移位寄存器及其应用(精)
2 移位寄存器及其应用
实验七移位寄存器及其应用一、实验目的1.移位寄存器74LS194的逻辑功能及使用方法;2.熟悉4位移位寄存器的应用。
二、实验预习要求1.了解74LS194的逻辑功能;2.用4位移位寄存器构成8位移位寄存器;3.了解移位寄存器构成环形计数器的方法。
三、实验原理1. 移位寄存器是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。
74LS194是一个4位双向移位寄存器,最高时钟脉冲为36MHz,其逻辑符号及引脚排列如图实验7.1所示。
图实验7.1 74 LS194逻辑符号及引脚排列其中:D0~D1为并行输入端;Q0~Q3为并行输出端;SR-右移串引输入端;SL-左移串引输入端;S1、S0-操作模式控制端;/CR-为直接无条件清零端;CP-为时钟脉冲输入端。
74LS194模式控制及状态输出如表实验7.1所示。
2. 用74LS194构成8位移位寄存器电路如图实验7.2所示,将芯片(1)的Q3接至芯片(2)的SR,将芯片(2)的Q4接至芯片(1)的SL,即可构成8位的移位寄存器。
注意:/CR端必须正确连接。
3. 74LS194构成环形计数器把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位,如图实验7.3所示。
设初态为Q3Q2Q1Q0=1000,则在CP作用下,模式设为右移,输出状态依次为:表实验7.1 74LS194工作状态表2. 用74LS194构成8位移位寄存器电路如图实验7.2所示,将芯片(1)的Q3接至芯片(2)的SR,将芯片(2)的Q4接至芯片(1)的SL,即可构成8位的移位寄存器。
注意:/CR端必须正确连接。
图实验7.2 8位移位寄存器3. 74LS194构成环形计数器把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位,如图实验7.3所示。
设初态为Q3Q2Q1Q0=1000,则在CP作用下,模式设为右移,输出状态依次为:图实验7.3 环形计数器图实验7.3电路是一个有四个有效状态的计数器,这种类型计数器通常称为环形计数器。
移位寄存器的应用(应用)
提高: 利用移位寄存器和计数器实现一 个彩灯控 制电路。要求能够两灯循环和三灯 循环。观察显示结果,记录数据。
返回目录
2011-7-14
实验原理
移位寄存器的应用十分广泛,除了作数码寄存器外,还可以作移 存型计数器、随机码发生器、延时电路以及串/并行代码变换器等。 1)移存型计数器 (1)环形计数器 将移位寄存器的最后一级输出回送到第一级的输入,便可构成环 形计数器(Ring counter)。环形计数器的特点是计数器的模数与 移位寄存器位数相等,且工作状态是依次循环出1(或0),如四 位环形计数器的状态为0001-0010-0100-1000或1110-1101- 1011-0111。 (2)扭环形计数器 扭环形计数器又叫约翰逊计数器,它是将移位寄存器中最后一级 的反变量输出与第一级输入端相连而构成的。扭环形计数器的特 点是M=2N,工作状态转换时相邻状态之间只有一位发生变化, 避免了功能冒险。
2011-7-14
返回目录
2011-7-14
输入端
输出端
方式 清除 AB 时 钟
QA QB QC QD QE QF QG QH
L H H H H
×× ×× H H L H H L
× L ↑ ↑ ↑
L L L L L 保持 1 Qan Qbn Qcn Qdn Qen Qfn Qgn 0 Qan Qbn Qcn Qdn Qen Qfn Qgn 0 Qan Qbn Qcn Qdn Qen Qfn Qgn 返回目录
L
L
L
2011-7-14
常见问题
1、74LS164移位寄存器的管脚是怎样排列的? 答:如图所示
Vcc QH QG QF QE CLR CK
14 13 12 11 10 1 2 3 4 5
实验七 移位寄存器及其应用
实验七移位寄存器及其应用一、实验目的1.移位寄存器74LS194的逻辑功能及使用方法;2.熟悉4位移位寄存器的应用。
二、实验预习要求1.了解74LS194的逻辑功能;2.用4位移位寄存器构成8位移位寄存器;3.了解移位寄存器构成环形计数器的方法。
三、实验原理1.移位寄存器是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。
74 LS194是一个4位双向移位寄存器, 最高时钟脉冲为36MHz, 其逻辑符号及引脚排列如如图7.1所示。
图实验7.1 74 LS194逻辑符号及引脚排列其中: D0~D1为并行输入端;Q0~Q3为并行输出端;SR-右移串引输入端;SL-左移串引输入端;S1.S0-操作模式控制端;/CR-为直接无条件清零端;CP-为时钟脉冲输入端。
74LS194模式控制及状态输出如表实验7.1所示。
2.用74LS194构成8位移位寄存器电路如实验7.2所示, 将芯片(1)的Q3接至芯片(2)的SR,将芯片(2)的Q4接至(1)的SL, 即可构成8位的移位寄存器。
注意: /CR端必须正确连接。
3.74LS194构成环形计数器把位移寄存器的输出反馈到它的串行输入端, 就可以进行循环移位, 如图实验7.3所示。
设初态为Q3Q2Q1Q0=1000,则在CP作用下, 模式设为右移, 输出状态依次为:表实验7.1 74LS194工作状态表图实验7.2 8位移位寄存器图实验7..3 环形计数器四、实验仪器设备1.TPE-AD数字实验箱 1台2.四位双向移位寄存器74LS194 2片3.四两输入集成与非门74LS00 1片五、实验内容及方法1.测试74LS194(或CC40194)的逻辑功能参图实验7.1接线, /CR 、S1.S0、SL、SR、D3.D2.D1.D0分别接逻辑电平开关输出插孔;Q3Q2Q1Q0用LED电平显示, CP接单脉冲源输出插孔。
按表实验7.1进行逐项对比测试。
(1)清零: 令=0, 此时Q3Q2Q1Q0=0000。
数字电路与数字逻辑实验4-移位寄存器及应用
2、多功能移位寄存器-74LS194
多功能寄存器具有并行置数、左移、右移、保持的功能。
S1S0 =00: 保持
S1S0 =01:右移
S1S0 =10: 左移
S1S0 =11: 置位
三、实验内容
1、用74LS194设计扭环型计数器
扭环形计数器:用n位的移位寄存器所构成的具有2n种状态的 计数器,也称为约翰逊计数器。
1
DIL Q0
DIR Q 0 Q 1 Q 2 Q 3 S 0
0
DIL 74LS194 S1 1
CP CP D0 D1 D2 D3 RD
Q0Q1Q2Q3
××××
0000Βιβλιοθήκη 00010011左移
复位
0111
1000
1100
1110
1111
2、用74LS194设计00011101序列信号发生器
⑴ 序列信号的循环长度 M=8,确定移位寄存器位数 n, 2n-1<M≤2n,。故 n=3,选定为 3 位。
设备型号 THM—7
ESCORT 3136A
TBS1102B AFG3000C
数量 一台 一台 一台 一台
备注
⑵ 确定移位寄存器的 M个独立状态。将序列码 00011101按 照每 3 位一组,划分为 8个状态,状态转换图如下:
⑶ 根据 M个不同状态列出移位寄存器的状态表和反馈函 数表,求出反馈函数 F 的表达式。
⑷ 设计电路
利用双四选一数据选择 器74LS153实现组合电路, 具体电路如右图所示。
CP端输入1KHz,VP-P=4V, 直流偏置=2v的方波信号, 用示波器观察CP信号和F输 出信号。
⑸ 实验结果
移位寄存器及应用
207二、实验原理时序功能组件常用的有计数器和移位寄存器等,借助于器件手册提供的功能表和工作波形图,就能正确地使用这些器件。
对于一个使用者,关键在于合理地选用器件,灵活地使用器件的各控制输入端,运用各种设计技巧,完成任务要求的功能,在使用MSI 器件时,各控制输入端必须按照逻辑要求接入电路,不允许悬空。
1.移位寄存器74LS194是一个4位双向移位寄存器,它的逻辑符号如图3.6.1所示,功能表见表3.6.1,其中D 0D 1D 2D 3和Q 0Q 1Q 2Q 3是并行数据输入端和输出端;CP 是时钟输入端;CR 是直接清零端;D SR 和D SL 分别是右移和左移时的串行数据输入端;S 1和S 0是工作状态控制输入端。
移位寄存器还可用来构成计数器,典型的有环形计数器和扭环形计数器。
三、实验仪器1.数字逻辑实验箱 一台 2.双踪示波器 一台3.数字万用表 一块 图3.6.1 74LS194逻辑符号 4.集成块若干表3.6.1 74LS194功能表四、实验任务及步骤1.双向移位寄存器⑴逻辑功能测试①清除:先将CR端接+5V,检查Q端输出情况,再将CR端接0电平,所有Q 端输出应为0,清零后再将CR端接+5V。
②并行输入:S1S置入11,D端置入一组代码(如1011),给 CP端送单次脉冲,观察 Q端的状态。
此时若将DSL 或DSR置入1或0,Q端的状态是否改变?③右移:令S1S=“01”,CP接1Hz方波脉冲,再令DSL=“0”,观察Q端的变化,待4个LED全灭以后(此时输入的串行码是什么?),再令DSR=“l”,观察此时Q端LED点亮的次序。
当 4个LED都点亮时,输入的串行码又如何?若要串行输入代码1010(或其它非全0、非全1码),在DSR端置入一位数码(低位先送),给 CP端送单次脉冲,经过4个脉冲之后立即将S置成0以使寄存器工作于保存状态。
④左移:令S1S=“10”,CP=1Hz,代码1010由DSL端置入,其它步骤与右移相同。
实验七---移位寄存器及其应用
集成移位寄存器74LS194功能表:
附:74LS194引脚图
四、实验内容
1、测试四位双向移位寄存器74LS194的逻 辑功能:(测试数据记录表5中)
(1)清除功能 (2)送数功能 (3)右移、左移功能 (4)保持功能 注:CR、S1、S0、SL、SD以及D0-D7分别
接数据开关,CP接逻辑开关,Q0-Q7接发 光二极管显示器。
2、根据实验内容2的结果,画出4 位 环形计数器的状态转换图及波形图。
3、分析串/并行、并/串行转换器所 得结果的正确性。
实验七、移位 寄存器
一、实验目的
1、掌握中规模4位双向移位寄存 器的逻辑功能及使用方法。
2、掌握移位寄存器的典型应用。 3、熟悉移位寄存器的调试方法。
二、实验设备
1、电子技术实验箱
一台
2、数字示波器
一台
3、数字万用表
一块
4、芯片:74LS194*2、74LS00
三、理论准备
移位寄存器是一种由触发器链 型连接的同步时序网络 ,每个 触发器的输出连到下一级触发 器的控制输入端,在时钟脉冲 作用下,存贮在移位寄存器中 的信息逐位左移或右移。
2、环形计数器:自拟实验电路及数据 记录表格。
3、实现数据的串/并转换:按图3、图 4连接电路,输入数码自定,自拟记录 表格。
注:串行输入/并行输出及并行输入/ 串行输出转换电路中只做右移部分; 改接电路,用左移方式的内容放在实 验报告中完成(画出电路图)
波形图:
五、实验报告要求
ห้องสมุดไป่ตู้、分析表5的实验结果,总结移位寄 存器的逻辑功能,并写入表格总结功 能一栏中。
电路中的移位寄存器与计数器的原理与应用
电路中的移位寄存器与计数器的原理与应用在现代科技中,电路是一个不可或缺的组成部分。
电路可以用于各种领域,其中移位寄存器和计数器是最为常见且重要的电路之一。
本文将深入探讨这两种电路的原理与应用。
一、移位寄存器的原理与应用移位寄存器是一种能够将输入数据连续地移位、保留并输出的电路。
其原理主要基于逻辑门电路的组合与连接。
1. 原理移位寄存器通常由多个触发器构成,触发器是一种能够存储一个二进制位的设备。
当输入数据进入移位寄存器时,触发器会按照一定的时序规律将数据进行移位,并输出。
移位寄存器可以实现向左(左移)或向右(右移)移动数据的功能。
2. 应用移位寄存器在数字系统中有广泛的应用。
例如,在串行通信中,移位寄存器可以将并行数据转化为串行数据进行传输;在移位加法器中,移位寄存器可以实现两个二进制数的相加;在移位寄存器阵列中,移位寄存器可以用于存储、处理和传输图像等。
二、计数器的原理与应用计数器是一种能够将输入的时钟信号进行计数并输出的电路。
计数器能够记录输入信号的数量,并根据设定的计数规则输出对应的结果。
1. 原理计数器通常由触发器和逻辑门电路构成。
当计数器接收到时钟信号时,触发器会根据时钟信号的上升沿或下降沿进行状态变换,从而实现计数功能。
计数器可以分为二进制计数器、十进制计数器等,根据不同的计数规则可以实现不同的计数功能。
2. 应用计数器在数字电路中有广泛的应用。
例如,在计算机中,计数器可以用于指示程序执行的步骤;在测量仪器中,计数器可以用于计算输入信号的频率或脉冲个数;在定时器中,计数器可以实现定时功能等。
综上所述,移位寄存器和计数器都是数字电路中重要的组成部分。
移位寄存器可以将输入数据按照一定的规律移位输出,广泛应用于数字系统中;计数器则可以根据输入的时钟信号进行计数输出,实现不同的计数功能。
这两种电路的原理与应用相互关联且互相补充,为数字电路的设计与实现提供了强大的工具与方法。
总之,了解移位寄存器和计数器的原理与应用对于理解和应用数字电路至关重要。
电路中的移位寄存器及其应用
电路中的移位寄存器及其应用电路中的移位寄存器是一种重要的数字逻辑元件,它可以实现数据的移动和存储功能。
通过移动数据位,可以在电路中实现各种有趣的应用,从而扩展数字逻辑的功能。
在本文中,我们将探讨移位寄存器的原理、分类以及一些实际应用。
移位寄存器是一种特殊的寄存器,它可以用来存储和移动一串二进制数据。
它由一组触发器构成,每个触发器代表一个二进制位。
这些触发器可以分为串行和并行两种类型。
串行移位寄存器是将数据位顺序连接在一起形成一个串行的数据路径。
当时钟信号到来时,数据位会按照顺序依次移动。
最常见的是移位寄存器的左移和右移操作,左移时数据位向左移动一位,右移时数据位向右移动一位。
当移出的数据位被丢弃时,新的数据位会从移入端进入寄存器。
串行移位寄存器的优点是结构简单,占用空间小,但是移位速度较慢。
并行移位寄存器是将数据位同时移动的一种寄存器。
它的结构比串行移位寄存器复杂,需要更多的触发器来实现。
并行移位寄存器可以同时移动多个数据位,因此移位速度较快。
在并行移位寄存器中,移位操作是通过输入信号来控制的。
通过控制输入信号的状态,可以实现不同的移位模式,如循环移位、位反转等。
移位寄存器在数字逻辑中有着广泛的应用。
其中,最常见的应用是数据的存储与传输。
通过移位寄存器,可以将数据从一个地方传输到另一个地方,实现数据的存储和传递。
移位寄存器还可以用于实现数据的压缩和解压缩。
例如,在图像处理中,可以使用移位寄存器将图像数据进行压缩,从而减小图像文件的大小,并且可以在需要时恢复原始图像。
此外,移位寄存器还可以用于实现密码算法。
通过将数据进行移位和混合,可以实现数据的加密和解密,保证数据的安全性。
除了上述应用外,移位寄存器还被广泛用于时序控制电路中。
时序控制电路是一种通过控制信号来实现特定操作顺序的电路。
移位寄存器可以用于存储各种控制信号,并根据时钟信号的到来按照特定的顺序输出这些信号。
通过移位寄存器的组合和控制信号的变化,可以实现复杂的时序控制功能,如状态机和序列识别等。
移位寄存器及其应用实验报告
移位寄存器及其应用实验报告一、实验目的1.了解移位寄存器的基本原理和工作方式;2.掌握移位寄存器的应用场景和使用方法;3.通过实验验证移位寄存器的功能和性能。
二、实验原理移位寄存器是一种特殊的寄存器,它可以将数据按照一定的规律进行移位操作。
移位操作可以分为左移和右移两种方式,左移是将数据向左移动一定的位数,右移则是将数据向右移动一定的位数。
移位寄存器可以用于数据的移位、数据的存储和数据的转换等多种应用场景。
移位寄存器的基本原理是利用触发器和门电路实现数据的移位操作。
触发器是一种存储器件,可以存储一个二进制位的数据。
门电路则是一种逻辑电路,可以实现数据的逻辑运算。
移位寄存器通常由多个触发器和门电路组成,可以实现多位数据的移位操作。
移位寄存器的工作方式是通过时钟信号来控制数据的移位操作。
当时钟信号为高电平时,移位寄存器开始工作,数据按照一定的规律进行移位操作。
当时钟信号为低电平时,移位寄存器停止工作,数据保持不变。
移位寄存器还可以通过控制输入端和输出端的电平来实现不同的功能。
三、实验内容本次实验主要是通过实验板上的移位寄存器模块,实现数据的移位和存储操作。
具体实验内容如下:1.将实验板上的移位寄存器模块连接到开发板上;2.使用开发板上的按键控制移位寄存器的工作方式,包括左移、右移、存储和清零等操作;3.使用示波器观察移位寄存器的时钟信号和数据输出信号,验证移位寄存器的工作状态和性能。
四、实验步骤1.将实验板上的移位寄存器模块连接到开发板上,按照连接图进行连接;2.使用开发板上的按键控制移位寄存器的工作方式,具体操作如下:(1)按下左移按键,移位寄存器开始向左移动数据;(2)按下右移按键,移位寄存器开始向右移动数据;(3)按下存储按键,移位寄存器将当前数据存储到寄存器中;(4)按下清零按键,移位寄存器将当前数据清零。
3.使用示波器观察移位寄存器的时钟信号和数据输出信号,具体操作如下:(1)将示波器的探头连接到移位寄存器的时钟输入端,观察时钟信号的波形;(2)将示波器的探头连接到移位寄存器的数据输出端,观察数据输出信号的波形。
移位寄存器及其应用
实验移位寄存器及其应用一、实验目的1、掌握中规模4位双向移位寄存器逻辑功能及使用方法。
2、熟悉移位寄存器的应用—实现数据的串行、并行转换和构成环形计数器。
二、实验原理1、寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下一次左移或右移。
既能左移又能右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。
根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。
2、本实验选用的4位双向通用移位寄存器,型号为CC40194或74LS194,两者功能相同,可互换使用,其逻辑符号及引脚排列如图所示。
其中D0、D1、D2、D3为并行输入端;Q0、Q1、Q2、Q3为并行输出端;S R为右移串行输入端,S L为左移串行输入端;S1、S0为操作模式控制端;C R为直接无条件清零端;CP为时钟脉冲输入端。
功能见表8-1。
表8-1CC40194功能表功能输入输出CP R C S1S0S R S L D0D1D2D3Q0Q1Q2Q3清除×0××××××××0000送数↑111××a b c d a b c d右移↑101D SR×××××D SR Q0Q1Q2左移↑110×D SL××××Q1Q2Q3D SL保持↑100××××××Q0n Q1n Q2n Q3n保持↓1××××××××Q0n Q1n Q2n Q3n3、移位寄存器的应用可构成移位寄存器形计数器;:顺序脉冲发生器;串行累加器;可用作数据转换,即把串行数据转换为并行数据等。
实验三移位寄存器及其应用
CR
Q0' Q1' Q2' Q3'
M1
O
CT74LS194(2) M0
1
DSR CR D0 D1 D2 D3 DSL
X
X XX X
13进制扭环 计数器及其 状态转换表
双向移位寄存器设计
工作原理:
当X=1时,M1=0, M0=1,执行右移功能;
n=3,其模值 M=2×3=6;
当X=1时,M1=1, M0=0,执行左移功能。
说明 置零
1 × × 0 × × ××××
保持
111 101
× × d0 d1 d2 d3 d0 d1 d2 d3 并行置数
× 1 × × × × 1 Q0 Q1 Q2 右移输入1
101
× 0 × × × × 0 Q0 Q1 Q2 右移输入0
110
1 × × × × × Q1 Q2 Q3 1 左移输入1
辑功能、管脚排列及其各种应用方法。 ❖ 设计出实验要求的电路图……
74LS194构成的顺序脉冲发生器及其波形
74LS194构成的七进制扭环形计数器 74LS194构成的六进制扭环形计数器 请根据移位原理,自行推导其工作过程,
移位寄存器的级联
&
Q0 Q1 Q2 Q3
M1
O
CT74LS194(1) M0
1
DSR CR D0 D1 D2 D3 DSL
X
CP
X XX X
❖ 时间安排: ❖ 讲授: ❖ 实验用时: ❖ 随堂考试准备时间: ❖ 考试时间:
20分钟 40分钟 30分钟 50分钟
四、思考题
❖ 顺序脉冲发生器可用于流水灯控制吗?有什 么区别?
❖ 若设计M=20的扭环形计数器,需要几片 74LS194?如何连接?
数字电路实验报告-移位寄存器及其应用
电学实验报告模板实验原理移位寄存器是逻辑电路中的一种重要逻辑部件,它能存储数据,还可以用来实现数据的串行-并行转换、数据的运算和处理。
1.寄存器(1)D触发器图1 D触发器图1所示D触发器。
每来一个CLK脉冲,触发器都在该CLK脉冲的上升沿时刻,接收输入数据D,使之作为触发器的新状态。
D触发器的特性方程为(2)用D触发器构成并行寄存器图2 用D触发器构成并行寄存器图2所示为用D触发器构成四位并行寄存器。
为异步清零控制端,高电平有效。
当时,各触发器输出端Q的状态,取决于CLK上升沿时刻的D端状态。
2.移位寄存器(1)用D触发器构成移位寄存器图3 用D触发器构成4位串行移位寄存器图3所示为用D触发器构成的4位串行移位寄存器。
其中左边第一个触发器的输入端接收输入数据,其余的每一个触发器的输入端均与左边相邻的触发器的Q端连接。
当时钟信号CLK的上升沿时刻,各触发器同时接收输入数据。
四位寄存器的所存数据右移一位。
(2)双向移位寄存器74LS194图4 双向移位寄存器74LS194逻辑框图图4 所示为集成电路芯片双向移位寄存器74LS194逻辑框图。
为便于扩展逻辑功能,在基本移位寄存器的基础上增加了左右移控制、并行输入、保持和异步清零等功能。
74LS194的逻辑功能如表1所列。
表13.用移位寄存器构成计数器(1)环形计数器图5 环形计数器如果将移位寄存器的串行移位输出端接回到串行移位输入端,如图5所示。
那么,在时钟CLK的作用下,寄存器里的数据将不断循环右移。
例如,电路的初始状态为,则电路的状态转换图如图6所示。
可以认为,这是一个模4计数器。
图6 环形计数器状态转换图实验内容及步骤1. 用两片74LS74构成四位移位寄存器(1)74LS74引脚图图10 74LS74引脚图(2)用74LS74构成四位移位寄存器图11 用74LS74构成四位移位寄存器实验电路按照图11连接电路。
首先设置,使寄存器清零。
然后,设置,在CLK输入端输入单次脉冲信号当作时钟信号,通过输出端的发光二极管观察的状态,判断移位的效果。
实验八 移位寄存器及其应用
实验八 移位寄存器及其应用一、实验目的1.熟悉移位寄存器的结构及工作原理 2.了解移位寄存器的应用。
二、实验原理移位寄存器是具有移位功能的寄存器。
它是一种由触发器链型连续组成的同步时序网络。
代码的移位是在统一的位移脉冲CP 控制下进行的。
每来一个移位位脉冲,原存贮于寄存器的信息代码就按规定的方向(左方或右方)同步移一位。
移位寄存器的类型,按移位的方式可分为左移﹑右移和双向移位寄存器;按其输入输出方式可分为并行输入—并行输出﹑并行输入—串行输出﹑串行输入—并行输出和串行输入—串行输出等几种。
移位寄存器应用较广。
利用移位寄存器可以构成计数分频电路﹑序列信号发生器、串/并行代码转换器、延时电路等。
移位寄存器的状态转移是按移存规律进行的,一般称为移存型计数器。
常用的移存型计数器有环行计数器和扭环形计数器。
下面介绍几种常用的MSI 移位寄存器及其应用。
74LS195为4位并行存取移位寄存器;74LS194为4位双向通用移位寄存器,它具有左移﹑右移﹑并行输入数据﹑保持及清除等五种功能。
它们的功能表及管脚图见附录. 应用举例:(一)移存型计数器 (1) 环形计数器环形计数器的特点是环形计数器的计数模数M=移位寄存器位数N ,且工作状态是依次循环出1或0,如4为环形计数器状态为0001-0010-0100-1000或1110-1101-1011-0111。
设计该类计数器往往要求电路能自启动。
(2) 扭环计数器扭环计数器又称为约翰逊计数器。
其特点是四位扭环计数器具有N=2n=8个有效计数状态,且相邻两状态间只有一位代码不同,因此扭环计数器的输出所驱动的组合网络不会产生功能竞争。
(3) 任意进制移存型计数器只要状态转移关系符合移存规律的计数器,就称为移存型计数器。
移存型计数器只要M ≠2N 时,就要考虑计数器的自启动问题。
移存型计数器子启动的方法有两种:①、 改变移位寄存器串行输入D 0的反馈方程,例如:让循环出“1”的4位环形计数器的D 0=012Q Q Q ++,使全“0”状态时的的D 0=1;如果是循环出“0”的4位环形计数器,则0120Q Q Q D =,使全“1”状态时的D 0=0,从而实现自启动。
移位寄存器及其应用
左移 串行 输入
模4环形计数器
& 1 12 13 14 15 2 CR 1 D SR CR Q3 Q2 Q1 Q0 74LS194 CP D3 D2 D1 D0 11 6 5 4 3 M0 M1 1 +5V
(Q3Q2Q1Q0)
1110 1101
0111
1011
CP
5
串行移位电路
1 并行输出 +5V
(Q3Q2Q1Q0)
1000 0100
0001
0010
7
三、实验内容和要求
要求 CP选1Hz方波,发光二极管显示输出过程 (验收) CP 选 1KHz 方波,观察并记录 CP 、 Q0 、 Q1 、 Q2、Q3波形(实验报告)
8
四、实验注意事项
电源 (VDD=+5V、VSS=地) 核对无误,再接入! 输出端切忌短路、线与! 多余输入端 —— 不能悬空 电路图一定要标上芯片引脚号! 芯片管脚图P343
9
五、实验报告要求
1.画出环形计数器的实验电路图,说明电路的 工作过程; 2.画出环形计数器的CP、Q0、Q1、Q2、Q3 波形(5个),比较它们之间的时序关系; 3.说明实验过程中产生的故障及其解决方法; 4.简述实验心得、体会与建议; 5.思考题: P168---4
10
考试说明
数字部分操作考试 时间:19周上课时间 要求: 开卷考试的形式,考试时间2小时。 现场设计与实现,使用实验箱。 准备好所有已发元器件,包括各类 逻辑门、触发器、数码管、发光二 极管、电阻、电容、161,194等.
0 x 0 x x x 清零 保持 1
16
15
14
13
12
11
最新=移位寄存器及其应用汇总
电路中,CC4015的两个移位寄存器为串行
级联,构成8级串行输入并行输出形式。前级
(U2A)的数据输入端D1 (D1)接高电平“1’或 VCC,在末级输出端2D后串入CC4013,并将其输 出Q与CC4015的复位端MR1、MR2相连接。
这样,在时钟脉冲CP的作用下,高电平“1”信息 将逐次移位通过每级寄存器,当高电平‘1’到达 CC4013的Q端时,移位寄存器全部复位。因此,在 两个时钟脉冲后,复位消失,同时高电平“1”再 一次移入寄存器内。点击仿真开关,得到表9.1.1 所示的仿真结果。
输入
输出
CP
1A
1B
1C
1D
2A
2B
2C2D01来自000
0
0
0
0
1
1
1
0
0
0
0
0
0
表
9.1.1
2
1
1
1
0
0
0
0
0
4位串
3
1
1
1
1
0
0
0
0
入-并
出移位 4
1
1
1
1
1
0
0
0
寄存器
仿真结
5
1
1
1
1
1
1
0
0
果
6
1
1
1
1
1
1
1
0
7
1
1
1
1
1
1
1
1
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
=移位寄存器及其应用
根据移位寄存器存取信息的方式不同分为:串入 串出、串入并出、并入串出、并入并出四种形式。 本例选用的4位串入-并出移位寄存器集成电路 CC4015,该电路主要用于数字电路系统或计算机中 对输入数据进行排队,使数据按先后次序传送。
移位寄存器及其应用
QA、QB 、QC 、QD 为并行输出端;
SR为右移串行输入端,SL为左移串行输入端;
S1、S0为操作模式控制端;
CR为异步清零端;CP为时钟脉冲输入端。
74LS194有5种不同操作模式:并行送数寄存,右移(方向由QA至QD), 左移(方向由QD至QA),保持及清零。
S1、S0和Rd端的控制作用如下表所示:
例:把初态置为12(Q3-Q0 : 1100) 12
6
9
3
本次实验中总所有SD 、RD均接+5V
二、测试双向移位寄存器74LS194的逻辑功能
清零端CR接“1”,D0,D1,D2,D3,S1,S0分别接6个逻辑开关,CP接1Hz脉冲信
号,Q0-Q3分别接4个LED
74LS194功能表
CR
S1 S0
根据存取信息的方式不同移位寄存器可分 为:串入串出、串入并出、并入串出、并 入并出四种形式。
D触发器
实验原理
既能左移又能右移的移位寄存器称为双向移位寄存器,只需要改变 左、右移的控制信号便可实现双向移位。根据存取信息的方式不同 移位寄存器可分为:串入串出、串入并出、并入串出、并入并出四 种形式。
三、思考题:
1.在N位移位寄存器中,串行输入N位二进制数需要多少个CP?送数的次序应从 高位至低位,还是低位至高位?
2.设计一个按
循环计数的自启动四位环形计数器,画出逻辑图。
连续脉冲
74LS74
74LS00 手动脉冲
74LS194 +5v电源
工作状态
0
××
11
置零 保持 右移 左移 并行输入
1.S1S0=11,D0D1D2D3分别取0110和1001,记录Q0-Q3的工作状态。 2.S1S0=00,观察并记录Q0-Q3的状态。 3.S1S0=01,取初态Q0-Q3:1000,使DSR与Q3相连,记录Q0-Q3的工作状态。 4.S1S0=10,取初态Q0-Q3:0001,使DSL与Q0相连,记录Q0-Q3的工作状态。
实验5 移位寄存器及其应用
5
6 7 8
0111
0011 0001 0Hale Waihona Puke 006五.实验报告要求
1.测试移位寄存器74LS194的逻辑功能,分析实
验结果,总结74LS194的逻辑功能。
2.画出4位右移环形计数器、左移环形计数器和
右移扭环形计数器的电路图并填表。
7
1台 1片 1片
1
00
00
02
20
86
51
74
74
连续脉冲 单脉冲
194
2
三.实验内容 1.测试74LS194的逻辑功能
RD 异步置0端
CP:时钟脉冲输入端 S1、S0为操作模式控制端 D0-D3为并行输入端; Q0-Q3为并行输出端 DIL为左移串行输入端
3
DIR为右移串行输入端;
测试74LS194的逻辑功能:
S1 S0 CP DIL DIR D0 D1 D2 D3 Q0 Q1 Q2 Q3
功能总结
清零
并行置数 清零 右移1位 右移1位 右移1位 右移1位 清零 左移1位 左移1位 左移1位
0 ×× × × × × × × × 0 0 0 0
1
1 1
1 0 ↑
1 0 ↑
1 × ××× × 0 0 0 1
1 × ××× × 0 0 1 1
按表5.2所规定的输入状态,逐项进行测试。
置零 模式 时钟 串行 输入 输出
RD 0 ×× × × × × × × × 0 0 0 0
1 1 1 1 1 1 1 1 1 ↑ × × a b c d a b c d 0 1 ↑ × 0 ××× × 0 0 0 0 0 1 ↑ × 1 ××× × 1 0 0 0 0 1 ↑ × 0 ××× × 0 1 0 0 0 1 ↑ × 0 ××× × 0 0 1 0 1 0 ↑ 1 0 ↑ 0 × ××× × 0 0 0 0 0 × ××× × 0 0 0 0 0 ×× × × × × × × × 0 0 0 0
实验七 移位寄存器及其应用
在具体独立应用方面,移位寄存器不单可做成可编程的分频器、串行 加法器、串行累加器和序列号发生器(见书上P229),而且还可以用来 构成计数器,这是工程中经常用到的。以74LS194双向移位寄存器为 例,74LS194可构成环形计数器、扭环形计数器和自启动的扭环形计数 器。 五、实验的步骤 ㈠ 集成移位寄存器基本功能验证。
将74LS194插入实验箱中,并按图7-2进行接线。接线完毕后,接通 电源,即可进行74LS194双向移位寄存器的功能验证。 ① 清零。将复位开关K3置0,使=0,通过观察LED灯的亮、灭情况, 记录有关实验数据。 =0时,74LS194输出为:Q0Q1Q2Q3= 。 ② 保持。使=1,CP=0,拨动逻辑开关K1和K2,输出状态不变。或者 使=1,M1和M0都为0(即K1和K2都为0),按动单次脉冲,这时输出状 态仍不变。 ③ 置数。使=1,M1=M0=1,数据开关置为0101,按动单次脉冲,这时 数据0101存入Q0Q1Q2Q3中。根据LED发光二极管的状态,记录 Q0Q1Q2Q3= ;变换数据开关的输出为1011,再按动单次脉冲,根 据LED发光二极管的状态,记录Q0Q1Q2Q3= 。
保1 × × 0
持1 0 0 × × × × × × ×
保持
置 1 1 1 ↑ × × d0 d1 d2 d3 d0 d1 d2 d3 数
பைடு நூலகம்
右1 0 1 ↑ × 1
1
移1 0 1 ↑
×
××××
0
0
左1 1 0 ↑ 1 ×
1
移1 1 0 ↑
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
移位寄存器及其应用
一、实验目的
1、掌握中规模4位双向移位寄存器逻辑功能及使用方法。
2、熟悉移位寄存器的应用—实现数据的串行、并行转换和构成环形计数器。
二、原理说明
1、移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。
按代码的移位方向可分为左移、右移和可逆移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。
根据移位寄存器存取信息的方式不同又可分为:串入串出、串入并出、并入串出、并入并出四种形式。
本实验选用的4位双向通用移位寄存器,型号为CC40194或74LS194,两者功能相同,可互换使用,其逻辑符号及引脚排列如图8-3-3-1所示。
其中 D0、D1、D2、D3为并行输入端;Q0、Q1、Q2、Q3为并行输出端;S R为右移串行输入
C为直接无条件清零端;
端,S L为左移串行输入端;S1、S0为操作模式控制端;R
CP为时钟脉冲输入端。
CC40194有5种不同操作模式:即并行送数寄存,右移(方向由Q0→Q3),左移(方向由Q3→Q0),保持及清零。
S1、S0和R C端的控制作用如表8-3-3-1。
图8-3-3-1 CC40194的逻辑符号及引脚功能
表8-3-3-1 CC40194功能表
2、移位寄存器应用很广,可构成移位寄存器型计数器;顺序脉冲发生器;串行累加器;可用作数据转换,即把串行数据转换为并行数据,或把并行数据转换为串行数据等。
本实验研究移位寄存器用作环形计数器和数据的串、并行转换。
(1)环形计数器
把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位,
如图8-3-3-2所示,把输出端 Q3和右移串行输入端S R 相连接,设初始状态Q0Q1Q2Q3=1000,则在时钟脉冲作用下Q0Q1Q2Q3将依次变为0100→0010→0001→1000→……,如表10-2所示,可见它是一个具有四个有效状态的计数器,这种类型的计数器通常称为环形计数器。
图8-3-3-2 电路可以由各个输出端输出在时间上有先后顺序的脉冲,因此也可作为顺序脉冲发生器。
其状态表如表8-3-3-2所示。
表8-3-3-2 环形计数器状态表
图 8-3-3-2 环形计数器
如果将输出Q O与左移串行输入端S L相连接,即可达左移循环移位。
(2)实现数据串、并行转换
①串行/并行转换器
串行/并行转换是指串行输入的数码,经转换电路之后变换成并行输出。
图8-3-3-3是用二片CC40194(74LS194)四位双向移位寄存器组成的七位串/并行数据转换电路。
图8-3-3-3 七位串行 / 并行转换器
电路中S0端接高电平1,S1受Q7控制,二片寄存器连接成串行输入右移工作模式。
Q7是转换结束标志。
当Q7=1时,S1为0,使之成为S1S0=01的串入右移工作方式,当Q7=0时,S1=1,有S1S0=10,则串行送数结束,标志着串行输入的数据已转换成并行输出了。
串行/并行转换的具体过程如下:
转换前,R C端加低电平,使1、2两片寄存器的内容清0,此时S1S0=11,寄存器执行并行输入工作方式。
当第一个CP脉冲到来后,寄存器的输出状态Q0~Q7为01111111,与此同时S1S0变为01,转换电路变为执行串入右移工作方式,串行输入数据由1片的S R端加入。
随着CP 脉冲的依次加入,输出状态的变化可列成表8-3-3-3所示。
由表8-3-3-3可见,右移操作七次之后,Q7变为0,S1S0又变为11,说明串行输入结束。
这时,串行输入的数码已经转换成了并行输出了。
当再来一个CP脉冲时,电路又重新执行一次并行输入,为第二组串行数码转换作好了准备。
表8-3-3-3 串行/并行转换器状态表
②并行/串行转换器
并行/串行转换器是指并行输入的数码经转换电路之后,换成串行输出。
图8-3-3-4是用两片CC40194(74LS194)组成的七位并行/串行转换电路,它比图8-3-3-3多了两只与非门G1和G2,电路工作方式同样为右移。
图8-3-3-4 七位并行 / 串行转换器
寄存器清“0”后,加一个转换起动信号(负脉冲或低电平)。
此时,由于方式控制S1S0为11,转换电路执行并行输入操作。
当第一个CP脉冲到来后,Q0Q1Q2Q3Q4Q5Q6Q7的状态为
0D1D2D3D4D5D6D7,并行输入数码存入寄存器。
从而使得G1输出为1,G2输出为0,结果,S1S2变为01,转换电路随着CP脉冲的加入,开始执行右移串行输出,随着CP脉冲的依次加入,输出状态依次右移,待右移操作七次后,Q0~Q6的状态都为高电平1,与非门G1输出为低电平,G2门输出为高电平,S1S2又变为11,表示并/串行转换结束,且为第二次并行输入创造了条件。
转换过程如表8-3-3-4所示。
中规模集成移位寄存器,其位数往往以4位居多,当需要的位数多于4位时,可把几片移位寄存器用级连的方法来扩展位数。
图8-3-3-5 CC40194逻辑功能测试
三、实验设备及器件
1、+5V直流电源
2、单次脉冲源
3、逻辑电平开关
4、逻辑电平显示器
5、 CC40194×2(74LS194) CC4011(74LS00) CC4068(74LS30)
四、实验内容
1 、测试CC40194(或74LS194)的逻辑功能
按图8-3-3-5接线,R C、S1、S0、S L、S R、D0、D1、D2、D3分别接至逻辑开关的输出插口;Q0、Q1、Q2、Q3接至逻辑电平显示输入插口。
CP端接单次脉冲源。
按表8-3-3-5所规定的输入状态,逐项进行测试。
表8-3-3-5 CC40194(或74LS194)的逻辑功能测试表
(1)清除:令R C=0,其它输入均为任意态,这时寄存器输出Q0、Q1、Q2、
Q3应均为0。
清除后,置R C=1 。
(2)送数:令R C=S1=S0=1 ,送入任意4位二进制数,如D0D1D2D3=abcd,加CP脉冲,观察CP=0 、CP由0→1、CP由1→0三种情况下寄存器输出状态的变化,观察寄存器输出状态变化是否发生在CP脉冲的上升沿。
(3)右移:清零后,令R C=1,S1=0,S0=1,由右移输入端S R送入二进
制数码如0100,由CP端连续加4个脉冲,观察输出情况,记录之。
(4) 左移:先清零或予置,再令R C=1,S1=1,S0=0,由左移输入端S L送入二进制数码如1111,连续加四个CP脉冲,观察输出端情况,记录之。
(5) 保持:寄存器予置任意4位二进制数码abcd,令R C=1,S1=S0=0,加CP脉冲,观察寄存器输出状态,记录之。
2、环形计数器
自拟实验线路用并行送数法予置寄存器为某二进制数码(如0100),然后进行右移循环,观察寄存器输出端状态的变化,记入表8-3-3-6中。
3、实现数据的串、并行转换
(1)串行输入、并行输出
按图8-3-3-3接线,进行右移串入、并出实验,串入数码自定;改接线路用左移方式实现并行输出。
自拟表格,记录之。
(2)并行输入、串行输出
按图8-3-3-4接线,进行右移并入、串出实验,并入数码自定。
再改接线路用左移方式实现串行输出。
自拟表格,记录之。
表8-3-3-6 环形计数器功能测试表
五、实验报告
1、在对CC40194进行送数后,若要使输出端改成另外的数码,是否一定要使寄存器清零?
2、使寄存器清零,除采用R C输入低电平外,可否采用右移或左移的方法?可否使用并行送数法?若可行,如何进行操作?
3、若进行循环左移,图8-3-3-4接线应如何改接?
4、分析表8-3-3-4的实验结果,总结移位寄存器CC40194的逻辑功能并写入表格功能总结一栏中。
5、根据实验内容2 的结果,画出4位环形计数器的状态转换图及波形图。
6、分析串/并、并/串转换器所得结果的正确性。