排列组合基本原理.ppt

合集下载

排列组合ppt课件

排列组合ppt课件
在工程领域,排列组合用于优化设计 、规划、调度等问题,如计算机科学 、信息论、控制论等。
02
排列组合基础
排列数公式与组合数公式
排列数公式
从n个不同元素中取出m个元素的所有排列的个数,用符号A(n,m)表示,公式 为A(n,m)=n!/(n-m)!,其中n!表示n的阶乘,即n×(n-1)×...×3×2×1。
给定一个无向图,用k种颜色对图 中的边进行染色,使得每条边的 颜色都不相同,求所有可能的染 色方案。
染色问题的解法
使用递归和回溯法,从全不染色的 情况开始,逐渐增加染色的边数, 直到全部染色。
染色问题的应用
在解决一些组合优化问题时,染色 问题可以用来计算不同方案的数量 。
平均分组
平均分组的定义
将n个元素平均分成m组,每组k 个元素,求所有可能的分组方案
反序:若在排列a中有i<j,且 a(i)=a( j),则称a中i和j为反序

奇偶性:若n个元素全排列的 排法数为偶数,则称n个元素 全排列为偶排列,否则称为奇
排列。
组合的定义与性质
组合的定义:从n个不同元素中取出m个 元素的所有组合的个数,记作C(n,m)。
结合律:C(n,k)C(n-k,m)=C(n,m)C(nm,k)。
03
排列组合进阶
错位重排
错位重排的定义
在n个元素中,如果有m个元素互不相邻,则称这 个排列为错位重排。
错位重排的公式
$n!(1-1/2!+1/3!-...+(-1)^n/n!)$
错位重排的应用
在解决一些排列组合问题时,错位重排公式可以 用来计算某些元素不在一起排列的总数。
染色问题
染色问题的定义
等待时间

大学排列组合ppt课件

大学排列组合ppt课件

排列与组合的综合实例解析
总结词
通过综合实例,理解排列与组合在实际 问题中的应用。
VS
详细描述
通过一个复杂的问题,如安排一场活动或 者组织一次旅行,综合运用排列和组合的 知识来解决实际问题,并强调排列与组合 在解决实际问题中的重要性和关联性。
05
排列组合的解题技巧
解题思路分析
明确问题要求
01
首先需要清楚题目是关于排列还是组合的问题,排列需要考虑
04
排列组合的实例解析
排列实例解析
总结词
通过具体实例,深入理解排列的概念和计算方法。
详细描述
通过实际生活中的例子,如学生选课、物品的排列等,解释排列的概念,并介绍排列的计算公式,以及如何应用 这些公式解决实际问题。
组合实例解析
总结词
通过具体实例,深入理解组合的概念和计算方法。
详细描述
通过实际生活中的例子,如彩票中奖概率、选举代表等,解释组合的概念,并介绍组合的计算公式, 以及如何应用这些公式解决实际问题。
少?
答案解析
答案1
从5个人中选3个人参加会议共有 $C_{5}^{3} = 10$种不同的选法。
答案3
大于2000的三位数,首位数字可以为 2,3或4,共有$A_{3}^{1} times A_{4}^{2} = 36$种。
答案2
将4把椅子排好,共有$A_{5}^{3} = 60$种坐法。
答案4
不同的分法种数为$A_{5}^{4} = 120$种。
常见错误解析与避免方法
混淆排列与组合
遗漏情况
排列和组合是不同的概念,需要明确 题目要求,正确使用公式。
在解题过程中,需要注意不要遗漏某 些情况,例如在排列时需要考虑元素 的顺序,在组合时需要考虑元素的取 法。

排列与组合ppt课件

排列与组合ppt课件
数。
从10个不同字母中取出 5个字母的所有排的个
数。
从8个不同数字中取出4 个数字的所有排列的个
数。
从n个不同元素中取出m 个元素的所有排列的个
数。
03
CHAPTER
组合的计算方法
组合的公式
组合的公式:C(n,k) = n! / (k!(n-k)!)
"!"表示阶乘,即n! = n * (n-1) * ... * 3 * 2 * 1。
3
排列组合在计算机科学中的应用
计算机科学中,排列组合用于算法设计和数据结 构分析。
排列与组合的未来发展
排列与组合理论的发展方向
随着数学和其他学科的发展,排列与组合理论将不断发展和完善,出现更多新 的公式和定理。
排列与组合的应用前景
随着科学技术的发展,排列与组合的应用领域将更加广泛,特别是在计算机科 学、统计学和信息论等领域的应用将更加深入。
在计算排列和组合时,使用的 公式和方法也不同。
02
CHAPTER
排列的计算方法
排列的公式
01
02
03
排列的公式
P(n, m) = n! / (n-m)!, 其中n是总的元素数量, m是需要选取的元素数量 。
排列的公式解释
表示从n个不同元素中取 出m个元素的所有排列的 个数。
排列的公式应用
适用于计算不同元素的排 列组合数,例如计算从n 个不同数字中取出m个数 字的所有排列的个数。
该公式用于计算从n 个不同元素中选取k 个元素(不放回)的 组合数。
组合的计算方法
直接使用组合公式进行计算。 当n和k较大时,需要注意计算的复杂性和准确性。
可以使用数学软件或在线工具进行计算。

排列组合的ppt课件免费

排列组合的ppt课件免费

题目2:从7个不同元素 中取出4个元素的组合数 ,其中某特定元素可以 不被取出。
答案1:$A_{7}^{4} A_{6}^{3} = 7 times 6 times 5 times 4 - 6 times 5 times 4 = 336$
答案2:$C_{7}^{4} C_{6}^{3} = frac{7 times 6 times 5 times 4}{4 times 3 times 2 times 1} - frac{6 times 5 times 4}{3 times 2 times 1} = 28$
排列组合问题的变种与拓展
排列组合问题的变种
如“带限制的不同元素的排列组合” 、“重复元素的排列组合”等,需要 进一步拓展学生的思路。
拓展方法
通过变种问题的解析,引导学生深入 思考排列组合问题,并掌握其变化规 律,为解决更复杂的问题打下基础。
04
CATALOGUE
排列组合的数学原理
排列组合的数学原理简介
数学教育的核心
排列组合是数学教育中的 重要内容,对于培养学生 的数学素养和解决问题的 能力具有重要意义。
解决排列组合问题的方法与技能
乘法原理
加法原理
乘法原理是解决排列组合问题的基础,通 过将各个独立事件的产生概率相乘,可以 计算出复合事件的产生概率。
加法原理用于计算具有互斥性的事件的概 率,通过将各个互斥事件的产生概率相加 ,可以得到总的产生概率。
解析方法
通过实例演示和讲授,帮助学生理解排列组合的基本概念和计算方法,同时引导 学生思考如何解决实际问题。
实际问题的排列组合解决方案
实际问题的排列组合
如“安排会议”、“排定演出节目单”、“安排生产计划” 等,需要结合具体情境进行分析。

排列组合ppt课件高中

排列组合ppt课件高中
10$
进阶练习题
题目:在数字"202X"中,各位数字相加和为10,称该 数为"如意四位数",用数字0,1,2,3,4,5组成的
无重复数字且大于202X的"如意四位数"有____个.
输标02入题
01
答案:12
03
答案:10
04
题目:在数字``202X''中,各位数字相加和为10,称该数 为``如意四位数'',用数字0,1,2,3,4,5组成的无重 复数字且大于202X的``如意四位数''有____个.
确定元素
确定题目中涉及的元素,并理 解元素之间的关系。
确定限制条件
理解题目中的限制条件,如是 否可以重复、是否需要排序等

建立数学模型
根据问题类型、元素和限制条 件,建立相应的数学模型。
常见题型解析
排列问题
如“5个人排成一排,有多少种不同的排法?”这类问题需要斟酌到顺序,使用排列公式 $A_n^m = n(n-1)(n-2)...(n-m+1)$进行计算。
排列的定义
从n个不同元素中取出m个元素( 0<m≤n),依照一定的顺序排成 一列,叫做从n个元素中取出m个
元素的一个排列。
排列的计算公式
P(n, m) = n! / (n-m)!,其中"!"表 示阶乘。
排列的特性
排列与取出元素的顺序有关,元素 相同但顺序不同是不同的排列。
组合的定义
01
02
03
组合的定义
从n个不同元素中取出m个元素(不放回) 进行排列,得到的排列数记为$A_{n}^{m}$ 。
组合数定义

《排列组合》PPT课件

《排列组合》PPT课件

考考你:饮料和点心 只能各选一样,有几 种不同的搭配方式?
① ②
3×2=6(种)
M 下
能组成哪几个不同 的两位数呢?
? ? 从宁波到北京一共有几种走法?
飞机
轮船 火车 飞机
宁波
汽车
上海
火车
北京
火车
8种
我们知道了: 有的问题需要考虑到顺序,也就是结果和顺 序有关,例如组成几位数这样的问题等 有的问题不用考虑到顺序,也就是说结果和 顺序无关,例如握手、比赛等问题 今后我们在遇到这些问题的时候一定要认真 审题,看清楚问题的“隐含条件”
学习目标:
1、我能找出简单事物的组合数。
2、我能用排列与组合的知识解决生活中的 实际问题。
小组讨论一:
一件衣服搭配一条裤子或者一条裙子,可以 搭配多少种? 要求:小组中一人记录,其他同学陈述自己 的观点。
穿法一
穿法二
穿法三
穿法六
穿法四
穿法五
2×3﹦6(种)
小组合作讨论二:
用1,2,3可以组合成哪些两位数? 要求:小组中一人记录,其他同学陈述自己 的观点。
12 21 31 13 23 32
十 个 位 位
十 个 位 位
十 个 位 位
猜一猜:
我今年读九年级了,我的 班级是由1、2、3这三个数 字组成的一个三位数,请 你猜一猜我读的是多少班?
123 132 213 231 312 321
作业:
同学们回家后仔细观察周围环境中可搭配和 组合的实物,自己搭配和组合。
小学数学课件
灿若寒星整理制作

排列组合ppt课件

排列组合ppt课件
排列组合基本公式 • 排列组合的应用 • 排列组合的扩展知识 • 练习题与答案解析
01
排列组合基本概念
排列的定义
排列的定义
从n个不同元素中取出m个元素( m≤n),按照一定的顺序排成一列, 称为从n个不同元素中取出m个元素的 排列。
组合公式推导
根据乘法原理,组合数等 于从n个不同元素中取出m 个元素的排列数除以这m 个元素的全排列数。
组合公式证明
通过数学归纳法证明组合 公式。
排列组合公式的推导与证明
排列组合公式的推导
通过数学归纳法和乘法原理,逐步推导出排列和组合的公式。
排列组合公式的证明
通过数学归纳法和反证法,证明排列和组合公式的正确性。
机器学习
03
在机器学习中,排列组合用于描述样本空间和事件发生的可能
性,例如在朴素贝叶斯分类器中。
在统计学中的应用
概率分布
在统计学中,排列组合用于描述概率分布和随机事件的组合数量 ,例如在二项分布、多项分布等概率分布中。
统计推断
在统计推断中,排列组合用于计算样本数据的可能性和置信区间 ,例如在贝叶斯推断和参数估计中。
从n个不同元素中取出m个元素的所有组合方式。
排列组合在概率论中的应用
总结词
排列组合在概率论中有广泛的应用,它们是概率论中的基本概念之一。
详细描述
在概率论中,排列组合被广泛应用于各种概率模型和随机事件的计算中。例如,在计算随机事件的概率时,可以 使用排列组合来计算样本空间的大小和基本事件的数量。在计算条件概率时,可以使用排列组合来计算条件事件 的基本事件的数量。此外,在概率分布的计算中,排列组合也起着重要的作用。
3
组合的特性
组合无方向性,即顺序不影响组合的唯一性。

排列组合最新版本ppt课件

排列组合最新版本ppt课件
即利用不同颜色的旗帜的排列传递某种信号. 现有红、黄、 蓝三面旗子,同时升旗,共可表示多少种不同的信号?
解:每一种“旗语” 就是“从3个元素中选取3个元素
的一个排列”. 排列数为:
A
3 3
=3×2×1=6.
∴共可表示6种不同的信号.
.
深化理解
引例2 从甲、乙、丙3名同学中选2名参加某天的一 项活动,其中1名同学参加上午的活动,1名同学 参加下午的活动,有多少种不同的方法?
3 3
4 3 .
A 从 而 C A
3
3 C4 3
4
P4 3
34
P3 3 3
.
概念讲解 (三)、组合数公式
排列与组合是有区别的,但它们又有联系.
一般地,求从n个不同元素中取出m个元素的 排列数,可以分为以下2步:
第1步,先求出从这n个不同元素中取出m个元
素的组合数
.C
m n
第2步,求每一个组合中m个元素的全排列数
需握手多少次?
组合问题
组合是选择的结果,排列 是选择后再排序的结果.
.
概念理解
1.从 a , b , c三个不同的元素中取出两个元素的所 有组合分别是: ab , ac , bc (3个)
2.已知4个元素a , b , c , d ,写出每次取出两个元
素的所有组合.
a
b
c
b cd
cd
ab , ac , ad , bc , bd , cd
N=5×4×3=60种不同的方法, 这样的三位数60个. 把这个计算过程 记 为 : A3 554360

基本概念
排列的概念: 一般地,从n个不同元素中取出m(m≤n)个元素,

《排列组合公式》课件

《排列组合公式》课件

便确定排列或组合的基数。
区分排列与组合
02 排列组合公式包括排列公式和组合公式,使用时应明
确所需的是排列还是组合,并选择相应的公式。
考虑顺序
03
排列公式需要考虑元素的顺序,而组合公式则不考虑
元素的顺序。
公式应用范围的限制
元素互异
排列组合公式的应用前提是所涉及的 元素必须互不相同,否则公式不适用 。
组合公式的推导过程
组合公式的基本形式
C(n, k) = n! / (k!(n-k)!)
推导过程
通过排列与组合的数学关系,利用阶乘的性质进行推 导,最终得到组合公式的形式。
组合公式的数学证明
可以通过数学归纳法或组合恒等式进行证明,确保公 式的正确性。
组合公式的应用实例
概率计算
在概率论中,组合公式常用于计 算事件发生的可能性,如组合概 率和条件概率。
无限制条件
对于某些特定问题,可能需要添加额 外的限制条件,如去除重复、特定顺 序等,此时公式应用范围需相应调整 。
避免常见的计算错误
基数不为零
01
排列组合公式的基数不能为零,否则会导致计算错误。
重复计算
02
在使用排列组合公式时,应避免重复计算相同的情况,确保每
种情况只计算一次。
正确使用括号
03
在应用排列组合公式时,应正确使用括号,以确保计算的准确
排列公式的扩展形式
排列组合混合公式
除了单纯的排列公式外,还有排列组合混合公式, 可以用来计算同时涉及排列和组合的问题。
有限制条件的排列公式
在一些特定的问题中,可能需要对元素进行限制, 此时需要使用有限制条件的排列公式。
高阶排列公式
对于较大规模的排列问题,需要使用高阶排列公式 来计算。

第二节排列组合-PPT课件

第二节排列组合-PPT课件
1 4 2 3 3 2 4 1 ( 种 ) ……………… C C C C C C C C 2 6 4 ..6′ 4 6 46 4 6 46
方法二:“至少有1名女运动员”的反面为“全是男运动员”,故可 用间接法求解.
分析 (1)分步.(2)可分类也可用间接法.(3)可分类也可
用间接法.(4)分类. 解 (1)第一步:选3名男运动员,有 C 63 种选法. 第二步:选2名女运动员,有 C 42种选法. 共有 C 3 =120( 种)选法………………………………3′ C4
6 6
(2)方法一:“至少有1名女运动员”包括以下几种情况: 1女4男,2女3男,3女2男,4女1男…………………….4′ 由分类加法计数原理可得总选法数为:
参加,星期六、星期日各有1人参加,则不同的选派方法共
有种.
解析: 星期五有2人参加,则从5人中选2人的组合数为C 5 2 ,星 期六和星期天从剩余的3人中选2人进行排列,有
2 ). 2 =60(C 种 A 5 3
种,则共有 A 32
答案: 60 题型四 基本组合问题 【例4】(14分)有男运动员6名,女运动员4名,其中男女队 长各1名.选派5名外出比赛.在下列情形中各有多少种选派方法? (1)男运动员3名,女运动员2名; (2)至少有1名女运动员; (3)队长中至少有1名参加; (4)既要有队长,又要有女运动员.
=2 880A(种 )排法. 4
A 44 A 55
学后反思 本题集排列的多种类型于一题,充分体现了元素分析 法(优先考虑特殊元素)、位置分析法(优先考虑特殊位置)、 直接法、间接法(排除法)、捆绑法、等机会法、插空法等常 见的解题思路.
举一反三
3. (2019· 全国改编)从5位同学中选派4位同学在星期五、星 期六、星期日参加公益活动,每人一天,要求星期五有2人

排列组合基本原理.课件

排列组合基本原理.课件

排列和组合之间可以 通过组合数公式进行 转换。
排列和组合都是从n 个不同元素中取出m 个元素进行操作,计 算公式不同。
02
排列组合基本原理
伯努利原理
01
02
03
伯努利原理的内容
在n个独立事件中,每个 事件发生的概率为p,则 至少有一个事件发生的概 率为1-(1-p)^n。
应用
在保险业中,伯努利原理 常被用于计算保险概率, 例如汽车保险、健康保险 等。
03
排列的应用
排列的常见应用场景
01
彩票中奖概率计算
02
03
04
计算机科学中的排列算法
统计学中的样本排列
金融领域中的投资组合优化
排列在组合物件中的运用
密码学中的排列组合 计算机程序中的随机数生成
组合物件中的排列问题,如拼图、魔方等
排列在解决其他问题中的运用
数学竞赛中的排列题目 密码破译中的排列分析
计算机程序中的算法优化问题
04
组合的应用
组合的常见应用场景
彩票中奖概率计算
在计算彩票中奖概率时,通常需要考虑从数百万个彩票号 码中选取特定组合的情况,这时就需要使用组合的原理来 计算。
投资组合风险与收益评估
在投资领域,投资者需要根据不同资产的风险和收益特性 构建投资组合,以实现风险分散和资产保值增值,这里的 投资组合构建就需要用到组合的原理。
注意事项
伯努利原理在独立事件的 情况下适用,如果事件之 间存在依赖关系,则该原 理可能不成立。
容斥原理
Hale Waihona Puke 01容斥原理的内容
在计算多个集合的并集时,需要考虑重复计算的问题。通过将各个集合
单独求和,再减去重复计算的集合,即可得到正确的并集结果。

排列组合

排列组合

§1基本原理△让我们来看下面问题:从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。

一天中,火车有4班,汽车有2班,轮船有3班。

那么,一天中乘坐这些交通工具从甲地到乙地共有多少种不同走法?△分析:因为从甲地到乙地,乘火车有4种选择(方法),乘汽车有2种选择(方法),乘轮船有3种选择(方法)。

因此,一天中乘坐这些交通工具从甲地到乙地共有:4+2+3 = 9种不同的方法。

▲一般地,做一件事,完成它可以有n 类方法,在第一类办法中有m 1种不同的方法,在第二类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事共有: N = m 1+m 2+…+m n 种不同的方法。

一、加法原理:△再看这样一个例子:由A 村去B村的道路有3条,由B村去C村的道路有2条(如下图所示)。

从A村经B村去C村,共有多少种不同的走法?△分析:从A 村到B 村有3种不同的走法,按这3种走法中的每一种走法到达B 村后,再从B 村到C 村又有2种不同的走法。

因此,从A 村经B 村去C 村共有:3×2 = 6种不同的走法。

▲一般地,做一件事,完成它需要分成n 个步骤,做完第一步有m 1种不同的方法,做完第二步有m 2种不同的方法,……,做第n 步有m n 种不同的方法。

那么,完成这件事共有: N = m 1×m 2×…×m n 种不同的方法。

二、乘法原理:A 村C 村B 村〖举例〗1.书架上层放有6本不同的数学书,下层放有5本不同的语文书。

⑴从中任取一本,有多少种不同的取法?⑵从中任取数学书与语文书各一本,有多少种不同的取法?解:⑴分析:从书架上任取一本书,有两类情况:第1类情况是从上层取数学书,可以从6本书中任取一本,有6种方法;第2类情况是从下层取语文书,可以从5本书中任取一本,有5种方法。

根据加法原理,得到不同的取法的种数是:N = 6+5 = 11⑵分析:从书架中任取数学书与语文书各一本,可以分成两个步骤:第1步取一本数学书,有6种方法;第2步取一本语文书,有5种方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2+2+3=7
3.乘积( a1+ a 2+ a 3 )( b1 + b 2 + b3 + b4 )(c1 + c2 + c3 + c4 + c5 )展开后共有项? 3×4×5=60
练习题2:
1 书架的上层放有 5 本不同的数学书,中层放有6本不同的语文书, 下层放有4本不同的英语书,从中任取1 本书的不同取法的种数 是(A)


A

C


பைடு நூலகம்
南 B村

解:从A 村去 B 村有3种不同的走法,按这3种走法中的每 一种走法到达B村后,再从 B村到达C 村又有2种不同的走 法。因此,从 A 村经 B 村去 C 村共有 3 × 2 = 6 种不 同的走法。
乘法原理:
做一件事,完成它需要分成n个步骤,做第一 步有m1种不同的方法,做第二步有m2种不同的方 法,… …,做第n步有mn种不同的方法。那么完 成这件事共有 N= m1× m2×… …×mn 种不同的 方法。
解:⑴从书架上任取一本书,有两类办法:
第一类办法是从上层取数学书,可以从 6 本书中任取 一本,有 6 种取法;
第二类办法是从下层取语文书,可以从5本书中任取 一本,有5 种取法。
根据加法原理,得到不同的取法的种数是:
N = m1+ m2 = 6+5=11 答:从书架上任取一本书,有11种不同的取法。
法; 第二步确定十位上的数字,同理,它也有5种选法。 根据乘法原理,得到组成的三位数的个数是: N = 5 ×5 ×5 = 53 = 125
答:可以组成125个三位数。
例3 有不同的语文书9本,不同的数学书7本,不同的物理 书5本,从中任取两种不同类的书,共有多少种不同的取 法?
解:每次取出的两本书中: 含 1 本语文书和 1 本数学书的共有 9 × 7 = 63 种取
乘法原理:做一件事,完成它需要分成n个步骤,做第一步有 m1种不同的方法,做第二步有m2种不同的方法,… …,做第n步有 mn种不同的方法。那麽完成这件事共有 N= m1× m2×… …×mn 种 不同的方法。
2.加法原理和乘法原理的
共同点:都是把一个事件分解成若干个分事件来完成;
不同点:前者分类,后者分步;如果分事件相互独立,分类完 备,就用加法原理;如果分事件相互关联,缺一不可, 就用乘法原理。
例4
▪甲、乙两个自然数的最大公 约数为60,则甲、乙两数的 公约数共有多少个?
练习1:
1. 一件工作可以用两种方法完成。有5人会用第一种方 法完成,另有4人会用第二种方法完成。选出一个人来 完成这件工作,共有多少种选法?
4+5=9
2. 在读书活动中,一个学生要从2本科技书,2本政治书, 3本文艺术里任选一本,共有多少种不同的选法?
例1 书架上层放有 6 本不同的数学书,下层放有 5 本不同的语文书。
⑴从中任取一本,共有多少种不同的取法? ⑵从中任取数学书与语文书各一本,共有多少种不同的取法?
解: ⑵从书架上任取数学书与语文书各一本,可以分成两 个步骤完成:
第一步取一本数学书,有6种方法;第二步取一本语 文书,有5种方法。根据乘法原理,得到不同的取法的种 数是:
课下练习题:
第266页 3题 5题
作业:
第266页 6题 7题 补充题: 从2,3,5,7四个数字中任取两个用来做分 子,分母。
①能得到几个不同的分数? ②其中有几个是真分数?几个假分数?
两个原理的
共同点:都是把一个事件分解成若干个分事件来完成;
不同点: 前者分类,后者分步;
如果分事件相互独立,分类完备,就用加法原理; 如果分事件相互关联,缺一不可,就用乘法原理。
例1 书架上层放有 6 本不同的数学书,下层放有 5 本不同的语文书。
⑴从中任取一本,共有多少种不同的取法? ⑵从中任取数学书与语文书各一本,共有多少种不同的取法?
加法原理:
做一件事,完成它可以有 n 类办法,在第一类办 法中有m1种不同的方法,在第二类办法中有m2种不 同的方法,… …,在第n类办法中有mn种不同的方 法。那么完成这件事共有 N= m1+ m2+… …+ mn 种 不同的方法。
例2 由 A 村去 B 村的道路有3条,由 B 村去 C 村的道路 有2条。从 A 村经 B 村去 C 村,共有多少种不同的走法?
第九章 排列、组合、二项式定理 一 排列与组合
第一课 基本原 理
例1 从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘 轮船。一天中,火车有4班,汽车有2班,轮船有3班。 那麽,一天中乘坐这些交通工具从甲地到乙地共有多少 种不同的走法?
解:因为一天中乘火车有4种走法,乘汽车有2种走法,乘 轮船有3种走法,每一种走法都可以从甲地到乙地,因此, 一天中乘坐这些交通工具从甲地到乙地共有 4+2+3=9 种 不同的走法。
、D四个区域涂色,规定每个区域 只涂一种颜色,相邻区域涂不同颜 色,求有多少种不同涂色方法?
AD
BC
例1
▪4名同学去争夺三项冠 军,不允许并列,则有 多少种情况?
例2
▪在所有的两位数中,个位数 字比十位数字大的两位数有 多少?
例3
设集合M 1,0,1,N 2,3,4,5,6
映射f:M N,使对任意的x M , 都有x f (x) x • f (x)是奇数,这样 的映射有多少个?
N= m1× m2 = 6×5 = 30 答: 从书架上取数学书与语文书各一本,共有30 种不同 的取法。
例2 有数字 1,2,3,4,5 可以组成多少个三位数(各位 上的数字许重复)?
解:要组成一个三位数可以分成三个步骤完成: 第一步确定百位上的数字,从5个数字中任选一个数字,共有5
种选法; 第二步确定十位上的数字,由于数字允许重复,这仍有5种选
(3)3位旅客到4个旅馆住宿,有多少种?
映射问题
已知A a1, a2 , a3, a4,B b1, b2 , b3, b4 , b5
(1)从A到B可建立多少个不同的映射; 从B到A可建立多少个不同的映射?
(2)从A到B可建立多少个不同的映射, 使A中不同的元素在B中的像不同?
染色问题 ▪ 用5种不同的颜色给图中A、B、C
加法原理:做一件事,完成它可以有 n 类办法,在第一类办法中
有m1种不同的方法,在第一类办法中有m2种不同的方法,… …, 在第n类办法中有mn种不同的方法。那麽完成这件事共有 N= m1+ m2+… …+ mn 种不同的方法。
乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1
种不同的方法,做第二步有m2种不同的方法,… …,做第n步有mn 种不同的方法。那麽完成这件事共有 N= m1× m2×… …×mn 种不 同的方法。
A. 12
B.64
C.81
D.7
4 火车上有10名乘客,沿途有5个车站,乘客下车的可能方式有 ( A )种 A. 510 B. 105 C. 50 D. 以上都不对
总结:
1.加法原理:做一件事,完成它可以有 n 类办法,在第一类办法 中有m1种不同的方法,在第一类办法中有m2种不同的方法,… …, 在第n类办法中有mn种不同的方法。那麽完成这件事共有 N= m1+ m2+… …+ mn 种不同的方法。
A. 5 + 6+4 = 15 B. 1 C. 6×5×4 = 120 D. 3
2 在上题中,如果从中任取3本,数学,语文,英语各一本,则不同取法的 种数是 ( C )
A. 1 + 1 + 1 = 3 B.5 + 6 + 4 =15 C. 5×6×4 = 120 D. 1
3 把四封信任意投入三个信箱中,不同投法种数是 ( C )
法; 含 1 本数学书和 1 本物理书的共有 7 × 5 = 35 种取法; 含 1 本语文书和 1 本物理书的共有 9 × 5 = 45 种取法。
由加法原理得 63 + 35 + 45 = 143 答:共有 143 种取法。
一类易混问题
(1)8本不同的书,任选3本分给3个同学, 每人1本,有多少种不同的分法? (2)将4封信投入3个邮筒,有多少种?
相关文档
最新文档