a 为何值时, [答疑编号 10010101:针对该题提问]
解 因为
所以 8-3a=0,
时
例 2 当 x 取何值时,
[答疑编号 10010102:针对该题提问] 解:.
解得 0<x<9 所以当 0<x<9 时,所给行列式大于 0。 (二)n 阶行列式
自考会计本科群 7084 1026,
1
交流经验,资料共享
自考高数线性代数笔记 第一章 行列式
1.1 行列式的定义
(一)一阶、二阶、三阶行列式的定义
(1)定义:符号
叫一阶行列式,它是一个数,其大小规定为: 。
注意:在线性代数中,符号 不是绝对值。
例如
,且
;
(2)定义:符号
叫二阶行列式,它也是一个数,其大小规定为:
1.3 行列式的性质与计算
因为 n 阶行列式是 n!项求和,而且每一项都是 n 个数的乘积,当 n 比较大时,计算量 会非常大,例如,10!=3628800。所以对于阶数较大的行列式很难直接用定义去求它的值, 这时利用行列式的性质可以有效地解决行列式的求值问题。下面我们来研究行列式的性质, 并利用行列式的性质来简化行列式的计算。
(1.8)
或
(j=1,2,…,n)
(1.9)
其中, 是元素 在 D 中的代数余子式。 (1.8)式称为 D 按第 i 行的展开式,(1.9)式称为 D 按第 j 列的展开式,这里 i,j=1,2,…
自考会计本科群 7084 1026, 交流经验,资料共享
8
自考会计本科群 7084 1026,
9
交流经验,资料共享
线性代数考试复习提纲、知识点、例题PDF.pdf

(1) 扩充法
(2) 子式法
1
2
...
m
mn
(1,2
,...,m
) n m
最高阶非 0 子式的阶数就是矩阵的秩,也就是这个向量组
的秩,并且这个子式的行(列)对应的原向量组的向量就
是这个向量组的一个极大无关组。
(3)初等变换法 同法二构成矩阵,对矩阵进行初等变换。
例 9、设向量组
(1) 1,...,t 线性无关, (2) AX = 0 的每一个解都可以由1,...,t 线性表示。 则1,...,t 叫做 AX = 0 的基础解系。 定理 1、设 Amn ,齐次线性方程组 AX = 0 ,若 r(A) = r n ,则该方程组
的基础解系一定存在,且每一个基础解系中所含解向量的个
2x − y + z = 0
例
7、已知线性方程组
−2x1x−1 +2
x2 x2
+ +
x3 x3
= =
−2
,问当
为何值时,它有唯一
x1 + x2 − 2x3 = 2
解,无解,无穷多解,并在有无穷多解时求解。
五、向量组的线性相关性
1,2,...,s 线性相关 1,2,...,s (s 2) 中至少存在一个向量能由其余 向量线性表示。
=s2,...,n 线性相关
1,2 , ...,n
= 0或 2
...
=0。
n
1
n 个 n 维向量1,2,...,n 线性无关
1,2 , ...,n
0或 2
...
0。
n
例 8、已知向量组1 = (t,2,1) ,2 = (2,t,0) ,3 = (1,−1,1) ,
自考线性代数(经管类)重点考点

自考线性代数(经管类)重点考点线性代数(经管类)考点逐个击破第一章行列式(一)行列式的定义行列式是指一个由若干个数排列成同样的行数与列数后所得到的一个式子,它实质上表示把这些数按一定的规则进行运算,其结果为一个确定的数.1.二阶行列式由4个数aij(i,j1,2)得到下列式子:a11a12a21a22称为一个二阶行列式,其运算规则为a11a12a21a22a11a22a12a212.三阶行列式a11a12a13由9个数aij(i,j1,2,3)得到下列式子:a21a22a23 a31a32a33称为一个三阶行列式,它如何进行运算呢?教材上有类似于二阶行列式的所谓对角线法,我们采用递归法,为此先要定义行列式中元素的余子式及代数余子式的概念.3.余子式及代数余子式a11a12a13设有三阶行列式D3a21a22a23a31a32a33对任何一个元素aij,我们划去它所在的第i行及第j列,剩下的元素按原先次序组成一个二阶行列式,称它为元素aij的余子式,记成Mij例如M11a22a23a32a33ij,M21a12a13a32a33,M31a12a13a22a23再记Aij(1)Mij,称Aij为元素aij的代数余子式.例如A11M11,A21M21,A31M31那么,三阶行列式D3定义为a11a12a13D3a21a22a23a11A11a21A21a31A31a31a32a33简写成D3我们把它称为D3按第一列的展开式,经常ai13i1Ai1(1)i1ai1Mi1i134.n阶行列式一阶行列式D1a11a11a11a12a1nn阶行列式Dna21a22a2nan1an2anna11A11a21A21an1An1其中Aij(i,j1,2,,n)为元素aij的代数余子式.5.特殊行列式a11上三角行列式a12a1na22a2n00ann00a11a22anna11a22ann00a11a21an1a1100下三角行列式a22an2ann000a220对角行列式anna11a22ann(二)行列式的性质性质1行列式和它的转置行列式相等,即DDT性质2用数k乘行列式D中某一行(列)的所有元素所得到的行列式等于kD,也就是说,行列式可以按行和列提出公因数.性质3互换行列式的任意两行(列),行列式的值改变符号.推论1如果行列式中有某两行(列)相同,则此行列式的值等于零.推论2如果行列式中某两行(列)的对应元素成比例,则此行列式的值等于零.性质4行列式可以按行(列)拆开.性质5把行列式D的某一行(列)的所有元素都乘以同一个数以后加到另一行(列)的对应元素上去,所得的行列式仍为D.定理1(行列式展开定理)n阶行列式Daijn等于它的任意一行(列)的各元素与其对应的代数余子式的乘积的和,即Dai1Ai1ai2Ai2ainAin(i1,2,,n)或Da1jA1ja2jA2janjAnj(j1,2,,n)前一式称为D按第i行的展开式,后一式称为D按第j列的展开式.本定理说明,行列式可以按其任意一行或按其任意一列展开来求出它的值.定理2n阶行列式Daij的任意一行(列)各元素与另一行(列)对应元素的代数余子式的乘积之和等于零.n即ai1Ak1ai2Ak2ainAkn0(ik)或a1jA1a2jA2anjAn0(j)(三)行列式的计算行列式的计算主要采用以下两种基本方法:(1)利用行列式性质,把原行列式化为上三角(或下三角)行列式再求值,此时要注意的是,在互换两行或两列时,必须在新的行列式的前面乘上(-1),在按行或按列提取公因子k时,必须在新的行列式前面乘上k.(2)把原行列式按选定的某一行或某一列展开,把行列式的阶数降低,再求出它的值,通常是利用性质在某一行或某一列中产生很多个“0”元素,再按这一行或这一列展开:2141例1计算行列式D4312152327025解:观察到第二列第四行的元素为0,而且第二列第一行的元素是a121,利用这个元素可以把这一列其它两个非零元素化为0,然后按第二列展开.2141D4312170255312列251列1021412行11行506270250按第二行展开31237581562按第二列展开15072552323行(2)1行10507375abbb例2计算行列式D4babbbbabbbba解:方法1这个行列式的元素含有文字,在计算它的值时,切忌用文字作字母,因为文字可能取0值.要注意观察其特点,这个行列式的特点是它的每一行元素之和均为a3b(我们把它称为行和相同行列式),我们可以先把后三列都加到第一列上去,提出第一列的公因子a3b,再将后三行都减去第一行:abbbbabbbbabbbbaa3bbbba3babba3bbaba3bbba1b00b00b00ab00(a3b)1 bbb1abb1bab1bba(a3b)ab0ab(a3b)(ab)3方法2观察到这个行列式每一行元素中有多个b,我们采用“加边法”来计算,即是构造一个与D4有相同值的五阶行列式:abbbD4babbbbabbbba1bbbb0abbb0babb0bbab0bbba1行(1)2,3,4,行51111b000bb0b001ab000ab0ab00ab这样得到一个“箭形”行列式,如果ab,则原行列式的值为零,故不妨假设ab,即ab0,把后四列的1倍加到第一列上,可以把第一列的(-1)化为零.ab4b1bbbbab0ab0004b400ab001(ab)(a3b)(ab)ab000ab00000ab1例3三阶范德蒙德行列式V3某11某221某3(某2某1)(某3某1)(某3某2)2某1某2某32(四)克拉默法则定理1(克拉默法则)设含有n个方程的n元线性方程组为a11某1a12某2a1n某nb1,a某a某a某b,2112222nn2an1某1an2某2ann某nbn如果其系数行列式Daijn0,则方程组必有唯一解:某jDjD,j1,2,,n其中Dj是把D中第j列换成常数项b1,b2,,bn后得到的行列式.把这个法则应用于齐次线性方程组,则有定理2设有含n个方程的n元齐次线性方程组a11某1a12某2a1n某n0,a某a某a某0,2112222nnan1某1an2某2ann某n0如果其系数行列式D0,则该方程组只有零解:某1某2某n0换句话说,若齐次线性方程组有非零解,则必有D0,在教材第二章中,将要证明,n个方程的n元齐次线性方程组有非零解的充分必要条件是系数行列式等于零.第二章矩阵(一)矩阵的定义1.矩阵的概念由mn个数aij(i1,2,,m;j1,2,,n)排成的一个m行n列的数表a11a12a1na21a22a2nAam1am2amn称为一个m行n列矩阵或mn矩阵当mn时,称Aaijnn为n阶矩阵或n阶方阵元素全为零的矩阵称为零矩阵,用Omn或O表示2.3个常用的特殊方阵:a11000a022①n阶对角矩阵是指形如A的矩阵00ann100010②n阶单位方阵是指形如En的矩阵001a11a12a1na11000a22a2na21a220③n阶三角矩阵是指形如的矩阵,00aaaan2nnnnn13.矩阵与行列式的差异矩阵仅是一个数表,而n阶行列式的最后结果为一个数,因而矩阵与行列式是两个完全不同的概念,只有一阶方阵是一个数,而且行列式记号“某”与矩阵记号“某”也不同,不能用错.(二)矩阵的运算1.矩阵的同型与相等设有矩阵A(aij)mn,B(bij)k,若mk,n,则说A与B是同型矩阵.若A与B同型,且对应元素相等,即aijbij,则称矩阵A与B相等,记为AB 因而只有当两个矩阵从型号到元素全一样的矩阵,才能说相等.2.矩阵的加、减法设A(aij)mn,B(bij)mn是两个同型矩阵则规定AB(aijbij)mnAB(aijbij)mn注意:只有A与B为同型矩阵,它们才可以相加或相减.由于矩阵的相加体现为元素的相加,因而与普通数的加法运算有相同的运算律.3.数乘运算。
(完整版)线性代数知识点全归纳

1线性代数知识点1、行列式1.n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3.代数余子式和余子式的关系:(1)(1)i j i j ij ijij ijM A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =;5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;22、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----===***111()()()T T T AB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B OB ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯)33、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ;2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11kk k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)4⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式; 二项展开式:01111110()nn n n m n m mn n n n m m n mn n n n n n m a b C a C a b C a b C a b C b C a b-----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化:7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1n r A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;511. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩; ②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTm βββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4.()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :6若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤; 向量组A 能由向量组B 线性表示,则()()r A r B ≤;向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆);9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,A 与B 的任何对应的列向量组有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩;10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,【考试中可以直接作为定理使用,而无需证明】 ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关;14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;715. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ;5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格);6. A 为对称阵,则A 为二次型矩阵;7.n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数;A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)8第一章 随机事件互斥对立加减功,条件独立乘除清; 全概逆概百分比,二项分布是核心; 必然事件随便用,选择先试不可能。
线性代数各章复习重点汇总

线性代数各章复习重点汇总线性代数是数学的一个重要分支,研究向量空间、线性变换、线性方程组等概念和性质。
下面是线性代数各章的复习重点汇总。
1.线性方程组:-线性方程组的基本概念和性质,包括齐次线性方程组、非齐次线性方程组等。
-线性方程组的解的存在性与唯一性,以及求解线性方程组的方法(高斯消元法、矩阵求逆法、克拉默法则等)。
-线性方程组的等价关系与等价变换。
2.矩阵与行列式:-矩阵的基本概念和性质,如矩阵的加法、减法、乘法等运算。
-方阵的特殊性质,如对称矩阵、反对称矩阵、单位矩阵等。
-行列式的定义和性质,包括行列式的展开定理、行列式的性质推导等。
3.向量空间:-向量空间的定义和性质,如线性相关性、线性无关性、基、维数等。
-子空间的概念和性质,包括子空间的交、和、直和等操作。
-线性组合、张成空间、极大线性无关组等概念。
4.线性变换与矩阵:-线性变换的定义和性质,包括线性变换的特征值、特征向量等。
-线性变换的矩阵表示,以及矩阵与线性变换之间的转换关系。
-线性变换的合成、逆变换等操作,以及线性变换的标准形式(例如,矩阵的对角化)。
5.特征值与特征向量:-特征值与特征向量的定义和性质,包括特征值的重数、特征向量的线性无关性等。
-特征值与特征向量的计算方法,如特征方程的求解、特征值的代入等。
-特征值与特征向量的应用,如对角化矩阵、相似矩阵等。
6.正交性与标准正交基:-向量的正交性和标准正交性的概念和性质,包括向量的点积、向量的夹角等。
-标准正交基的定义和求解方法,如施密特正交化过程等。
-正交矩阵的定义和性质,以及正交矩阵与标准正交基之间的关系。
以上是线性代数各章的复习重点汇总,希望能够帮助你理清知识重点,并提高复习效率。
祝你取得好成绩!。
自考本科线性代数(经管类)知识汇总-153页word资料

自考高数线性代数笔记第一章行列式1.1行列式的定义(一)一阶、二阶、三阶行列式的定义(1)定义:符号叫一阶行列式,它是一个数,其大小规定为:。
注意:在线性代数中,符号不是绝对值。
例如,且;(2)定义:符号叫二阶行列式,它也是一个数,其大小规定为:所以二阶行列式的值等于两个对角线上的数的积之差。
(主对角线减次对角线的乘积)例如(3)符号叫三阶行列式,它也是一个数,其大小规定为例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。
我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。
例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,[答疑编号10010101:针对该题提问]解因为所以8-3a=0,时例2当x取何值时,[答疑编号10010102:针对该题提问]解:.解得0<x<9所以当0<x<9时,所给行列式大于0。
(二)n阶行列式符号:它由n行、n列元素(共个元素)组成,称之为n阶行列式。
其中,每一个数称为行列式的一个元素,它的前一个下标i称为行标,它表示这个数在第i行上;后一个下标j 称为列标,它表示这个数在第j列上。
所以在行列式的第i行和第j列的交叉位置上。
(整理)自学考试线性代数笔记讲义新版[1]
![(整理)自学考试线性代数笔记讲义新版[1]](https://img.taocdn.com/s3/m/2971c495aef8941ea76e05e6.png)
自考高数线性代数笔记第一章行列式1.1行列式的定义(一)一阶、二阶、三阶行列式的定义(1)定义:符号叫一阶行列式,它是一个数,其大小规定为:。
注意:在线性代数中,符号不是绝对值。
例如,且;(2)定义:符号叫二阶行列式,它也是一个数,其大小规定为:所以二阶行列式的值等于两个对角线上的数的积之差。
(主对角线减次对角线的乘积)例如(3)符号叫三阶行列式,它也是一个数,其大小规定为例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。
我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。
例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,[答疑编号10010101:针对该题提问]解因为所以8-3a=0,时例2当x取何值时,[答疑编号10010102:针对该题提问]解:解得0<x<9所以当0<x<9时,所给行列式大于0。
(二)n阶行列式符号:它由n行、n列元素(共个元素)组成,称之为n阶行列式。
其中,每一个数称为行列式的一个元素,它的前一个下标i称为行标,它表示这个数在第i行上;后一个下标j 称为列标,它表示这个数在第j列上。
所以在行列式的第i行和第j列的交叉位置上。
线性代数知识点总结

《线性代数》复习提纲第一部分:基本要求(计算方面)四阶行列式的计算;N阶特殊行列式的计算(如有行和、列和相等);矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);求矩阵的秩、逆(两种方法);解矩阵方程;含参数的线性方程组解的情况的讨论;齐次、非齐次线性方程组的求解(包括唯一、无穷多解);讨论一个向量能否用和向量组线性表示;讨论或证明向量组的相关性;求向量组的极大无关组,并将多余向量用极大无关组线性表示;将无关组正交化、单位化;求方阵的特征值和特征向量;讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;通过正交相似变换(正交矩阵)将对称矩阵对角化;写出二次型的矩阵,并将二次型标准化,写出变换矩阵;判定二次型或对称矩阵的正定性。
第二部分:基本知识一、行列式1.行列式的定义用n^2个元素aij组成的记号称为n阶行列式。
(1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和;(2)展开式共有n!项,其中符号正负各半;2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则;N阶(n>=3)行列式的计算:降阶法定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。
方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。
特殊情况上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;(2)行列式值为0的几种情况:Ⅰ行列式某行(列)元素全为0;Ⅱ行列式某行(列)的对应元素相同;Ⅲ行列式某行(列)的元素对应成比例;Ⅳ奇数阶的反对称行列式。
二.矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等);2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果;(2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵);②矩阵乘法一般不满足消去律、零因式不存在;③若A、B为同阶方阵,则|AB|=|A|*|B|;④|kA|=k^n|A|3.矩阵的秩(1)定义非零子式的最大阶数称为矩阵的秩;(2)秩的求法一般不用定义求,而用下面结论:矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2
(3)对角行列式
12
n,
1
n( m 1 )22Fra bibliotek( 1)
12
n
n
n
a11 (4)三角行列式 a21 a22
a11 a12 a22
a1n
a2n
a11a22 ann
an1 an2
ann
a11
a1,n 1 a1n
a21
a2,n 1
ann
a1n
a2,n 1 a2n
n( n 1 )
( 1) 2 a1n a2,n 1
an1
an1
an1 an2
ann
(5)消元法:利用行列式的性质,将行列式化成三角行列式,从而求出行列式的值
.
(6)降阶法:利用行列式的性质,化某行(列)只有一个非零元素,再按该行(列)展开,通过降低 行列式的阶数求出行列式的值 .
(7)加边法:行列式每行(列)所有元素的和相等,将各行(列)元素加到第一列(行)
6. 初等矩阵
单位矩阵经过一次初等变换得到的矩阵,称为初等矩阵
.
001 100 100 如 0 1 0 , 0 k 0 , 0 1 0 都是初等矩阵 .
100 001 k0 1
7. 矩阵的秩 矩阵 A 的非零子式的最高阶数,称为矩阵 A 的秩 . 记作 R(A)或 r (A) . 求矩阵的秩的方法: (1)定义法:找出 A 中最高阶的非零子式, 它的阶数即为 A 的秩 .
1 , 2 , , m 的秩 <向量的个数 m.
(7) n 个 n 维向量 1, 2, , n 线性相关的充分必要条件是
以向量组为列作的行列式的值
1 , 2 , , n =0.
(8) 向量组 1 , 2 , , m 线性无关的充分必要条件是
① 齐次线性方程组 k1 1 k2 2
km m 0 只有零解 .
b11 a1s b21
a11b11 a12b21
a1s bs1
bs1
列矩阵乘行矩阵是 s 阶方阵,即
a11 a21 b11 b12
a11b11 a11b12
b1s
a21b11 a21b12
a11b1s a21b1s
as1
3. 逆矩阵
as1b11 as1b12
as1b1s
设 n 阶方阵 A、B,若 AB=E或 BA=E,则 A,B 都可逆,且 A 1 B,B 1 A .
解法:① 求出 A 1 ,再计算 A 1B ;
② A B ERT E X .
(2)设 A 为 n 阶可逆矩阵, B 为 m× n 矩阵,则矩阵方程 XA=B 的解为 X BA 1 ;
解法:① 求出 A 1 ,再计算 BA 1 ;
A
②
ECT
B
E
.
X
10. 矩阵间的关系 (1)等价矩阵:如果矩阵 A 经过有限次初等变换变成矩阵
7)正交矩阵 :设 A 为n阶方阵,如果 AAT E 或 AT A E ,则称 A 为正交矩阵 .
2. 矩阵的加法、数乘、乘法运算 (1)矩阵的加法
ab c
如
def
abc def
aa bb cc d d ee f f
注:① 只有同型矩阵才能进行加减运算; ② 矩阵相加减就是对应元素相加减 .
(2)数乘矩阵
(2)初等行变换法: A ERT 行阶梯形矩阵, R( A)=R(行阶梯形矩阵) =非零行的行数 .
8. 重要公式及结论 (1)矩阵运算的公式及结论
A B B A, ( A B ) C A ( B C ), ( A B ) A B
( AB )C A( BC ), ( A B )C AC BC , ( AB ) ( A )B A( B )
...
R( AB) ≤R( A ), R( AB) ≤ R( B ). 特别地,当 A 可逆时, R(AB)=R(B) ;当 B 可逆时, R(AB)=R(A).
A ET B A ~ B R A R B 即 等价矩阵的秩相等 或初等变换不改变矩阵的秩 .
9. 矩阵方程
(1)设 A 为 n 阶可逆矩阵, B 为 n× m矩阵,则矩阵方程 AX=B 的解为 X A 1B ;
即存在可逆矩阵 P,Q,使得 PAQ=B. 性质:等价矩阵的秩相等 .
B,那么称矩阵 A 与 B 等价 .
(2)相似矩阵:如果存在可逆矩阵 P,使得 P 1 AP B , 那么称 A 与 B 相似 .
性质:相似矩阵有相同的特征多项式,相同的特征值,相同的行列式,相同的迹
.
(3)合同矩阵:如果存在可逆矩阵 P,使得 PT AP B ,那么称 A 与 B 合同 .
a11 如 ka21
a31
a12 ka22 a32
a13 ka23 a33
a11 a12 a13 k a21 a22 a23
a31 a32 a33
推论 2 如果行列式中有两行(列)元素成比例,则此行列式的值为零.
abc 如a b c 0
ka kb kc
性质 4 若行列式的某一行(列)的元素都是两数之和,则这个行列式等于两个行列式之和
( 列 ) 对应的元素上去,行列式的
a11 a12 a13 如 a21 a22 a23
a31 a32 a33
a11 a21 a31 ka11
a12 a22 a32 ka12
a13 a23 a33 ka13
2. 余子式与代数余子式
在 n 阶行列式中,把元素 aij 所在的第 i 行和第 j 列划去后,留下来的 n-1 阶行列式叫做元素 aij 的余子
(3) 两向量线性相关当且仅当两向量对应成比例 .
(4) 两向量线性无关当且仅当两向量不对应成比例
.
(5) 含有 O向量的向量组一定线性相关.
(6) 向量组 1 , 2 , , m 线性相关的充分必要条件是
① 齐次线性方程组 k1 1 k2 2
km m 0 有非零解 .
...
② 以向量组为列作的矩阵
a22
a2n
ann
4)下三角矩阵 :对角线以上的元素全为
a11 0 的方阵 . 如 a21 a22
an1 an2
ann
5)对称矩阵 :设 A 为n阶方阵,若 AT A ,即 aij a ji ,则称 A 为对称矩阵 .
6)反对称矩阵 :设 A 为n阶方阵,若 AT
A ,即 aij
a ji ,则称 A 为反对称矩阵 .
B 1A 1 ,
AT 1
A1T
A1
1
A,
A
n1
A,
A1
1 A,
A
AA1
A
1
1
A
A
1
k
1k
A, A A
A
A 可逆 | A| ≠ 0 A~E(即 A 与单位矩阵 E 等价) (3)矩阵秩的公式及结论 R( O ) 0 , R( Am n ) min{ m,n }, R( AT ) R( A ),R( kA ) R( A ),k 0 A 0 R( A ) n , R A B R A R B
4. 行列式的计算
(1)二阶行列式 a11 a12 a21 a22
(2)三阶行列式
a11a22 a12a21
a11 a12 a13 a21 a22 a23 a31 a32 a33
a11a22a33 a12 a23a31 a13 a21a32 a13a22a31 a12a 21a33 a11a 23a32
.
a11 如 a21 a21
a31
a12 a22 a22
a32
a13 a23 a23
a33
a11 a12 a13 a 21 a22 a23 a31 a32 a33
a11 a12 a13 a21 a22 a 23 a31 a32 a33
性质 5 把行列式的某一行(列)的各元素乘以同一数然后加到另一行 值不变 .
As 1
.
AE
ERT
As 1 E A1 .
4. 方阵的行列式
由n阶方阵 A 的元素所构成的行列式(各元素的位置不变)叫做方阵
A 的行列式 . 记作 A 或 det ( A).
5. 矩阵的初等变换 下面三种变换称为矩阵的初等行(列)变换:
...
(1)互换两行(列) ;( 2)数乘某行(列) ;( 3)某行(列)的倍数加到另一行(列) .
abc 如k
def
ka kb kc kd ke kf
注:数乘矩阵就是数乘矩阵中的每个元素 .
(3)矩阵的乘法:设 A ( aij )m s ,B ( bij )s n , 规定 AB C ( cij )m n ,
其中 cij ai1 b1 j ai2b2 j
aisbsj
s
aik bkj (i
k1
1,2 , ,m, j 1,2 , ,n.)
性质:合同矩阵的秩相等 .
向量空间
1. 线性组合
(1)若 α= kβ ,则称向量 α 与β 成比例.
(2)零向量 O是任一向量组的线性组合.
(3)向量组中每一向量都可由该向量组线性表示.
2. 线性相关与线性无关
(1) 单独一个向量线性相关当且仅当它是零向量.
(2) 单独一个向量线性无关当且仅当它是非零向量.
注:① 左矩阵 A 的列数等于右矩阵 B 的行数 ;
② 左矩阵 A 的第 i 行与右矩阵 B 的第 j 列对应元素乘积的和是矩阵乘积 C 的元素 cij .
③左矩阵 A 的行数为乘积 C的行数,右矩阵 B 的列数为乘积 C 的列数 . 如行矩阵乘列矩阵是一阶方阵(即一个数) ,即
...
a11 a12
式,记作 M ij , Aij ( 1) i j M ij 叫做元素 aij 的代数余子式.