人工智能ppTppt课件
人工智能PPT完整版
谢 谢! THANK YOU
此课件下载可自行编辑修改,供参考! 部分内容来源于网络,如有侵权请与我联系删除!
映了计算机“思维”的创造灵感、拥有直 觉、获得情感。
人类与人工智能之争
统治?被统治?
最极端的假设则预测了一个人工智能比人类 更加聪明的遥远未来。
人工智能的发展依然处于非常初级的阶段,现状基 本就是 ——
“没有人工,就没有智能”
计算智能阶段智能产品特点
“能存会算” ——快速计算与 存储
第二阶段 感知智能阶段
什么是感知?
感知就是具有能够感觉内 部、外部的状态和变化, 理解这些变化的某种内在
含义的能力。
智能机器人的感知
一个鲜活的生命可以通过ta的各种感觉器官和中枢神经系统来 感受、理解外部和自己内部的变化。而一个智能机器人要感知 这个世界,就必须具有一定的信息获取手段和信息处理方法。 对于许多机器人来说,获取信息的手段就是通过多种不同功能 的传感器来收集各种不同性质的信息。而对于信息的理解则是
THREE
第三部分 发展成果
3
三 发展成果
发
➢ 人机对弈:
展
Deep blue
成
AlphaGo
果
➢ 自动工程:
猎鹰系统等
➢ 模式识别:
2D/3D/ 多 维 识 别 系 统
➢ 知识工程:
专家系统,智能搜索引 擎等
FOUR
第四部分 发 展争议
5
电影中的人工智能
2015
技术奇点:人工智能是否会引发技术爆炸?
发展争议 人工智能会拥有情感,奴役人类吗?
“人类制造机器就是为了让机器在某些方 面强于人类,但是机器在某些方面超越人 类不意味着机器有能力学习其他方面的能 力,或者将不同的信息联系起来而做超越
人工智能介绍PPT课件
3 人工智能面临的考验
The facing problems of AI
4 人工智能的未来
The future of Artificial Intelligence
Part 1 人工智能是什么
.
2020/5/15
3
1 人工智能是什么?
➢名字由来:1956年,萨缪尔应 麦卡锡之邀,参加达特茅斯会 议,介绍机器学习工作。 “Artificial Intelligence” 这个 词被首次提出
.
2020/5/15
15
4
人工智能的未来
➢ 对待人工智能的态度
在人工智能发展遇到种种伦理困境的今天 ,我们要始终贯彻以人为本的原则,马克 思说过,“人是人的最高本质。”对于人 工智能的伦理领域的研究也要时刻与其技 术保持同步,要未雨绸缪但要避免过度敏 感。在这条智能走向智慧的路上还会有更 多的问题将接踵而至,而我们要做的就是 不偏不倚走在“科技以人为本”的道路上 迎接人工智能即将带给我们的种种福利。
能的发展。
➢ 1956年,塞缪尔在IBM计算机上研制成功了具有自学习、自组织和自适
应能力的西洋跳棋程序。
➢ 1957年,纽厄尔、肖(Shaw)和西蒙等研制了一个称为逻辑理论机(LT)的
数学定理证明程序。
➢ 1958年,麦卡锡建立了行动规划咨询系统 ➢ 1960年纽厄尔等研制了通用问题求解(GPS)程序。麦卡锡研制了人工智
4.语音助手
通过智能对话与即时问答的智能交互,实 现帮忙用户解决问题,其主要是帮忙用户 解决生活类问题。
.
10
Part 3 人工智能面临的问题
.
2020/5/15
11
3
人工智能面临的问题
2024版《人工智能》PPT课件
《人工智能》PPT课件•人工智能概述•机器学习原理及算法•自然语言处理技术•计算机视觉技术•语音识别与合成技术•智能推荐系统与数据挖掘•人工智能伦理、法律与社会影响目录定义与发展历程定义人工智能是一门研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的新技术科学。
发展历程从早期的符号学习到现代的深度学习,人工智能经历了多个发展阶段,包括专家系统、知识工程、机器学习等。
重要事件人工智能领域的重要事件包括图灵测试、达特茅斯会议、AlphaGo战胜围棋世界冠军等。
人工智能的技术原理包括感知、思考、学习和行动四个方面,通过模拟人类的思维和行为方式来实现智能化。
技术原理人工智能的核心思想是让机器能够像人类一样具有智能,包括理解、推理、决策、学习等能力。
核心思想人工智能的实现方式包括符号主义、连接主义和行为主义等多种方法,其中深度学习是当前最热门的技术之一。
实现方式技术原理及核心思想前景展望未来人工智能的发展前景非常广阔,将会在更多领域得到应用,同时也会出现更多的技术创新和突破。
应用领域人工智能已经广泛应用于各个领域,包括智能家居、自动驾驶、医疗诊断、金融风控等。
挑战与机遇人工智能的发展也面临着一些挑战,如数据安全、隐私保护等问题,但同时也带来了巨大的机遇和发展空间。
应用领域与前景展望原理通过最小化预测值与真实值之间的均方误差,学习得到最优的线性模型参数。
应用预测连续型数值,如房价、销售额等。
原理在特征空间中寻找最大间隔超平面,使得不同类别的样本能够被正确分类。
应用分类问题,如图像识别、文本分类等。
原理通过递归地选择最优特征进行划分,构建一棵树状结构,用于分类或回归。
应用分类、回归问题,如信用评分、医学诊断等。
原理将数据划分为K个簇,使得同一簇内的数据尽可能相似,不同簇间的数据尽可能不同。
应用数据挖掘、图像压缩等。
原理通过计算数据点间的相似度,将数据逐层进行聚合或分裂,形成树状结构。
应用社交网络分析、生物信息学等。
人工智能概述ppt课件
目录
• 人工智能基本概念与发展历程 • 基础知识体系与技术框架 • 智能算法模型与优化方法 • 数据驱动与知识表示方法 • 伦理、隐私和安全问题探讨 • 未来发展趋势与挑战
01
人工智能基本概念与 发展历程
人工智能定义及特点
定义
人工智能是一门研究、开发用于 模拟、延伸和扩展人的智能的理 论、方法、技术及应用系统的新 技术科学。
自然语言处理技术及应用
自然语言处理定义
研究人与计算机交互的语言问题的一 门学科,包括文本处理、语义理解、 机器翻译等方面。
常见自然语言处理技术
分词、词性标注、命名实体识别、句 法分析等。
自然语言处理应用
智能客服、智能问答、情感分析、文 本摘要等。
发展趋势
深度学习在自然语言处理中的应用越 来越广泛,推动着自然语言处理技术 的不断发展。
面临挑战及解决思路
数据安全与隐私保护
加强数据安全管理,研究隐私保护算法与技术, 保障用户数据安全与隐私权益。
技术可靠性与鲁棒性
提高模型可靠性与鲁棒性,降低对特定数据或场 景的依赖,人工智能伦理问题,建立监管机制与标准规 范,促进人工智能健康发展。
在自然语言处理中,数据驱动方法通 过统计语言模型、深度学习等技术处 理海量文本数据,实现自然语言理解 和生成。
在机器学习领域,数据驱动思想体现 在通过大量数据训练模型,使模型自 动学习并改进。
知识表示和推理机制
知识表示是将现实世界中的知识转化为计算机可理解和处理的形式,如逻辑表示法 、语义网络、框架表示法等。
推理机制是基于知识表示进行逻辑推理、归纳推理等,以得出新的知识和结论。
在专家系统中,知识表示和推理机制是实现自动化决策和问题求解的关键技术。
人工智能课件(PPT 85页)
第一章 概述
• 1.1 什么是人工智能? 人类的自然智能伴随着人类活动无
时不在、无处不在。人类的许多活动, 如解题、下棋、猜谜、写作、编制计划 和编程,甚至驾车骑车等,都需要智能。 如果机器能够完成这些任务的一部分, 那么就可以认为机器已经具有某种程度 的“人工智能”。
什么是人工智能?
• 从思维基础上讲,它是人们长期以来探 索研制能够进行计算、推理和其它思维 活动的智能机器的必然结果;从理论基 础上讲,它是信息论、控制论、系统工 程论、计算机科学、心理学、神经学、 认知科学、数学和哲学等多学科相互渗 透的结果;从物质和技术基础上讲,它 是电子计算机和电子技术得到广泛应用 的结果。
AI的产生及主要学派
• 如果说符号主义是从宏观上模拟人 的思维过程的话,那么联结主义则 试图从微观上解决人类的认知功能, 以探索认知过程的微观结构。联结 主义从人脑模式出发,建议在网络 层次上模拟人的认知过程。所以, 联结主义本质上是用人脑的并行分 布处理模式来表现认知过程。
AI的产生及主要学派
符号主义又称为逻辑主义(Logicis)、心理学 派 ( Psychlogism) 或 计 算 机 学 派 (Computerism)。该学派认为人工智能源于数 理逻辑。数理逻辑在19世纪获得迅速发展,到20 世纪30年代开始用于描述智能行为。计算机产生 以后,又在计算机上实现了逻辑演绎系统,其代 表的成果为启发式程序LT(逻辑理论家),人们 使用它证明了38个数学定理,从而表明了人类可 利用计算机模拟人类的智能活动。
什么是人工智能?
• 1983年 Elaine Rich “人工智能是研究怎样让电脑模拟人脑从事推
理、规划、设计、思考、学习等思维活动,解 决至今认为需要由专家才能处理的复杂问题。” • 1987年Michael R.Genesereth 和 Nils J.Nilsson
《人工智能》大学课件PPT
contents
目录
• 人工智能概述 • 机器学习与深度学习 • 自然语言处理 • 计算机视觉 • 语音识别与合成 • 人工智能的伦理与法律问题
01
CATALOGUE
人工智能概述
人工智能的定义
人工智能定义
人工智能是计算机科学的一个分支,旨在研究和开发能够 模拟、延伸和扩展人类智能的理论、方法、技术及应用系 统的一门新的技术科学。
自然语言处理的基本任务
分词、词性标注、句法分析、语义理解和对话系统等。
自然语言处理的技术与方法
基于规则的方法
通过人工定义规则来处理自然语言,例如正则表达式和手工编写 的解析器。
基于统计的方法
利用大规模语料库进行训练,通过机器学习算法找到语言的内在 规律,例如隐马尔可夫模型和条件随机场。
基于深度学习的方法
替代就业
人工智能的发展可能导致部分传统岗位被自动化取代,需要关注由此产生的失业 问题,并采取措施进行缓解。
创造就业
同时,人工智能的发展也将催生新的产业和就业机会,需要培养适应新时代的技 能和人才。
人工智能的决策责任问题
决策透明度
人工智能系统在做出决策时,应具备足够的透明度,以便理 解和追踪其决策过程。
利用神经网络进行自然语言处理,例如循环神经网络和 Transformer模型。
自然语言处理的应用实例
机器翻译
利用NLP技术将一种自然语言 自动翻译成另一种自然语言。
智能客服
通过NLP技术实现智能化的客 户服务,自动回答用户的问题 和提供帮助。
信息抽取
从大量文本中自动提取关键信 息,例如人物、事件和地点等 。
计算机视觉的构成
计算机视觉主要由图像获取、图 像处理和图像理解三个部分组成 。
人工智能简介-课件(PPT演示)
AI的定义
何谓人工智能(2/2) Turing测试
小于50%?
被测机器
测试主持人
被测人
12
人工智能概述
• AI的定义及其研究目标 • AI的产生与发展 • 孕育期(1956年以前) • 形成期(1956----1970年) • 知识应用期(1970---- 20世纪80年代末) • 从学派分离走向综合(20世纪80年代末到本世纪初) • 智能科学技术学科的兴起(本世纪初以来) • AI研究的基本内容 • AI研究的不同学派
5
AI的定义
智能(自然智能)
• 自然智能 • 指人类和一些动物所具有的智力和行为能力 • 人类的自然智能(简称智能) • 指人类在认识客观世界中,由思维过程和脑力活动所 表现出的综合能力。 • 人类大脑是如何实现智能的 • 两大难题之一:宇宙起源、人脑奥秘 • 对人脑奥秘知之甚少 • 对人脑奥秘知道什么 • 结构:1011-12 量级的神经元,分布并行 • 功能:记忆、思维、观察、分析 等 • 对智能的严格定义 • 有待于人脑奥秘的揭示,进一步认识 6
16
知识应用期(1971—1980)
挫折和教训 • 失败的预言: • 60年代初,西蒙预言:10年内计算机将成为世界冠军、将证明一个未 发现的数学定理、将能谱写出具有优秀作曲家水平的乐曲、大多数心理 学理论将在计算机上形成。 • 挫折和教训 • 在博弈方面,塞缪尔的下棋程序在与世界冠军对弈时,5局败了4局。 • 在定理证明方面,发现鲁宾逊归结法的能力有限。当用归结原理证明 两个连续函数之和还是连续函数时,推了10万步也没证出结果。 • 在问题求解方面,对于不良结构,会产生组合爆炸问题。 • 在机器翻译方面,发现并不那么简单,甚至会闹出笑话。例如,把 “心有余而力不足”的英语句子翻译成俄语,再 翻译回来时竟变成了 “酒是好的,肉变质了” • 在神经生理学方面,研究发现人脑有1011-12以上的神经元,在现有技术 条件下用机器从结构上模拟人脑是根本不可能的。 • 在其它方面,人工智能也遇到了不少问题。在英国,剑桥大学的詹姆 教授指责“人工智能研究不是骗局,也是庸人自扰” 。从此,形势急转 17 直下,在全世界范围内人工智能研究陷入困境、落入低谷。
人工智能ppt课件
随着超级智能的发展,人类可能面临失去对人工智能系统的控制的风险,一旦失去控制,人工智能系统可能会对人类社会造成巨大威胁。
05
CHAPTER
未来的人工智能发展
物联网技术为人工智能提供了丰富的数据来源,而人工智能则为物联网提供了智能化的解决方案。
未来AI与物联网的结合将更加紧密,实现各种设备的互联互通和智能化管理。
THANKS
感谢您的观看。
社会影响
02
人工智能正在改变我们的生活方式,从日常生活中的各种便利设施,如智能家居、智能交通,到更广泛的社会问题,如数据隐私和安全、人工智能的道德和伦理问题。
科技发展
03
人工智能的发展推动了其他领域的技术进步,如机器学习、深度学习、自然语言处理等。这些技术的发展又进一步推动了人工智能的发展,形成了一个良性循环。
教育和培训
就业结构调整
人工智能算法的训练数据来源于人类社会,如果数据存在偏见或歧视,那么算法也可能会继承这些偏见和歧视,导致不公平的结果。
数据偏见
为了防止算法偏见和歧视,需要提高算法的透明度,让人们了解算法的工作原理和决策依据,以便及时发现和纠正偏见和歧视问题。
算法透明度
不可预测性
超级智能的人工智能系统可能具备高度自主性和学习能力,但其行为可能变得不可预测,甚至可能违反人类的价值观和伦理原则。
政策制定
政府需要制定相应的政策和法规,以规范AI的发展和应用。这包括数据隐私、AI的道德和伦理问题等。
教育
我们需要培养更多的AI人才,以适应这个快速发展的领域。同时,我们也需要提高公众对AI的认识和理解,以便更好地利用这项技术。
创新和应用
我们应该鼓励更多的创新和应用,以充分利用AI的潜力。同时,我们也需要关注AI的负面影响,并采取措施来减少这些影响。
(完整版)人工智能介绍PPT课件全
• 人工智能是计算机科学的一个分支,
它企图了解智能的实质,并生产出一 种新的能以人类智能相似的方式做出 反应的智能机器,该领域的研究包括 机器人、语言识别、图像识别、自然 语言处理和专家系统等。
Machine learning
Computer vision
1956年,塞缪尔在IBM计算机上研制成功了具有自学习、自组织和自适应 能力的西洋跳棋程序。
1957年,纽厄尔、肖(Shaw)和西蒙等研制了一个称为逻辑理论机(LT)的 数学定理证明程序。
1958年,麦卡锡建立了行动规划咨询系统 1960年纽厄尔等研制了通用问题求解(GPS)程序。麦卡锡研制了人工智
人工智能简介
Brief introduction of
Artificial Intelligence
2024/9/24 Made by Bob
•Contents
1 人工智能是什么?
What is Artificial Intelligence?
2 人工智能的发展与应用
Application of Artificial Intelligence
2024/9/24
Part 4 人工智能的未来
2024/9/24
4
人工智能的未来
健全人工智能发展标准和监管制度
任何一门新技术的诞生、发展和使用都离不开一套完整 的发展标准和科学的管理制度,这是保证科学技术“以 人为本”的根本,面对人类日益强大的科研能力,人工 智能的发展必将会在未来出现突破性的进展,强人工智 能技术也将完整的出现在人类面前。鉴于人工智能技术 的特殊性,我们不难发现,它给人类生存带来的威胁不 亚于核武器,这就要求我们必须有严格的标准来要求人 工智能的发展,并且要科学谨慎的监管其生产和使用过 程的每个细节。
人工智能最新版ppt课件
目标检测与跟踪应用场景
探讨目标检测与跟踪在视频监控、智能交通、无人驾驶等领域的应用。
三维重建与虚拟现实应用
三维重建技术
文本挖掘与信息抽取技术
01
文本挖掘概念与应用
从大量非结构化文本数据中提取有价值信息的过程,广泛应用于舆情监
测、商业智能等领域。
02
信息抽取任务与方法
包括命名实体识别、关系抽取、事件抽取等任务,常用方法有基于规则、
统计学习、深度学习等。
03
文本挖掘与信息抽取工具
介绍常用的文本挖掘和信息抽取工具,如NLTK、SpaCy、
介绍三维重建的基本原理和实现方法,如立 体视觉、结构光等。
虚拟现实技术
讲解虚拟现实的基本概念、系统组成及实现 方法。
三维重建与虚拟现实应用场景
分析三维重建与虚拟现实在游戏、影视、教 育等领域的应用,以及未来发展趋势。
05
语音识别与合成技术及应用
语音识别基本原理及挑战
语音识别基本原理
将声音转换成文字,通过对语音信号 的分析和处理,提取出语音中的特征 参数,进而识别出对应的文字或指令。
StanfordNLP等。
情感分析与观点挖掘方法
情感分析概念与应用
对文本进行情感倾向性判断的过程,广泛应用于产品评论、 社交媒体等领域。
情感分析技术与方法
包括基于词典的方法、机器学习方法和深度学习方法等。
观点挖掘任务与流程
从文本中识别和提取观点的过程,包括观点持有者、观点 对象、观点内容等元素的识别。
数据预处理、相似度度量、聚类算法选择与调优、结果可视化等。
人工智能ppt课件
智能医疗系统
辅助诊断
01
通过深度学习和医学图像处理技术辅助医生进行疾病诊断,提
高诊断准确性。
药物研发
02
利用人工智能技术进行药物筛选和研发,缩短研发周期和降低
成本。
远程医疗
03
通过互联网和移动医疗应用实现远程医疗服务,缓解医疗资源
分布不均问题。
智能金融系统
智能投顾
利用人工智能技术进行资产配置和投资建议,提高投资收益和风 险控制能力。
人工智能ppt课件
• 引言 • 人工智能的基本技术 • 人工智能的实现方法 • 人工智能在各领域的应用 • 人工智能的伦理与法律问题 • 人工智能的未来发展与挑战
目录
01
引言
人工智能的定义与发展
01
02
03
定义
人工智能是一种模拟人类 智能,使计算机能够像人 一样进行思维、学习和决 策的技术。
发展历程
智能停车系统
通过物联网和传感器技术实现停车位资源的智能 化管理,提高停车效率。
智能安防系统
视频监控
利用计算机视觉技术对监控视频进行实时分析,实现异常事件检 测和预警。
人脸识别
通过人脸识别技术实现身份认证和门禁管理,提高安防水平。
智能巡检
利用无人机、机器人等技术进行智能巡检,提高安防效率和准确性 。
数据歧视问题
人工智能在处理数据时可能出现歧视现象,如基 于种族、性别、年龄等因素的不公平对待,引发 社会公正问题。
隐私保护技术
探讨差分隐私、联邦学习等隐私保护技术在人工 智能系统中的应用,以缓解数据隐私与安全问题 。
机器决策的责任与道德问题
决策失误责任
当人工智能系统作出错误决策时,如何界定责任归属,是使用者、 开发者还是系统本身承担责任?
《人工智能介绍》PPT课件
前景展望
随着技术的不断发展和应用场景的不断拓展,人工智能 将在未来发挥更加重要的作用。例如,在医疗领域,人 工智能可以协助医生进行疾病诊断和治疗方案制定;在 交通领域,自动驾驶技术将改变人们的出行方式;在金 融领域,智能投顾和风险管理将提高金融服务的效率和 质量。同时,人工智能的发展也将带来一些挑战和问题, 如数据安全、隐私保护、伦理道德等,需要我们在发展 过程中加以关注和解决。
第三次浪潮(21世纪初至今)
深度学习技术的突破,以及大数据、云计算等技术的支持, 使得人工智能在各个领域取得了显著成果。
技术原理及核心思想
技术原理
人工智能的技术原理主要包括感知、认知和行动三个层面。感知层面通过传感器等设备获取外部环境信息;认知 层面通过算法对获取的信息进行处理和分析,实现知识的表示、学习和推理;行动层面则根据认知结果做出相应 的决策或行为。
隐私权和商业利益的平衡 在AI应用中,隐私权与商业利益之间往往存在冲突,如何 平衡二者关系,确保个人隐私得到尊重和保护,是一个亟 待解决的问题。
算法偏见和歧视现象剖析
数据偏见
由于训练数据本身存在偏见,导致AI算法在决策时也可能产生偏 见,如对某些人群的歧视或不公平待遇。
算法设计问题
算法设计过程中的主观性和不透明性可能导致算法偏见和歧视现 象的出现。
2023
PART 06
人工智能伦理、法律与社 会影响
REPORTING
数据隐私保护问题探讨
数据收集和使用透明度不足
很多AI系统需要大量用户数据来训练和改进,但数据的收 集和使用过程往往缺乏透明度,容易引发隐私泄露问题。
数据安全和保护措施不足 AI系统存储和处理大量敏感数据,如个人身份信息、健康 记录等,一旦数据泄露或被滥用,将对个人隐私造成严重 威胁。
(完整版)人工智能介绍PPT课件
智能模拟
机器视、听、触、感觉及思维方式的模拟:指纹识别,人脸识别,视网膜识别, 虹膜识别,掌纹识别,专家系统,智能搜索,定理证明,逻辑推理,博弈,信 息感应与辨证处理。
谢谢
主条目:GOFAI
基于逻辑不像艾伦 纽厄尔和赫伯特 西蒙,JOHN MCCARTHY认为机器不需要模拟 人类的思想,而应尝试找到抽象推理和解决问题的本质,不管人们是否使用同样的 算法。他在斯坦福大学的实验室致力于使用形式化逻辑解决多种问题,包括知识表 示,智能规划和机器学习。致力于逻辑方法的还有爱丁堡大学,而促成欧洲的其他 地方开发编程语言PROLOG和逻辑编程科学。“反逻辑”斯坦福大学的研究者 (如 马文 闵斯基和西摩尔 派普特)发现要解决计算机视觉和自然语言处理的困难问题, 需要专门的方案-他们主张不存在简单和通用原理(如逻辑)能够达到所有的智能行 为。ROGER SCHANK 描述他们的“反逻辑”方法为 "SCRUFFY" 。常识知识库 (如DOUG LENAT的CYC)就是"SCRUFFY"AI的例子,因为他们必须人工一次编写一 个复杂的概念。
大脑模拟
主条目:控制论和计算神经科学 20世纪40年代到50年代,许多研究者探索神经病学,信息理论及控 制论之间的联系。其中还造出一些使用电子网络构造的初步智能, 如W. GREY WALTER的TURTLES和JOHNS HOPKINS BEAST。这 些研究者还经常在普林斯顿大学和英国的RATIO CLUB举行技术协 会会议。直到1960,大部分人已经放弃这个方法,尽管在80年代再 次提出这些原理。 符号处理
集成方法
智能AGENT范式智能AGENT是一个会感知环境并作出行动以达致目标的系统。最简单的智能AGENT是 那些可以解决特定问题的程序。更复杂的AGENT包括人类和人类组织(如公司)。这些范式可以让研究 者研究单独的问题和找出有用且可验证的方案,而不需考虑单一的方法。一个解决特定问题的AGENT可 以使用任何可行的方法-一些AGENT用符号方法和逻辑方法,一些则是子符号神经网络或其他新的方法。 范式同时也给研究者提供一个与其他领域沟通的共同语言--如决策论和经济学(也使用ABSTRACT AGENTS的概念)。90年代智能AGENT范式被广泛接受。AGENT体系结构和认知体系结构研究者设计出 一些系统来处理多ANGENT系统中智能AGENT之间的相互作用。一个系统中包含符号和子符号部分的系 统称为混合智能系统,而对这种系统的研究则是人工智能系统集成。分级控制系统则给反应级别的子符号 AI和最高级别的传统符号AI提供桥梁,同时放宽了规划和世界建模的时间。RODNEY BROOKS的 SUBSUMPTION ARCHITECTURE就是一个早期的分级系统计划。
人工智能(ArtificialIntelligence)PPT课件
AI 专家的惊愕
• 80年代人们对人工神经网络的热情增大,致力于 构建“人工神经网络模型”过程中,习惯于传统 人工智能方法的一些AI 专家感到惊愕。
• 这两个阶段往往称为传统的AI时期。
一件令震惊的事件
• 一件令人工智能研究领域中震惊的事件是 1991年8月在澳洲悉尼举行的国际人工智能 联合会议,世界上有23个国家的近1500人 参加了这次会议。
• 在这次会议上,美国MIT 的年轻教授布鲁 克斯(R. Brooks)获得了大会授予的“计算 机与思维”项目奖,他在会上做了题为 “没有推理的智能”的学术报告,提出人 工智能的一些新观点,与传统的看法大相 径庭。
• 对特定论域而言,即将输入模式中各抽象概念转 化为神经元网络的输人数据,并根据论域特点适 当解释神经元网络的输出数据。
从模拟人的思想的角度来考虑
• 当时有的学者把AI的研究途径概括为以符号处理 为核心的传统方法及网络连接为主的连接机制 (Connectionism)方法。
• 人的两种主要思维方式是逻辑思维和形象思维 (直感思维)。
• 这是AI最早的模型。早期以逻辑为基础的 AI研究,可以概括为符号表达、启发式编 程、逻辑推理或者称为“深思熟虑”ቤተ መጻሕፍቲ ባይዱ思 维的模型,这可以说是AI研究的最初阶段, 或称传统的AI时期。
“Perceptron”(感知机)
• 在AI发展的过程中,由康奈尔大学的心理 学家Rosenblatt设计的“Perceptron” (感知机),通过训练可以对图像进行分 类。感知机代表了一种全新的AI研究方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
– 知识及其特征 – 知识表示方法
§1、基本概念
• 什么是知识
– 数据:泛指对客观事物的数量、属性、位置及其相互关系的 抽象表示
– 信息:数据在特定场合(上下文)的含义。
• 数据是信息的载体和表示
– 知识:把有关信息关联在一起的信息结构,是人们对客观世
界认识的结晶 – 比较
• 85 • 小王上次数学考试成绩85分 • 小王上次数学考试成绩在班上名列前茅
–成绩90分以上是优秀:good(x,90) –重庆是长江边的城市:near(重庆,长江) –50万人口以上的城市是大城市:bigcity(x) ∧
population(x,50万)
–表示因果关系 • 形式:逻辑蕴涵式 x→y • 例:
–自然数都是大于零的整数:(x)(N(x)→GZ(x)∧I(x)) –所有的整数不是奇数就是偶数:
• 描述、约定、数据结构 • 注:目前,人们对知识的结构、机制等尚未完全搞清楚,
关于知识表示的理论与规范尚未完全建立。
–表示方法
• 显式表示法,符号表示法
–用各种包含具体含义的符号的有序组合表示知识
• 隐式表示法,连接表示法
–用神经元间的连接及其连接的强弱表示知识
• 说明性表示法,静态表示法
–侧重于客体、事件、事实及相关联系和状态的静态方面
• 对象知识,事件知识,性能知识,元知识
–按作用范围划分
• 常识知识,领域(专业)知识
–按应用层次划分
• 事实知识,过程知识,控制知识
–按是否确定划分
• 确定性知识,不确定性知识
–按结构与表现划分
• 逻辑知识,形象知识
–按抽象程度划分
• 0级知识,1级知识,2级知识
• 使用知识:分为4个层面
–知识获取
–up的条件满足,采取up行动 –at(box,b),has(monkey,empty),on(monkey,box) –take的条件满足,采取take行动 –at(box,b),has(monkey,banana),on(monkey,box) –目标已达到,行动结束
• 注意:在采取push行动时,up的条件也满足,因此可以执 行的动作通常不是唯一的。
– 动作:删除 at(monkey,x), at(box,x) at(box,y)
添加 at(monkey,y),
• up——猴子爬到箱子上
–条件:(x)at(monkey,x)∧at(box,x) –动作:删除 at(monkey,x) 添加 on(monkey,box)
• take——猴子取香蕉
• 从已知的知识出发,如何使智能系统获得更多的知识 • 主要途径:更新、重组、推理
–知识表示与存储
• 知识表示方法 • 知识存储技术
–知识检索
• 通过一定的策略,搜索适合当前使用的知识
–推理应用
• 利用已有知识,通过推理规则产生新的知识 • 利用已有知识,解决应用问题
• 知识表示
–表示问题
• 知识表示是对知识的一种描述或一组约定,是一种计算机 可以识别和存取的数据结构
(x)(I(x)→O(x)∨E(x))
– 一阶逻辑不适合于表示过程知识和控制知识
• 应用
– 规划猴子取香蕉问题。P.108。房内有一只猴子位于a处、一个 箱子位于c处,在b处的正上方挂了一串香蕉。猴子需要把箱子 推到香蕉下,然后爬上箱子才能拿到香在y处
• has(x,y)——x手中有y
• 知识的特性
–相对正确性:认识的局限性和条件、环境的限制 –不确定性:
• 随机性引起不确定性 • 模糊性引起不确定性 • 不完全性引起不确定性 • 经验性引起不确定性
–可表示性
• 知识要能被表示才能被记载和传播
–可利用性
• 知识要可应用才有意义,人们才愿意去学习和掌握
• 知识分类
–按表示形式划分
–例子中,造成状态转换的原因是使用了相关的行动。 然而应采用怎样的行动序列,一阶谓词是不能很好 解决的。
–?例子中,使用了哪些知识,这些知识怎样表示? 请大家思考。
§3、产生式表示法
• 产生式的形式
–形式
• 产生式通常用于表示具有因果关系的知识。 • 一般形式:
–at(monkey,a),at(box,c),has(monkey,empty) –goto的条件满足,采取goto(a,c)行动 –at(monkey,c),at(box,c),has(monkey,empty) –push的条件满足,采取push(c,b)行动 –at(monkey,b),at(box,b),has(monkey,empty)
• on(x,y)——x在y上
– 可能的行动
• goto(x,y)——猴子从x处到y处
– 条件:at(monkey,x)
– 动作:删除 at(monkey,x),添加 at(monkey,y)
• push(x,y)——猴子将箱子从x处推到y处
– 条件:at(monkey,x)∧at(box,x)∧has(monkey,empty)
教学计划
• 人工智能及其发展 • 知识表示 • 确定性推理 • 不确定推理 • 搜索策略 • 机器学习—知识获取 • 专家系统
第二章 知识表示
• 基本观点:
– 知识是智能的基础 – 智能是运用知识的过程、行为 – 研究知识及其结构、获取、应用是建造智能系统的基础
• 知识工程的观点:
– 智能是建立在一定数量和质量的知识基础上的,它是知识的 表现形式,是知识运用的结果或外在表现形式
• 过程性表示法,动态表示法
–将知识的表示融合到知识的应用过程中
–表示方法选择
• 充分表示领域知识 • 有利于对知识的利用 • 便于知识的组织、管理和维护 • 便于理解和实现
–知识表示难点
• 常识性知识及其表示
§2、一阶逻辑表示法
• 表示方法
–表示事实知识
• 表示事物的状态、属性、概念等事实 • 形式:谓词或谓词公式 • 例:
–条件:on(monkey,box)∧has(monkey,empty)∧at(box,b) –动作:删除 has(monkey,empty) 添加
has(monkey,banana)
–行动规划
• 初始状态: at(monkey,a)∧at(box,c)∧has(monkey,empty)
• 目标:has(monkey,banana) • 行动过程