导数公式的证明(最全版)
导数公式证明大全
导数公式证明大全导数是微积分中的重要概念,它描述了函数变化率的性质。
在这篇文章中,我们将给出一些导数的常用公式的证明。
1.一次函数的导数证明:我们考虑一条一次函数的图像,其方程为y = ax + b,其中a和b是常数。
假设我们有两个点(x, y)和(x + h, y + kh)在图像上,其中h是一个趋近于0的非零常数。
由直线的斜率公式知道,两点之间的斜率为k = (y + kh - y) / (x + h - x) = k。
函数的导数定义为函数曲线上任意一点切线的斜率,我们需要证明这个斜率与常数a相等。
根据定义,导数为dy / dx = lim(h -> 0) [(y + kh - y) / (x + h - x)] = lim(h -> 0) (kh / h) = a。
因此,一次函数y = ax + b的导数为dy / dx = a。
2.幂函数的导数证明:考虑一个幂函数y=x^n,其中n是常数。
我们仍然用限制h趋近于0的两个点(x, y)和(x + h, y + kh)来证明这个导数。
根据定义,导数为dy / dx = lim(h -> 0) [(y + kh - y) / (x + h - x)] = lim(h -> 0) [(x + h)^n - x^n] / h。
我们可以使用二项式定理展开(x + h)^n = x^n + nx^(n-1)h + ... + h^n,并取消掉所有除以h的项:dy / dx = lim(h -> 0) [nx^(n-1)h + ... + h^n] / h = lim(h -> 0) [nx^(n-1) + ... + h^(n-1)] = nx^(n-1)。
因此,幂函数y = x^n的导数为dy / dx = nx^(n-1)。
3.指数函数的导数证明:考虑一个指数函数y=a^x,其中a是常数。
我们仍然使用限制h趋近于0的两个点(x, y)和(x + h, y + kh)来证明导数。
导数公式大全(最具说服力的)
数记为
y(4),y(5),·· (n) ·,y
f (x) 称为 f (x) 的一阶导数.
d4 y dn y 或 ·, n , , ·· 4 dx dx
( x 2 1) - 2 x( x - 1) 2 x - x 2 1 . 2 2 2 2 ( x 1) ( x 1)
教材P32 例2 求下列函数的导数:
(1) y x - cos x (2) y x e x 3 2 (4) y 2x 3x sin x e (3) y 2 1- x
2 2 2 2
(2)把 x - 2当作中间变量, y ' cos( x - 2) ( x - 2) ' 1 cos( x - 2) 2 x cos( x - 2) 2 x
(3)把 cos x当作中间变量, 1 sin x y' (cos x) ' - tan x cos x cos x
例4.求下列函数的导数: 1 y (3x 1) ; )
2 3
2) y sin( x - 2); 4) y e
tan x
3) y ln cos x; 5) y 2
-x
;
解: 函数可以分解为y u ( x), u ( x) 3x 1, (1)
3 2
y ' [u 3 ( x)]' 3u 2 ( x) u ( x) ' 3(3x 2 1) 2 (3x 2 1) ' 3(3x 1) 6 x 18 x(3x 1)
16个基本导数公式推导过程
16个基本导数公式推导过程推导过程如下:1.常数函数:f(x)=c求导结果:f'(x)=0。
证明过程:由导数定义可得,当函数为常数时,无论x取任何值,函数的增量都为0,即f(x + Δx) - f(x) = 0。
所以,f'(x) =lim(Δx→0) [f(x + Δx) - f(x)] / Δx = 0。
2.幂函数:f(x)=x^n,其中n为正整数。
求导结果:f'(x) = nx^(n-1)。
证明过程:利用定义求导。
计算f(x + Δx) = (x + Δx)^n与f(x) = x^n的差值,然后除以Δx,当Δx趋于0时求极限。
利用二项式展开,可以得出f'(x) = nx^(n-1)。
3.指数函数:f(x)=e^x。
求导结果:f'(x)=e^x。
证明过程:由指数函数的性质可知,e^0 = 1,且(d(e^x)/dx) = e^x。
因此,可以据此推导出f'(x) = e^x。
4. 对数函数:f(x) = ln(x)。
求导结果:f'(x)=1/x。
证明过程:由导数定义可得f'(x) = lim(Δx→0) [ln(x + Δx) - ln(x)] / Δx。
利用对数的性质,将差值化简为ln((x + Δx)/x),再除以Δx并取极限,最终得出f'(x) = 1/x。
5. 正弦函数:f(x) = sin(x)。
求导结果:f'(x) = cos(x)。
证明过程:利用极限定义求导。
计算f(x + Δx) - f(x) = sin(x + Δx) - sin(x),然后除以Δx并取极限。
应用三角函数的合角公式并利用三角恒等式可得f'(x) = cos(x)。
6. 余弦函数:f(x) = cos(x)。
求导结果:f'(x) = -sin(x)。
证明过程:同样应用极限定义。
计算f(x + Δx) - f(x) = cos(x + Δx) - cos(x),然后除以Δx并取极限。
导数公式的证明
导数公式的证明导数是微积分中的一个重要概念,它描述了函数随着自变量的变化率。
导数通常被用来求解函数的极值点,以及描述函数的斜率。
下面,将给出导数公式的证明,其中包括了常见的导数基本公式和导数的非常量倍率公式的推导。
首先,我们定义函数f(x)在x点的导数为:f'(x) = lim(h→0) [f(x+h) - f(x)] / h其中,lim(h→0)表示当h趋近于0时的极限。
证明导数公式时,我们将使用一些基本的极限性质和导数的定义。
我们来逐个证明常见的导数公式:1.常数导数公式:f(x)=c,其中c为常数根据导数的定义:f'(x) = lim(h→0) [f(x+h) - f(x)] / h由于f(x)为常数,那么f(x+h)也为常数,所以上述式子变为:f'(x) = lim(h→0) [c - c] / h当分母h趋近0时,分子恒为0,因此整个式子的极限为0,即:f'(x)=02.幂函数导数公式:f(x)=x^n,其中n为自然数根据导数的定义:f'(x) = lim(h→0) [f(x+h) - f(x)] / h将f(x)带入以上式子,得:f'(x) = lim(h→0) [(x+h)^n - x^n] / h使用二项式定理展开(x+h)^n:f'(x) = lim(h→0) [C(0,n)h^n + C(1,n)h^(n-1)x + ... +C(i,n)h^(n-i)x^i + ... + C(n,n)x^n - x^n] / h上述式子中,所有含有h的项在极限h趋近0时都会趋于0,只剩下一项C(1,n)h^(n-1)x,即:f'(x) = lim(h→0) C(1,n)h^(n-1)x = nx^(n-1)使用类似的方法可以证明其他的幂函数导数公式。
现在,我们来证明导数的非常量倍率公式:设函数g(x) = cf(x),其中c为常数,f(x)为原函数的导数。
导数公式证明大全
导数公式证明大全导数的定义是函数变化率的极限。
下面将给出导数的一些重要公式的证明。
1.常数函数的导数:设常数函数$f(x)=c$,其中$c$为常数。
由导数的定义可知:\[\begin{aligned} f'(x) &= \lim_{h\to 0}\frac{f(x+h)-f(x)}{h} \\ &= \lim_{h\to 0}\frac{c-c}{h} \\ &= \lim_{h\to 0}0 \\ &= 0\end{aligned}\]因此,常数函数的导数为0。
2.幂函数的导数:设幂函数$f(x)=x^n$,其中$n$为正整数。
由导数的定义可知:\[\begin{aligned} f'(x) &= \lim_{h\to 0}\frac{f(x+h)-f(x)}{h} \\ &= \lim_{h\to 0}\frac{(x+h)^n-x^n}{h} \end{aligned}\]将$(x+h)^n$展开为二项式,有:\[(x+h)^n = x^n + \binom{n}{1}x^{n-1}h + \binom{n}{2}x^{n-2}h^2 + \ldots + \binom{n}{n-1}xh^{n-1} + h^n\]代入上式,消去$x^n$,并除以$h$,得:\[\begin{aligned} f'(x) &= \lim_{h\to0}\left(\binom{n}{1}x^{n-1} + \binom{n}{2}x^{n-2}h + \ldots +\binom{n}{n-1}xh^{n-2} + h^{n-1}\right) \\ &= \binom{n}{1}x^{n-1} + \binom{n}{2}x^{n-2}\cdot 0 + \ldots + \binom{n}{n-1}x\cdot 0 + 0^{n-1} \\ &= n\cdot x^{n-1} \end{aligned}\]因此,幂函数的导数为$n$倍的$x$的$n-1$次方。
导数的基本公式与运算法则高阶求导
( f ( x)) lim f ( x x) f ( x)
x0
x
存在,则称( f ( x))为函数f ( x)在点x处的二阶导数.
记作
f ( x),
y,
d2 dx
y
2
或
d
2 f (x dx 2
)
.
d (dy) d x dx
y f (x) y f (x) y [ f (x)] f (x)
dx n
dx n
二阶和二阶以上的导数统称为高阶导数.
相应地, f ( x)称为零阶导数; f ( x)称为一阶导数.
二、 高阶导数求法举例
例
设 y arctan x, 求f (0), f (0).
( 1
1(xu21))
1(1u(112x2
x2 )2
)
解
y
1
y(n) ( 1)( n 1)xn (n 1)
若 为自然数n,则
y(n) ( xn )(n) n!, y(n1) (n!) 0.
注意:求n阶导数时,求出1-3或4阶后,不要急于合并, 分析结果的规律性,写出n阶导数.(数学归纳法)
例. 设 y eax , 求 y(n). 解: y aeax ,
y a2 eax , y a3eax , , y(n) an eax
特别有: (e x )(n) e x
例 设 y ln(1 x), 求y(n) .
[([(11(112xx1)x)3)2]](1[2[1(x1()12 x(1)x)3]2x]) 22(13(1x)x3 )4
0,
求
d2 y d x2
用导数定义证明导数公式的方法
用导数定义证明导数公式的方法在微积分中,导数是描述函数变化速率的重要工具。
证明导数公式是微积分学习中的关键内容之一。
本文将介绍一种用导数定义证明导数公式的方法,帮助读者更深入理解导数的概念和应用。
在证明导数公式时,我们通常会使用基本的导数定义:假设函数f(f)在某一点f可导,那么f(f)在该点的导数f′(f)定义为:$$ f'(x) = \\lim_{\\Delta x \\to 0} \\frac{f(x + \\Delta x) -f(x)}{\\Delta x} $$基于这一定义,我们可以推导出各种导数的计算公式。
以下以常见的导数公式为例,介绍如何用导数定义证明这些公式。
1. 常数函数的导数首先考虑常数函数f(f)=f的导数。
根据导数定义,我们有:$$ f'(x) = \\lim_{\\Delta x \\to 0} \\frac{f(x + \\Delta x) -f(x)}{\\Delta x} = \\lim_{\\Delta x \\to 0} \\frac{C -C}{\\Delta x} = \\lim_{\\Delta x \\to 0} 0 = 0 $$因此,常数函数的导数恒为0。
2. 幂函数的导数考虑幂函数f(f)=f f的导数。
根据导数定义,我们有:$$ f'(x) = \\lim_{\\Delta x \\to 0} \\frac{(x+\\Delta x)^n -x^n}{\\Delta x} $$为了证明这一式子,我们可以使用二项式定理将$(x +\\Delta x)^n$展开,最终可以得到导数的计算公式。
通过以上的方法,可以用导数定义证明各种函数的导数公式。
这种方法不仅有助于加深对导数概念的理解,还可以帮助我们更好地理解微积分中的基本原理。
希望读者通过这种方法,能够更加熟练地运用导数来分析和解决实际问题。
结论通过以上方法,我们可以用导数定义证明各种导数公式,从常数函数到复杂函数,都可以通过导数的定义来推导和证明其导数公式。
导数公式的证明(最全版)
导数的定义:f'(x)=lim Δy/ΔxΔx→0(下面就不再标明Δx→0了)用定义求导数公式(1)f(x)=x^n证法一:(n为自然数)f’(x)=lim [(x+Δx)^n-x^n]/Δx=lim (x+Δx—x)[(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+.。
.+x^(n —2)*(x+Δx)+x^(n—1)]/Δx=lim [(x+Δx)^(n—1)+x*(x+Δx)^(n-2)+。
..+x^(n-2)*(x+Δx)+x^(n-1)]=x^(n-1)+x*x^(n—2)+x^2*x^(n—3)+ ..。
x^(n-2)*x+x^(n —1)=nx^(n-1)证法二:(n为任意实数)f(x)=x^nlnf(x)=nlnx(lnf(x))’=(nlnx)’f'(x)/f(x)=n/xf'(x)=n/x*f(x)f'(x)=n/x*x^nf'(x)=nx^(n-1)(2)f(x)=sinxf’(x)=lim (sin(x+Δx)—sinx)/Δx=lim (sinxcosΔx+cosxsinΔx—sinx)/Δx =lim (sinx+cosxsinΔx-sinx)/Δx=lim cosxsinΔx/Δx=cosx(3)f(x)=cosxf'(x)=lim (cos(x+Δx)-cosx)/Δx=lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx—sinxsinΔx-cos)/Δx=lim —sinxsinΔx/Δx=-sinx(4)f(x)=a^x证法一:f'(x)=lim (a^(x+Δx)—a^x)/Δx=lim a^x*(a^Δx—1)/Δx(设a^Δx—1=m,则Δx=loga^(m+1))=lim a^x*m/loga^(m+1)=lim a^x*m/[ln(m+1)/lna]=lim a^x*lna*m/ln(m+1)=lim a^x*lna/[(1/m)*ln(m+1)] =lim a^x*lna/ln[(m+1)^(1/m)] =lim a^x*lna/lne=a^x*lna证法二:f(x)=a^xlnf(x)=xlna[lnf(x)]’=[xlna]’f’(x)/f(x)=lnaf' (x)=f(x)lnaf' (x)=a^xlna若a=e,原函数f(x)=e^x则f’(x)=e^x*lne=e^x(5)f(x)=loga^xf’(x)=lim (loga^(x+Δx)—loga^x)/Δx=lim loga^[(x+Δx)/x]/Δx=lim loga^(1+Δx/x)/Δx=lim ln(1+Δx/x)/(lna*Δx)=lim x*ln(1+Δx/x)/(x*lna*Δx)=lim (x/Δx)*ln(1+Δx/x)/(x*lna)=lim ln[(1+Δx/x)^(x/Δx)]/(x*lna) =lim lne/(x*lna)=1/(x*lna)若a=e,原函数f(x)=loge^x=lnx则f’(x)=1/(x*lne)=1/x(6)f(x)=tanxf’(x)=lim (tan(x+Δx)—tanx)/Δx=lim (sin(x+Δx)/cos(x+Δx)-sinx/cosx)/Δx=lim (sin(x+Δx)cosx—sinxcos(x+Δx)/(Δxcosxcos(x+Δx))=lim (sinxcosΔxcosx+sinΔxcosxcosx—sinxcosxcosΔx+sinxsinxsinΔx)/(Δxcosxcos(x+Δx))=lim sinΔx/(Δxcosxcos(x+Δx))=1/(cosx)^2=secx/cosx=(secx)^2=1+(tanx)^2(7)f(x)=cotxf’(x)=lim (cot(x+Δx)—cotx)/Δx=lim (cos(x+Δx)/sin(x+Δx)—cosx/sinx)/Δx=lim (cos(x+Δx)sinx-cosxsin(x+Δx))/(Δxsinxsin(x+Δx))=lim (cosxcosΔxsinx-sinxsinxsinΔx-cosxsinxcosΔx-cosxsinΔxcosx)/(Δxsinxsin(x+Δx))=lim -sinΔx/(Δxsinxsin(x+Δx))=—1/(sinx)^2=—cscx/sinx=—(secx)^2=—1—(cotx)^2(8)f(x)=secxf’(x)=lim(sec(x+Δx)—secx)/Δx=lim (1/cos(x+Δx)-1/cosx)/Δx=lim (cosx—cos(x+Δx)/(ΔxcosxcosΔx)=lim (cosx—cosxcosΔx+sinxsinΔx)/(Δxcosxcos(x+Δx))=lim sinxsinΔx/(Δxcosxcos(x+Δx))=sinx/(cosx)^2=tanx*secx(9)f(x)=cscxf'(x)=lim(csc(x+Δx)-cscx)/Δx=lim (1/sin(x+Δx)—1/sinx)/Δx=lim (sinx-sin(x+Δx))/(Δxsinxsin(x+Δx))=lim (sinx-sinxcosΔx—sinΔxcosx)/(Δxsinxsin(x+Δx))=lim -sinΔxcosx/(Δxsinxsin(x+Δx))=—cosx/(sinx)^2=—cotx*cscx(10)f(x)=x^xlnf(x)=xlnx(lnf(x))’=(xlnx)’f'(x)/f(x)=lnx+1f’(x)=(lnx+1)*f(x)f'(x)=(lnx+1)*x^x(12)h(x)=f(x)g(x)h’(x)=lim (f(x+Δx)g(x+Δx)—f(x)g(x))/Δx=lim [(f(x+Δx)—f(x)+f(x))*g(x+Δx)+(g(x+Δx)-g(x)—g(x+Δx))*f(x)]/Δx=lim [(f(x+Δx)-f(x))*g(x+Δx)+(g(x+Δx)—g(x))*f(x)+f(x)*g(x+Δx)-f(x)*g(x+Δx)]/Δx=lim (f(x+Δx)—f(x))*g(x+Δx)/Δx+(g(x+Δx)—g(x))*f(x)/Δx=f'(x)g(x)+f(x)g'(x)(13)h(x)=f(x)/g(x)h'(x)=lim (f(x+Δx)/g(x+Δx)-f(x)g(x))/Δx=lim (f(x+Δx)g(x)-f(x)g(x+Δx))/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)—f(x)+f(x))*g(x)—(g(x+Δx)—g(x)+g (x))*f(x)]/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x))*g(x)—(g(x+Δx)-g(x))*f(x)+f(x)g(x)—f(x)g(x)]/(Δxg(x)g(x+Δx))=lim (f(x+Δx)—f(x))*g(x)/(Δxg(x)g(x+Δx))—(g(x+Δx)—g (x))*f(x)/(Δxg(x)g(x+Δx))=f’(x)g(x)/(g(x)*g(x))-f(x)g’(x)/(g(x)*g(x))=[f’(x)g(x)-f(x)g’(x)]/(g(x)*g(x))x(14)h(x)=f(g(x))h'(x)=lim [f(g(x+Δx))-f(g(x))]/Δx=lim [f(g(x+Δx)-g(x)+g(x))—f(g(x))]/Δx(另g(x)=u,g(x+Δx)—g(x)=Δu)=lim (f(u+Δu)-f(u))/Δx=lim (f(u+Δu)—f(u))*Δu/(Δx*Δu)=lim f'(u)*Δu/Δx=lim f’(u)*(g(x+Δx)—g(x))/Δx=f'(u)*g'(x)=f'(g(x))g’(x)(反三角函数的导数与三角函数的导数的乘积为1,因为函数与反函数关于y=x对称,所以导数也关于y=x对称,所以导数的乘积为1)(15)y=f(x)=arcsinx则siny=x(siny)’=cosy所以(arcsinx)'=1/(siny)'=1/cosy=1/√1—(siny)^2(siny=x)=1/√1-x^2即f'(x)=1/√1-x^2(16)y=f(x)=arctanx则tany=x(tany)'=1+(tany)^2=1+x^2所以(arctanx)'=1/1+x^2即f’(x)= 1/1+x^2总结一下(x^n)’=nx^(n—1)(sinx)'=cosx(cosx)'=—sinx(a^x)'=a^xlna(e^x)'=e^x(loga^x)'=1/(xlna)(lnx)’=1/x(tanx)'=(secx)^2=1+(tanx)^2 (cotx)’=—(cscx)^2=-1—(cotx)^2(secx)'=tanx*secx(cscx)'=-cotx*cscx(x^x)'=(lnx+1)*x^x(arcsinx)'=1/√1—x^2(arctanx)’=1/1+x^2[f(x)g(x)]’=f'(x)g(x)+f(x)g’(x)[f(x)/g(x)]’=[f’(x)g(x)-f(x)g'(x)]/(g(x)*g (x))[f(g(x))]'=f'(g(x))g’(x)。
导数公式的证明讲解学习
导数公式的证明讲解学习1.常数的导数公式(f(x)=c)常数的导数等于零,即f'(x)=0。
证明:根据导数的定义,f'(x) = lim(h->0) [(f(x+h) - f(x))/h]。
对于常数函数f(x) = c,f(x+h) = c,所以[f(x+h) - f(x)] = 0,因此导数f'(x) = lim(h->0) (0/h) = 0。
2.幂函数的导数公式(f(x)=x^n,n为正整数)幂函数的导数为n乘以x的n-1次幂,即f'(x) = nx^(n-1)。
证明:我们可以使用数学归纳法来证明这个公式。
首先考虑n=1的情况,即f(x) = x,那么f'(x) = 1、假设对于一些正整数k成立,即f(x) = x^k,那么f'(x) = kx^(k-1)。
现在我们来证明对于k+1也成立。
根据导数的定义,f'(x) = lim(h->0) [(f(x+h) - f(x))/h]。
将f(x) = x^k代入得到f'(x) = lim(h->0) [(x^k + kx^(k-1)h + h^k - x^k)/h]。
因为h^k/h = h^(k-1),所以f'(x) = lim(h->0) [kx^(k-1) + h^(k-1)] = kx^(k-1)。
因此,对于所有的正整数n,f(x) = x^n的导数等于nx^(n-1)。
3.乘法法则(f(x)=u(x)v(x))乘法法则指出,两个函数的乘积的导数等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即f'(x)=u'(x)v(x)+u(x)v'(x)。
证明:根据导数的定义,f'(x) = lim(h->0) [(f(x+h) - f(x))/h]。
将f(x) = u(x)v(x)代入得到f'(x) = lim(h->0) [(u(x+h)v(x+h) -u(x)v(x))/h]。
高中数学导数公式、定义证明、运算法则,实用干货,收藏好!
高中数学导数公式、定义证明、运算法则,实用干货,收藏好!导数,也叫导函数值。
那么,高中数学导数公式及运算法则有哪些呢?高中数学导数公式有哪些1.y=c(c为常数) y'=02.y=x^n y'=nx^(n-1)3.y=a^x y'=a^xlnay=e^x y'=e^x4.y=logax y'=logae/xy=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x加(减)法则:[f(x)+g(x)]'=f(x)'+g(x)'乘法法则:[f(x)*g(x)]'=f(x)'*g(x)+g(x)'*f(x)除法法则:[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2根据导数定义证明数学导数运算法则由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。
基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
导数的计算方法函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。
在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。
只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。
导数公式的证明最全
导数公式的证明(最全版)————————————————————————————————作者:————————————————————————————————日期:导数的定义:f'(x)=lim Δy/ΔxΔx→0(下面就不再标明Δx→0了)用定义求导数公式(1)f(x)=x^n证法一:(n为自然数)f'(x)=lim [(x+Δx)^n-x^n]/Δx=lim (x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/Δx=lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]=x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+ ...x^(n-2)*x+x^(n-1)=nx^(n-1)证法二:(n为任意实数)f(x)=x^nlnf(x)=nlnx(lnf(x))'=(nlnx)'f'(x)/f(x)=n/xf'(x)=n/x*f(x)f'(x)=n/x*x^nf'(x)=nx^(n-1)(2)f(x)=sinxf'(x)=lim (sin(x+Δx)-sinx)/Δx=lim (sinxcosΔx+cosxsinΔx-sinx)/Δx =lim (sinx+cosxsinΔx-sinx)/Δx=lim cosxsinΔx/Δx=cosx(3)f(x)=cosxf'(x)=lim (cos(x+Δx)-cosx)/Δx=lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx=lim -sinxsinΔx/Δx=-sinx(4)f(x)=a^x证法一:f'(x)=lim (a^(x+Δx)-a^x)/Δx=lim a^x*(a^Δx-1)/Δx(设a^Δx-1=m,则Δx=loga^(m+1))=lim a^x*m/loga^(m+1)=lim a^x*m/[ln(m+1)/lna]=lim a^x*lna*m/ln(m+1)=lim a^x*lna/[(1/m)*ln(m+1)] =lim a^x*lna/ln[(m+1)^(1/m)] =lim a^x*lna/lne=a^x*lna证法二:f(x)=a^xlnf(x)=xlna[lnf(x)] '=[xlna] 'f' (x)/f(x)=lnaf' (x)=f(x)lnaf' (x)=a^xlna若a=e,原函数f(x)=e^x则f'(x)=e^x*lne=e^x(5)f(x)=loga^xf'(x)=lim (loga^(x+Δx)-loga^x)/Δx =lim loga^[(x+Δx)/x]/Δx=lim loga^(1+Δx/x)/Δx=lim ln(1+Δx/x)/(lna*Δx)=lim x*ln(1+Δx/x)/(x*lna*Δx)=lim (x/Δx)*ln(1+Δx/x)/(x*lna) =lim ln[(1+Δx/x)^(x/Δx)]/(x*lna) =lim lne/(x*lna)=1/(x*lna)若a=e,原函数f(x)=loge^x=lnx则f'(x)=1/(x*lne)=1/x(6)f(x)=tanxf'(x)=lim (tan(x+Δx)-tanx)/Δx=lim (sin(x+Δx)/cos(x+Δx)-sinx/cosx)/Δx=lim (sin(x+Δx)cosx-sinxcos(x+Δx)/(Δxcosxcos(x+Δx))=lim (sinxcosΔxcosx+sinΔxcosxcosx-sinxcosxcosΔx+sinxsinxsinΔx)/(Δxcosxcos(x+Δx))=lim sinΔx/(Δxcosxcos(x+Δx))=1/(cosx)^2=secx/cosx=(secx)^2=1+(tanx)^2(7)f(x)=cotxf'(x)=lim (cot(x+Δx)-cotx)/Δx=lim (cos(x+Δx)/sin(x+Δx)-cosx/sinx)/Δx=lim (cos(x+Δx)sinx-cosxsin(x+Δx))/(Δxsinxsin(x+Δx))=lim (cosxcosΔxsinx-sinxsinxsinΔx-cosxsinxcosΔx-cosxsinΔxcosx)/(Δxsinxsin(x+Δx))=lim -sinΔx/(Δxsinxsin(x+Δx))=-1/(sinx)^2=-cscx/sinx=-(secx)^2=-1-(cotx)^2(8)f(x)=secxf'(x)=lim(sec(x+Δx)-secx)/Δx=lim (1/cos(x+Δx)-1/cosx)/Δx=lim (cosx-cos(x+Δx)/(ΔxcosxcosΔx)=lim (cosx-cosxcosΔx+sinxsinΔx)/(Δxcosxcos(x+Δx))=lim sinxsinΔx/(Δxcosxcos(x+Δx))=sinx/(cosx)^2=tanx*secx(9)f(x)=cscxf'(x)=lim(csc(x+Δx)-cscx)/Δx=lim (1/sin(x+Δx)-1/sinx)/Δx=lim (sinx-sin(x+Δx))/(Δxsinxsin(x+Δx))=lim (sinx-sinxcosΔx-sinΔxcosx)/(Δxsinxsin(x+Δx)) =lim -sinΔxcosx/(Δxsinxsin(x+Δx))=-cosx/(sinx)^2=-cotx*cscx(10)f(x)=x^xlnf(x)=xlnx(lnf(x))'=(xlnx)'f'(x)/f(x)=lnx+1f'(x)=(lnx+1)*f(x)f'(x)=(lnx+1)*x^x(12)h(x)=f(x)g(x)h'(x)=lim (f(x+Δx)g(x+Δx)-f(x)g(x))/Δx=lim [(f(x+Δx)-f(x)+f(x))*g(x+Δx)+(g(x+Δx)-g(x)-g(x+Δx))*f(x)]/Δx=lim [(f(x+Δx)-f(x))*g(x+Δx)+(g(x+Δx)-g(x))*f(x)+f(x)*g(x+Δx)-f(x)*g(x+Δx)]/Δx=lim (f(x+Δx)-f(x))*g(x+Δx)/Δx+(g(x+Δx)-g(x))*f(x)/Δx=f'(x)g(x)+f(x)g'(x)(13)h(x)=f(x)/g(x)h'(x)=lim (f(x+Δx)/g(x+Δx)-f(x)g(x))/Δx=lim (f(x+Δx)g(x)-f(x)g(x+Δx))/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x)+f(x))*g(x)-(g(x+Δx)-g(x)+g(x))*f(x)]/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x))*g(x)-(g(x+Δx)-g(x))*f(x)+f(x)g(x)-f(x)g(x)]/(Δxg(x)g(x+Δx))=lim (f(x+Δx)-f(x))*g(x)/(Δxg(x)g(x+Δx))-(g(x+Δx)-g(x))*f(x)/(Δxg(x)g(x+Δx))=f'(x)g(x)/(g(x)*g(x))-f(x)g'(x)/(g(x)*g(x))=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x))x(14)h(x)=f(g(x))h'(x)=lim [f(g(x+Δx))-f(g(x))]/Δx=lim [f(g(x+Δx)-g(x)+g(x))-f(g(x))]/Δx(另g(x)=u,g(x+Δx)-g(x)=Δu)=lim (f(u+Δu)-f(u))/Δx=lim (f(u+Δu)-f(u))*Δu/(Δx*Δu)=lim f'(u)*Δu/Δx=lim f'(u)*(g(x+Δx)-g(x))/Δx=f'(u)*g'(x)=f'(g(x))g'(x)(反三角函数的导数与三角函数的导数的乘积为1,因为函数与反函数关于y=x对称,所以导数也关于y=x对称,所以导数的乘积为1) (15)y=f(x)=arcsinx则siny=x(siny)'=cosy所以(arcsinx)'=1/(siny)'=1/cosy=1/√1-(siny)^2(siny=x)=1/√1-x^2即f'(x)=1/√1-x^2(16)y=f(x)=arctanx则tany=x(tany)'=1+(tany)^2=1+x^2所以(arctanx)'=1/1+x^2即f'(x)= 1/1+x^2总结一下(x^n)'=nx^(n-1)(sinx)'=cosx(cosx)'=-sinx(a^x)'=a^xlna(e^x)'=e^x(loga^x)'=1/(xlna)(lnx)'=1/x(tanx)'=(secx)^2=1+(tanx)^2 (cotx)'=-(cscx)^2=-1-(cotx)^2 (secx)'=tanx*secx(cscx)'=-cotx*cscx(x^x)'=(lnx+1)*x^x(arcsinx)'=1/√1-x^2(arctanx)'=1/1+x^2[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x)) [f(g(x))]'=f'(g(x))g'(x)。
导数放缩常用公式的证明
导数放缩常用公式的证明在微积分中,导数放缩是一种非常常见且有用的技巧,用于简化复杂函数的导数计算。
导数放缩常用公式包括常数倍法则、和差法则以及积的法则等。
在这篇文章中,我们将详细证明导数放缩常用公式的正确性。
常数倍法则首先,我们考虑导数常数倍法则的证明。
设f(f)是可微函数,f是常数,则有:$$ \\frac{d}{dx}(cf(x))=c\\frac{d}{dx}f(x) $$证明过程如下:根据导数的定义,我们有:$$ \\frac{df(c)}{dx}=\\lim_{h\\to 0}\\frac{f(c+h)-f(c)}{h} $$将f(f)替换为ff(f),得到:$$ \\begin{aligned} \\frac{df(cf)}{dx} & =\\lim_{h\\to0}\\frac{cf(c+h)-cf(c)}{h} \\\\ & =c\\lim_{h\\to0}\\frac{f(c+h)-f(c)}{h} \\\\ & =c\\frac{df}{dx} \\end{aligned} $$因此,常数倍法则得证。
和差法则接下来我们考虑导数和差法则的证明。
设f(f)和f(f)是可微函数,则有:$$ \\frac{d}{dx}(f(x)+g(x))=\\frac{d}{dx}f(x)+\\frac{d}{dx }g(x) $$证明过程如下:根据导数的定义,我们有:$$ \\begin{aligned} \\frac{d(f+g)}{dx} & =\\lim_{h\\to0}\\frac{(f+g)(x+h)-(f+g)(x)}{h} \\\\ & =\\lim_{h\\to0}\\frac{(f(x+h)-f(x))+(g(x+h)-g(x))}{h} \\\\ & =\\lim_{h\\to 0}\\frac{f(x+h)-f(x)}{h}+\\lim_{h\\to 0}\\frac{g(x+h)-g(x)}{h} \\\\ & =\\frac{df}{dx}+\\frac{dg}{dx} \\end{aligned} $$因此,和差法则得证。
导数公式的证明(基础)
导数的定义:f'(x)=lim Δy/Δx用定义求导数公式(1)f(x)=x n求:f'(x)(3)f(x)=cosx 求:f'(x)(5)f(x)=log a x(6)f(x)=tanxf'(x)=lim (tan(x+Δx)-tanx)/Δx=lim (sin(x+Δx)/cos(x+Δx)-sinx/cosx)/Δx=lim (sin(x+Δx)cosx-sinxcos(x+Δx)/(Δxcosxcos(x+Δx))=lim (sinxcosΔxcosx+sinΔxcosxcosx-sinxcosxcosΔx+sinxsinxsinΔx)/(Δxcosxcos(x+Δx))=lim sinΔx/(Δxcosxcos(x+Δx))=1/(cosx)^2=secx/cosx=(secx)^2=1+(tanx)^2(7)f(x)=cotxf'(x)=lim (cot(x+Δx)-cotx)/Δx=lim (cos(x+Δx)/sin(x+Δx)-cosx/sinx)/Δx=lim (cos(x+Δx)sinx-cosxsin(x+Δx))/(Δxsinxsin(x+Δx))=lim (cosxcosΔxsinx-sinxsinxsinΔx-cosxsinxcosΔx-cosxsinΔxcosx)/(Δxsinxsin(x+Δx))=lim -sinΔx/(Δxsinxsin(x+Δx))=-1/(sinx)^2=-cscx/sinx=-(secx)^2=-1-(cotx)^2(8)f(x)=secxf'(x)=lim(sec(x+Δx)-secx)/Δx=lim (1/cos(x+Δx)-1/cosx)/Δx=lim (cosx-cos(x+Δx)/(ΔxcosxcosΔx)=lim (cosx-cosxcosΔx+sinxsinΔx)/(Δxcosxcos(x+Δx)) =lim sinxsinΔx/(Δxcosxcos(x+Δx))=sinx/(cosx)^2=tanx*secx(9)f(x)=cscxf'(x)=lim(csc(x+Δx)-cscx)/Δx=lim (1/sin(x+Δx)-1/sinx)/Δx=lim (sinx-sin(x+Δx))/(Δxsinxsin(x+Δx))=lim (sinx-sinxcosΔx-sinΔxcosx)/(Δxsinxsin(x+Δx)) =lim -sinΔxcosx/(Δxsinxsin(x+Δx))=-cosx/(sinx)^2=-cotx*cscx(10)f(x)=x^xlnf(x)=xlnx(lnf(x))'=(xlnx)'f'(x)/f(x)=lnx+1f'(x)=(lnx+1)*f(x)f'(x)=(lnx+1)*x^x(12)h(x)=f(x)g(x)h'(x)=lim (f(x+Δx)g(x+Δx)-f(x)g(x))/Δx=lim [(f(x+Δx)-f(x)+f(x))*g(x+Δx)+(g(x+Δx)-g(x)-g(x+Δx))*f(x)]/Δx=lim [(f(x+Δx)-f(x))*g(x+Δx)+(g(x+Δx)-g(x))*f(x)+f(x)*g(x+Δx)-f(x)*g(x+Δx)]/Δx=lim (f(x+Δx)-f(x))*g(x+Δx)/Δx+(g(x+Δx)-g(x))*f(x)/Δx=f'(x)g(x)+f(x)g'(x)(13)h(x)=f(x)/g(x)h'(x)=lim (f(x+Δx)/g(x+Δx)-f(x)g(x))/Δx=lim (f(x+Δx)g(x)-f(x)g(x+Δx))/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x)+f(x))*g(x)-(g(x+Δx)-g(x)+g(x))*f(x)]/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x))*g(x)-(g(x+Δx)-g(x))*f(x)+f(x)g(x)-f(x)g(x)]/(Δxg(x)g(x+Δx))=lim (f(x+Δx)-f(x))*g(x)/(Δxg(x)g(x+Δx))-(g(x+Δx)-g(x))*f(x)/(Δxg(x)g(x+Δx))=f'(x)g(x)/(g(x)*g(x))-f(x)g'(x)/(g(x)*g(x))=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x))x(14)h(x)=f(g(x))h'(x)=lim [f(g(x+Δx))-f(g(x))]/Δx=lim [f(g(x+Δx)-g(x)+g(x))-f(g(x))]/Δx(另g(x)=u,g(x+Δx)-g(x)=Δu)=lim (f(u+Δu)-f(u))/Δx=lim (f(u+Δu)-f(u))*Δu/(Δx*Δu)=lim f'(u)*Δu/Δx=lim f'(u)*(g(x+Δx)-g(x))/Δx=f'(u)*g'(x)=f'(g(x))g'(x)(反三角函数的导数与三角函数的导数的乘积为1,因为函数与反函数关于y=x对称,所以导数也关于y=x对称,所以导数的乘积为1) (15)y=f(x)=arcsinx则siny=x(siny)'=cosy所以(arcsinx)'=1/(siny)'=1/cosy=1/√1-(siny)^2(siny=x)=1/√1-x^2即f'(x)=1/√1-x^2(16)y=f(x)=arctanx则tany=x(tany)'=1+(tany)^2=1+x^2 所以(arctanx)'=1/1+x^2即f'(x)= 1/1+x^2总结一下(x^n)'=nx^(n-1) (sinx)'=cosx (cosx)'=-sinx(a^x)'=a^xlna(e^x)'=e^x(loga^x)'=1/(xlna)(lnx)'=1/x(tanx)'=(secx)^2=1+(tanx)^2(cotx)'=-(cscx)^2=-1-(cotx)^2(secx)'=tanx*secx(cscx)'=-cotx*cscx(x^x)'=(lnx+1)*x^x(arcsinx)'=1/√1-x^2(arctanx)'=1/1+x^2[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x)) [f(g(x))]'=f'(g(x))g'(x)。
导数公式大全(最具说服力的)
导数公式大全(最具说服力的)导数公式大全(最具说服力的)一、导数的定义和性质导数是微积分中的重要概念,用来描述函数在某一点处的变化率。
对于函数f(x),它在点x处的导数记作f'(x),定义为:f'(x) = lim (h→0) [f(x+h) - f(x)] / h其中,h表示自变量x的增量。
导数具有以下几个基本性质:1. 常数规则:若c为常数,则(c)' = 0。
2. 幂函数规则:对于幂函数f(x) = x^n,其中n为正整数,则(f(x))' = nx^(n-1)。
3. 指数函数规则:对于指数函数f(x) = a^x,其中a为常数且a>0且a≠1,则(f(x))' = ln(a) * a^x。
4. 对数函数规则:对于对数函数f(x) = log_a(x),其中a为常数且a>0且a≠1,则(f(x))' = 1 / (x * ln(a))。
5. 三角函数规则:对于三角函数f(x) = sin(x),(f(x))' = cos(x);对于f(x) = cos(x),(f(x))' = -sin(x);对于f(x) = tan(x),(f(x))' = 1 / cos^2(x)。
6. 反函数规则:如果y = f(x)是可导函数,且f'(x) ≠ 0,则其反函数x = f^(-1)(y)在相应点处可导,且有(f^(-1)(y))' = 1 / (f'(x))。
二、高级导数公式除了基本性质外,还存在一些高级的导数公式,可以用来求解更为复杂的函数的导数。
1. 乘积法则:若函数u(x)和v(x)都在x处可导,则(u(x)v(x))' =u'(x)v(x) + u(x)v'(x)。
2. 商积法则:若函数u(x)和v(x)都在x处可导且v(x) ≠ 0,则(u(x)/v(x))' = [u'(x)v(x) - u(x)v'(x)] / v^2(x)。
导数公式证明大全
导数的定义::(x)=lim △ y/A x△ x—0 (下面就不再标明A x—0 了)用定义求导数公式1)f(x)=x A n证法一:n为自然数)f'(x)=lim [(x+A x)An-xAn]/A x=lim (x+ A x-x)[(x+ A x)A(n-1 )+x*(x+ A x)A(n -2)+...+xA(n-2)*(x+ A x)+xA(n -1 )]/ A x=lim [(x+A x)A(n-1)+x*(x+A x)A(n-2)+...+xA(n-2)*(x+A x)+xA(n-1)]=xA(n-1 )+x*xA(n -2)+xA2*xA(n -3)+ ...xA(n-2)*x+xA(n -1 )=nxA(n-1)证法二:n为任意实数)f(x)=xAnlnf(x)=nlnx(lnf(x))'=(nlnx)'f'(x)/f(x)=n/xf'(x)=n/x*f(x)f'(x)=n/x*xAn f'(x)=nxA(n -1)(2)f(x)=sinxf'(x)=lim (sin(x+A x)-sinx)/A x=lim (sinxcos A x+cosxsin A x-sinx)/ A x =lim (sinx+cosxsin A x-sinx)/A x=lim cosxsin A x/A x=cosx(3)f(x)=cosxf'(x)=lim (cos(x+A x)-cosx)/A x=lim (cosxcos A x-sinxsin A x-cosx)/A x =lim (cosx-sinxsin A x-cos)/A x=lim -sinxsin A x/A x=-sinx4)f(x)=a A xf'(x) =lim (aA(x+A x)-aAx)/A x=lim a A x*(a A△ x-1)/A x设"Ax-仁m,贝U A x=logaA(m+1))=lim aAx*m/logaA(m+1)=lim aAx*m/[ln(m+1)/lna]=lim aAx*lna*m/ln(m+1)=lim aAx*lna/[(1/m)*ln(m+1)]=lim aAx*lna/ln[(m+1)A(1/m)]=lim aAx*lna/lne=aAx*lna若a=e,原函数f(x)=eAx 贝f'(x)=eAx*lne=eAx(5)f(x)=logaAxf'(x)=lim (logaA(x+A x)-logaAx)/A x=lim logaA[(x+A x)/x]/A x=lim logaA(1+A x/x)/A x=lim ln(1+A x/x)/(lna* A x) =lim x*ln(1+ A x/x)/(x*lna* A x) =lim (x/A x)*ln(1+ △ x/x)/(x*Ina)=lim ln[(1+ A x/x)A(x/ A x)]/(x*Ina)=lim lne/(x*lna)=1/(x*lna)若a=e,原函数f(x)=logeAx=Inx则f'(x)=1/(x*lne)=1/x(6)f(x)=tanxf'(x)=lim (tan(x+A x)-tanx)/A x=lim (sin(x+A x)/cos(x+ A x)-sinx/cosx)/A x=lim (sin(x+A x)cosx-sinxcos(x+A x)/(A xcosxcos(x+A x))=lim (sinxcos A xcosx+sin A xcosxcosx-sinxcosxcos A x+sinxsinxsin A x)/(A xcosxcos(x+A x))=lim sin A x/(A xcosxcos(x+A x))=1/(cosx)A2=secx/cosx=(secx)A2=1+(tanx)A2(7)f(x)=cotx f'(x)=lim (cot(x+ △ x)- cotx)/ △ x=lim (cos(x+A x)/sin(x+ △ x) -cosx/sinx)/A x=lim (cos(x+A x)sinx-cosxsin(x+A x))/( A xsinxsin(x+ A x)) =lim (cosxcos A xsinx-sinxsinxsin A x-cosxsinxcos A x- cosxsin A xcosx)/(A xsinxsin(x+A x))=lim -sin A x/(A xsinxsin(x+A x))=-1/(s in x)A2= -cscx/si nx=-(secxF2二1-(cotxF28)f(x)=secx f'(x)=lim (sec(x+A x)-secx)/A x=lim (1/cos(x+A x)-1/cosx)/A x=lim (cosx-cos(x+A x)/(A xcosxcos A x)=lim (cosx-cosxcos A x+sinxsin A x)/(A xcosxcos(x+A x))=lim sinxsin A x/(A xcosxcos(x+A x))=sinx/(cosx)A2=tanx*secx9)f(x)=cscxf'(x) =lim (csc(x+A x)-cscx)/A x=lim (1/sin(x+ A x)-1/sinx)/A x=lim (sinx-sin(x+A x))/(A xsinxsin(x+A x))=lim (sinx-sinxcos A x-sin A xcosx)/(A xsinxsin(x+A x)) =lim -sin A xcosx/(A xsinxsin(x+A x))=-cosx/(s in x)A2=-cotx*cscx10)f(x)=x A x lnf(x)=xlnx (lnf(x))'=(xlnx)' f'(x)/f(x)=lnx+1 f'(x)=(lnx+1)*f(x) f'(x)=(lnx+1)*xAx(12)h(x)=f(x)g(x)h'(x)=lim (f(x+ A x)g(x+ A x)-f(x)g(x))/ A x =lim [(f(x+ A x)-f(x)+f(x))*g(x+A x)+(g(x+A x)-g(x)-g(x+A x))*f(x)]/ A x=lim [(f(x+ △x)-f(x))*g(x+ △x)+(g(x+ △ x)-g(x))*f(x)+f(x)*g(x+ △ x)-f(x)*g(x+ △ x)]/ A x=lim (f(x+ A x)-f(x))*g(x+ A x)/ A x+(g(x+ A x)-g(x))*f(x)/ A x=f'(x)g(x)+f(x)g'(x)(13)h(x)=f(x)/g(x)h'(x)=lim (f(x+ A x)/g(x+A x)-f(x)g(x))/A x=lim (f(x+A x)g(x)-f(x)g(x+A x))/(A xg(x)g(x+A x))=lim [(f(x+ A x)-f(x)+f(x))*g(x) -(g(x+ A x) -g(x)+g(x))*f(x)]/( A xg(x)g(x+A x))=lim [(f(x+ A x)-f(x))*g(x) -(g(x+ A x)-g(x))*f(x)+f(x)g(x) -f(x)g(x)]/(A xg(x)g(x+A x))=lim (f(x+ A x)-f(x))*g(x)/( A xg(x)g(x+A x))-(g(x+A x)-g(x))*f(x)/( A xg(x)g(x+A x))=f'(x)g(x)/(g(x)*g(x)) -f(x)g'(x)/(g(x)*g(x))=[f'(x)g(x) -f(x)g'(x)]/(g(x)*g(x))x(14)h(x)=f(g(x))h'(x)=lim [f(g(x+ A x))-f(g(x))]/ A x=lim [f(g(x+A x)-g(x)+g(x))-f(g(x))]/A x (另g(x)=u, g(x+A x)-g(x)= △ u)=lim (f(u+ A u)-f(u))/ A x=lim (f(u+ A u)-f(u))* A u/(A x*A u)=lim f'(u)* A u/A x=lim f'(u)*(g(x+ A x)-g(x))/A x=f'(u)*g'(x)=f'(g(x))g'(x)总结一下(A n )'=nx^( n-1)(sinx) '=cosx(cosx) '=-sinx(aAx) '=aAxlna(eAx) '=eAx(logaAx) '=1/(xlna)(lnx)'=1/x(tanx)'=(secx)A2=1+(tanx)A2(cotx)'=-(cscx)A2=-1-(cotx)A2(secx)'=tanx*secx(cscx)'=-cotx*cscx(xAx)'=(lnx+1)*xAx [f(x)g(x)]'=f'(x)g(x)+f(x)g'(x) [f(x)/g(x)]'=[f'(x)g(x) -f(x)g'(x)]/(g(x)*g(x))[f(g(x))]'=f'(g(x))g'(x)。
导数公式的证明最全版
导数公式的证明最全版导数的定义是函数在特定点处的变化率,即斜率。
要证明导数的定义,需要使用极限的概念和微分的概念。
假设函数f(x)在点x=a处有导数,记为f'(a)。
我们可以通过极限定义来证明导数的公式。
1.导数的定义:函数f(x)在点x=a处的导数,记为f'(a),定义为:f'(a) = lim┬(h→0)〖(f(a+h)-f(a))/h〗2.应用极限的性质:根据极限的性质,我们可以将上述公式改写为:f'(a) = lim┬(h→0)〖f(a+h)-f(a))/lim┬(h→0)h〗3.差商:我们可以将差商(f(a+h)-f(a))/h理解为两点(x,y)间的斜率。
根据微积分的思想,我们可以通过使用两点间的切线来近似表示曲线的斜率。
4.切线近似:在点(x,y)处,我们可以使用切线来近似表示曲线的斜率,该切线与曲线相切于点(x,y)处,并且与曲线在该点的切线斜率相同。
5.切线方程:曲线在点x=a处的切线方程为:y=f(a)+f'(a)(x-a)其中,f'(a)表示导数,(x-a)表示函数的自变量变化量。
6.近似函数:对于足够小的自变量变化量h,我们可以使用切线方程近似表示函数f(x)在点x=a+h处的函数值:f(a+h)≈f(a)+f'(a)h7.导数公式推导:根据近似函数的表示,我们可以将差商(f(a+h)-f(a))/h表示为:(f(a)+f'(a)h-f(a))/h化简得到:f'(a) = lim┬(h→0)(f(a+h)-f(a))/h8.推导细节:进一步化简上述式子,得到:f'(a) = lim┬(h→0)(f(a+h)/h - f(a)/h)根据极限的性质,推出:f'(a) = lim┬(h→0)(f(a+h)/h) - lim┬(h→0)(f(a)/h)化简得到:f'(a) = lim┬(h→0)(f(a+h)-f(a)/h)这与导数的定义一致,因此我们证明了导数的定义公式。
导数公式的证明(最全版)
导数的定义:f'(x)=lim Δy/ΔxΔx→0(下面就不再标明Δx→0了)用定义求导数公式(1)f(x)=x^n证法一:(n为自然数)f'(x)=lim [(x+Δx)^n-x^n]/Δx=lim (x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/Δx=lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]=x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+ ...x^(n-2)*x+x^(n-1)=nx^(n-1)证法二:(n为任意实数)f(x)=x^nlnf(x)=nlnx(lnf(x))'=(nlnx)'f'(x)/f(x)=n/xf'(x)=n/x*f(x)f'(x)=n/x*x^nf'(x)=nx^(n-1)(2)f(x)=sinxf'(x)=lim (sin(x+Δx)-sinx)/Δx=lim (sinxcosΔx+cosxsinΔx-sinx)/Δx =lim (sinx+cosxsinΔx-sinx)/Δx=lim cosxsinΔx/Δx=cosx(3)f(x)=cosxf'(x)=lim (cos(x+Δx)-cosx)/Δx=lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx=lim -sinxsinΔx/Δx=-sinx(4)f(x)=a^x证法一:f'(x)=lim (a^(x+Δx)-a^x)/Δx=lim a^x*(a^Δx-1)/Δx(设a^Δx-1=m,则Δx=loga^(m+1))=lim a^x*m/loga^(m+1)=lim a^x*m/[ln(m+1)/lna]=lim a^x*lna*m/ln(m+1)=lim a^x*lna/[(1/m)*ln(m+1)] =lim a^x*lna/ln[(m+1)^(1/m)] =lim a^x*lna/lne=a^x*lna证法二:f(x)=a^xlnf(x)=xlna[lnf(x)] '=[xlna] 'f' (x)/f(x)=lnaf' (x)=f(x)lnaf' (x)=a^xlna若a=e,原函数f(x)=e^x则f'(x)=e^x*lne=e^x(5)f(x)=loga^xf'(x)=lim (loga^(x+Δx)-loga^x)/Δx =lim loga^[(x+Δx)/x]/Δx=lim loga^(1+Δx/x)/Δx=lim ln(1+Δx/x)/(lna*Δx)=lim x*ln(1+Δx/x)/(x*lna*Δx)=lim (x/Δx)*ln(1+Δx/x)/(x*lna) =lim ln[(1+Δx/x)^(x/Δx)]/(x*lna) =lim lne/(x*lna)=1/(x*lna)若a=e,原函数f(x)=loge^x=lnx则f'(x)=1/(x*lne)=1/x(6)f(x)=tanxf'(x)=lim (tan(x+Δx)-tanx)/Δx=lim (sin(x+Δx)/cos(x+Δx)-sinx/cosx)/Δx=lim (sin(x+Δx)cosx-sinxcos(x+Δx)/(Δxcosxcos(x+Δx))=lim (sinxcosΔxcosx+sinΔxcosxcosx-sinxcosxcosΔx+sinxsinxsinΔx)/(Δxcosxcos(x+Δx))=lim sinΔx/(Δxcosxcos(x+Δx))=1/(cosx)^2=secx/cosx=(secx)^2=1+(tanx)^2(7)f(x)=cotxf'(x)=lim (cot(x+Δx)-cotx)/Δx=lim (cos(x+Δx)/sin(x+Δx)-cosx/sinx)/Δx=lim (cos(x+Δx)sinx-cosxsin(x+Δx))/(Δxsinxsin(x+Δx))=lim (cosxcosΔxsinx-sinxsinxsinΔx-cosxsinxcosΔx-cosxsinΔxcosx)/(Δxsinxsin(x+Δx))=lim -sinΔx/(Δxsinxsin(x+Δx))=-1/(sinx)^2=-cscx/sinx=-(secx)^2=-1-(cotx)^2(8)f(x)=secxf'(x)=lim(sec(x+Δx)-secx)/Δx=lim (1/cos(x+Δx)-1/cosx)/Δx=lim (cosx-cos(x+Δx)/(ΔxcosxcosΔx)=lim (cosx-cosxcosΔx+sinxsinΔx)/(Δxcosxcos(x+Δx))=lim sinxsinΔx/(Δxcosxcos(x+Δx))=sinx/(cosx)^2=tanx*secx(9)f(x)=cscxf'(x)=lim(csc(x+Δx)-cscx)/Δx=lim (1/sin(x+Δx)-1/sinx)/Δx=lim (sinx-sin(x+Δx))/(Δxsinxsin(x+Δx))=lim (sinx-sinxcosΔx-sinΔxcosx)/(Δxsinxsin(x+Δx)) =lim -sinΔxcosx/(Δxsinxsin(x+Δx))=-cosx/(sinx)^2=-cotx*cscx(10)f(x)=x^xlnf(x)=xlnx(lnf(x))'=(xlnx)'f'(x)/f(x)=lnx+1f'(x)=(lnx+1)*f(x)f'(x)=(lnx+1)*x^x(12)h(x)=f(x)g(x)h'(x)=lim (f(x+Δx)g(x+Δx)-f(x)g(x))/Δx=lim [(f(x+Δx)-f(x)+f(x))*g(x+Δx)+(g(x+Δx)-g(x)-g(x+Δx))*f(x)]/Δx=lim [(f(x+Δx)-f(x))*g(x+Δx)+(g(x+Δx)-g(x))*f(x)+f(x)*g(x+Δx)-f(x)*g(x+Δx)]/Δx=lim (f(x+Δx)-f(x))*g(x+Δx)/Δx+(g(x+Δx)-g(x))*f(x)/Δx=f'(x)g(x)+f(x)g'(x)(13)h(x)=f(x)/g(x)h'(x)=lim (f(x+Δx)/g(x+Δx)-f(x)g(x))/Δx=lim (f(x+Δx)g(x)-f(x)g(x+Δx))/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x)+f(x))*g(x)-(g(x+Δx)-g(x)+g(x))*f(x)]/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x))*g(x)-(g(x+Δx)-g(x))*f(x)+f(x)g(x)-f(x)g(x)]/(Δxg(x)g(x+Δx))=lim (f(x+Δx)-f(x))*g(x)/(Δxg(x)g(x+Δx))-(g(x+Δx)-g(x))*f(x)/(Δxg(x)g(x+Δx))=f'(x)g(x)/(g(x)*g(x))-f(x)g'(x)/(g(x)*g(x))=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x))x(14)h(x)=f(g(x))h'(x)=lim [f(g(x+Δx))-f(g(x))]/Δx=lim [f(g(x+Δx)-g(x)+g(x))-f(g(x))]/Δx(另g(x)=u,g(x+Δx)-g(x)=Δu)=lim (f(u+Δu)-f(u))/Δx=lim (f(u+Δu)-f(u))*Δu/(Δx*Δu)=lim f'(u)*Δu/Δx=lim f'(u)*(g(x+Δx)-g(x))/Δx=f'(u)*g'(x)=f'(g(x))g'(x)(反三角函数的导数与三角函数的导数的乘积为1,因为函数与反函数关于y=x对称,所以导数也关于y=x对称,所以导数的乘积为1) (15)y=f(x)=arcsinx则siny=x(siny)'=cosy所以(arcsinx)'=1/(siny)'=1/cosy=1/√1-(siny)^2(siny=x)=1/√1-x^2即f'(x)=1/√1-x^2(16)y=f(x)=arctanx则tany=x(tany)'=1+(tany)^2=1+x^2所以(arctanx)'=1/1+x^2即f'(x)= 1/1+x^2总结一下(x^n)'=nx^(n-1)(sinx)'=cosx(cosx)'=-sinx(a^x)'=a^xlna(e^x)'=e^x(loga^x)'=1/(xlna)(lnx)'=1/x(tanx)'=(secx)^2=1+(tanx)^2 (cotx)'=-(cscx)^2=-1-(cotx)^2 (secx)'=tanx*secx(cscx)'=-cotx*cscx(x^x)'=(lnx+1)*x^x(arcsinx)'=1/√1-x^2(arctanx)'=1/1+x^2[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x)) [f(g(x))]'=f'(g(x))g'(x)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数的定义:f'(x)=lim Δy/ΔxΔx→0(下面就不再标明Δx→0了)用定义求导数公式(1)f(x)=x^n证法一:(n为自然数)For personal use only in study and research; not for commercial usef'(x)=lim [(x+Δx)^n-x^n]/Δx=lim (x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/ΔxFor personal use only in study and research; not for commercial use=lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]=x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+ ...x^(n-2)*x+x^(n-1)=nx^(n-1)For personal use only in study and research; not for commercial use证法二:(n为任意实数)f(x)=x^nlnf(x)=nlnx(lnf(x))'=(nlnx)'f'(x)/f(x)=n/xf'(x)=n/x*f(x)f'(x)=n/x*x^nf'(x)=nx^(n-1)(2)f(x)=sinxf'(x)=lim (sin(x+Δx)-sinx)/Δx=lim (sinxcosΔx+cosxsinΔx-sinx)/Δx =lim (sinx+cosxsinΔx-sinx)/Δx=lim cosxsinΔx/Δx=cosx(3)f(x)=cosxf'(x)=lim (cos(x+Δx)-cosx)/Δx=lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx=lim -sinxsinΔx/Δx=-sinx(4)f(x)=a^x证法一:f'(x)=lim (a^(x+Δx)-a^x)/Δx=lim a^x*(a^Δx-1)/Δx(设a^Δx-1=m,则Δx=loga^(m+1))=lim a^x*m/loga^(m+1)=lim a^x*m/[ln(m+1)/lna]=lim a^x*lna*m/ln(m+1)=lim a^x*lna/[(1/m)*ln(m+1)]=lim a^x*lna/ln[(m+1)^(1/m)]=lim a^x*lna/lne=a^x*lna证法二:f(x)=a^xlnf(x)=xlna[lnf(x)] '=[xlna] 'f' (x)/f(x)=lnaf' (x)=f(x)lnaf' (x)=a^xlna若a=e,原函数f(x)=e^x则f'(x)=e^x*lne=e^x(5)f(x)=loga^xf'(x)=lim (loga^(x+Δx)-loga^x)/Δx =lim loga^[(x+Δx)/x]/Δx=lim loga^(1+Δx/x)/Δx=lim ln(1+Δx/x)/(lna*Δx)=lim x*ln(1+Δx/x)/(x*lna*Δx)=lim (x/Δx)*ln(1+Δx/x)/(x*lna)=lim ln[(1+Δx/x)^(x/Δx)]/(x*lna)=lim lne/(x*lna)=1/(x*lna)若a=e,原函数f(x)=loge^x=lnx则f'(x)=1/(x*lne)=1/x(6)f(x)=tanxf'(x)=lim (tan(x+Δx)-tanx)/Δx=lim (sin(x+Δx)/cos(x+Δx)-sinx/cosx)/Δx=lim (sin(x+Δx)cosx-sinxcos(x+Δx)/(Δxcosxcos(x+Δx))=lim (sinxcosΔxcosx+sinΔxcosxcosx-sinxcosxcosΔx+sinxsinxsinΔx)/(Δxcosxcos(x+Δx))=lim sinΔx/(Δxcosxcos(x+Δx))=1/(cosx)^2=secx/cosx=(secx)^2=1+(tanx)^2(7)f(x)=cotxf'(x)=lim (cot(x+Δx)-cotx)/Δx=lim (cos(x+Δx)/sin(x+Δx)-cosx/sinx)/Δx=lim (cos(x+Δx)sinx-cosxsin(x+Δx))/(Δxsinxsin(x+Δx)) =lim (cosxcosΔxsinx-sinxsinxsinΔx-cosxsinxcosΔx-cosxsin Δxcosx)/(Δxsinxsin(x+Δx))=lim -sinΔx/(Δxsinxsin(x+Δx))=-1/(sinx)^2=-cscx/sinx=-(secx)^2=-1-(cotx)^2(8)f(x)=secxf'(x)=lim(sec(x+Δx)-secx)/Δx=lim (1/cos(x+Δx)-1/cosx)/Δx=lim (cosx-cos(x+Δx)/(ΔxcosxcosΔx)=lim (cosx-cosxcosΔx+sinxsinΔx)/(Δxcosxcos(x+Δx)) =lim sinxsinΔx/(Δxcosxcos(x+Δx))=sinx/(cosx)^2=tanx*secx(9)f(x)=cscxf'(x)=lim(csc(x+Δx)-cscx)/Δx=lim (1/sin(x+Δx)-1/sinx)/Δx=lim (sinx-sin(x+Δx))/(Δxsinxsin(x+Δx))=lim (sinx-sinxcosΔx-sinΔxcosx)/(Δxsinxsin(x+Δx)) =lim -sinΔxcosx/(Δxsinxsin(x+Δx))=-cosx/(sinx)^2=-cotx*cscx(10)f(x)=x^xlnf(x)=xlnx(lnf(x))'=(xlnx)'f'(x)/f(x)=lnx+1f'(x)=(lnx+1)*f(x)f'(x)=(lnx+1)*x^x(12)h(x)=f(x)g(x)h'(x)=lim (f(x+Δx)g(x+Δx)-f(x)g(x))/Δx=lim [(f(x+Δx)-f(x)+f(x))*g(x+Δx)+(g(x+Δx)-g(x)-g(x+Δx))*f(x)]/Δx=lim [(f(x+Δx)-f(x))*g(x+Δx)+(g(x+Δx)-g(x))*f(x)+f(x)*g(x+Δx)-f(x)*g(x+Δx)]/Δx=lim (f(x+Δx)-f(x))*g(x+Δx)/Δx+(g(x+Δx)-g(x))*f(x)/Δx =f'(x)g(x)+f(x)g'(x)(13)h(x)=f(x)/g(x)h'(x)=lim (f(x+Δx)/g(x+Δx)-f(x)g(x))/Δx=lim (f(x+Δx)g(x)-f(x)g(x+Δx))/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x)+f(x))*g(x)-(g(x+Δx)-g(x)+g(x))*f(x)]/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x))*g(x)-(g(x+Δx)-g(x))*f(x)+f(x)g(x)-f(x)g(x)]/(Δxg(x)g(x+Δx))=lim (f(x+Δx)-f(x))*g(x)/(Δxg(x)g(x+Δx))-(g(x+Δx)-g(x))*f(x)/(Δxg(x)g(x+Δx))=f'(x)g(x)/(g(x)*g(x))-f(x)g'(x)/(g(x)*g(x))=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x))x(14)h(x)=f(g(x))h'(x)=lim [f(g(x+Δx))-f(g(x))]/Δx=lim [f(g(x+Δx)-g(x)+g(x))-f(g(x))]/Δx(另g(x)=u,g(x+Δx)-g(x)=Δu)=lim (f(u+Δu)-f(u))/Δx=lim (f(u+Δu)-f(u))*Δu/(Δx*Δu)=lim f'(u)*Δu/Δx=lim f'(u)*(g(x+Δx)-g(x))/Δx=f'(u)*g'(x)=f'(g(x))g'(x)(反三角函数的导数与三角函数的导数的乘积为1,因为函数与反函数关于y=x对称,所以导数也关于y=x对称,所以导数的乘积为1) (15)y=f(x)=arcsinx则siny=x(siny)'=cosy所以(arcsinx)'=1/(siny)'=1/cosy =1/√1-(siny)^2(siny=x)=1/√1-x^2即f'(x)=1/√1-x^2(16)y=f(x)=arctanx则tany=x(tany)'=1+(tany)^2=1+x^2所以(arctanx)'=1/1+x^2即f'(x)= 1/1+x^2总结一下(x^n)'=nx^(n-1)(sinx)'=cosx(cosx)'=-sinx(a^x)'=a^xlna(e^x)'=e^x(loga^x)'=1/(xlna)(lnx)'=1/x(tanx)'=(secx)^2=1+(tanx)^2(cotx)'=-(cscx)^2=-1-(cotx)^2(secx)'=tanx*secx(cscx)'=-cotx*cscx(x^x)'=(lnx+1)*x^x(arcsinx)'=1/√1-x^2(arctanx)'=1/1+x^2[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x)) [f(g(x))]'=f'(g(x))g'(x)仅供个人用于学习、研究;不得用于商业用途。
For personal use only in study and research; not for commercial use.Nur für den persönlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden.Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.以下无正文。