(完整word版)生物化学实验知识点整理,推荐文档

合集下载

生物化学知识点总结

生物化学知识点总结

生物化学知识点总结1. 生物大分子的结构与功能- 蛋白质:氨基酸序列、一级结构、二级结构(α-螺旋、β-折叠)、三级结构、四级结构。

- 核酸:DNA和RNA的化学结构、碱基配对原则、双螺旋结构。

- 糖类:单糖、二糖、多糖的结构和功能。

- 脂质:甘油三酯、磷脂、固醇的结构和生物学功能。

2. 酶学- 酶的定义、催化机制、酶活性的影响因素(pH、温度、底物浓度)。

- 酶动力学:米氏方程、最大速率(Vmax)、米氏常数(Km)。

- 酶抑制:竞争性抑制、非竞争性抑制、不可逆抑制。

3. 代谢途径- 糖酵解:步骤、ATP产量、调节点。

- 柠檬酸循环(TCA循环):反应步骤、能量产生。

- 电子传递链和氧化磷酸化:电子载体、质子梯度、ATP合成。

- 光合作用:光依赖反应、光合电子传递链、ATP和NADPH的生成。

- 氨基酸代谢:脱氨基作用、尿素循环。

- 脂质代谢:脂肪酸的氧化、合成、甘油代谢。

4. 信号传导- 受体类型:G蛋白偶联受体、酪氨酸激酶受体、离子通道受体。

- 第二信使:cAMP、IP3、DAG、Ca2+。

- 信号传导途径:MAPK途径、PI3K/Akt途径、Wnt/β-catenin途径。

5. 基因表达与调控- DNA复制:半保留复制、DNA聚合酶。

- 转录:RNA聚合酶、启动子、增强子、沉默子。

- 翻译:核糖体结构、tRNA作用、密码子、起始和终止密码子。

- 基因调控:表观遗传学、非编码RNA、microRNA。

6. 分子生物学技术- PCR技术:原理、引物设计、扩增过程。

- 克隆技术:载体选择、限制性内切酶、连接酶。

- 基因编辑:CRISPR-Cas9系统、基因敲除、基因敲入。

- 蛋白质组学:质谱分析、蛋白质标记、蛋白质互作。

7. 生物化学研究方法- 分子杂交技术:Southern印迹、Northern印迹、Western印迹。

- 色谱法:离子交换色谱、凝胶渗透色谱、亲和色谱。

- 光谱学方法:紫外光谱、红外光谱、核磁共振(NMR)。

生物化学实验知识点整理

生物化学实验知识点整理

生物化学实验知识点整理实验一 还原糖的测定、实验二 粮食中总糖含量的测定1.还原糖测定的原理3,5-二硝基水杨酸与还原糖溶液共热后被还原成棕色的氨基化合物,在550nm 处测定光的吸收增加量,得出该溶液的浓度,从而计算得到还原糖的含量2.总糖测定原理多糖为非还原糖,可用酸将多糖和寡糖水解成具有还原性的单糖,在利用还原糖的性质进行测定,这样就可以分别求出总糖和还原糖的含量3.电子天平使用4.冷凝回流的作用:使HCl 冷凝回流至锥形瓶中,防止HCl 挥发,从而降低HCl 的浓度。

5.多糖水解方法:加酸进行水解6.怎样检验淀粉都已经水解:加入1-2滴碘液,如果立即变蓝则说明没有完全水解,反之,则说明已经完全水解。

7.各支试管中溶液的浓度计算8.NaOH 用量:HCl NaOH n n =9.不能中途换分光光度计,因为不同的分光光度计的光源发光强度不同10.分光光度计的原理:在通常情况下,原子处于基态,当通过基态原子的某辐射线所具有的能量(或频率)恰好符合该原子从基态跃迁到激发态所需的能量(或频率)时,该基态原子就会从入射辐射中吸收能量,产生原子吸收光谱。

原子的能级是量子化的,所以原子对不同频率辐射的吸收也是有选择的。

这种选择吸收的定量关系服从式/E h h c νλ∆==。

实验证明,在一定浓度范围内,物质的吸光度A 与吸光样品的浓度c 及厚度L 的乘积成正比,这就是光的吸收定律,也称为郎伯-比尔定律分光光度计就是以郎伯比尔定律为原理,来测定浓度11.为什么要水解多糖才能用DNS因为DNS 只能与还原糖溶液在加热的条件下反应生成棕红色的氨基化合物,不能与没有还原性的多糖反应。

12.为什么要乘以0.9以0.9才能得到多糖的含量。

13.为什么要中和后再测?因为DNS 要在中性或微碱性的环境下与葡萄糖反应实验三 蛋白质的水解和纸色谱法分离氨基酸、实验四 考马斯亮蓝法测定蛋白质浓度1.纸色谱分离氨基酸分离原理由于各氨基酸在固定相(水)和流动相(有机溶剂)中的分配系数不同,从而移动速度不同,经过一段时间后,不同的氨基酸将存在于不同的部位,达到分离的目的。

完整版)生物化学知识点重点整理

完整版)生物化学知识点重点整理

完整版)生物化学知识点重点整理生物分子本章节将介绍生物分子的基本概念和特征,包括蛋白质、核酸、多糖和脂质的结构和功能。

本章节将讨论酶在生化反应中的作用机制和催化过程。

包括酶的分类、酶动力学和酶抑制剂等内容。

本章节将介绍生物体内的代谢途径,包括糖代谢、脂肪代谢和蛋白质代谢等重要过程。

本章节将探讨生物能量转化的过程,包括光合作用和呼吸作用等机制,以及相关的能量产生和消耗。

本章节将介绍生物体内遗传信息的传递过程,包括DNA复制、RNA转录和蛋白质翻译等重要步骤。

DNA复制DNA复制是遗传信息传递的第一步。

在细胞分裂过程中,DNA分子能够准确地复制自身,并将遗传信息传递给下一代细胞。

复制过程中,双链DNA分离,每条链作为模板合成新的互补链,形成两个完全一样的DNA分子。

RNA转录RNA转录是将DNA中的遗传信息转录成RNA的过程。

在细胞核中,RNA聚合酶将DNA作为模板合成RNA分子。

转录的产物是一条与DNA互补的RNA链,它可以是信使RNA(mRNA)、转移RNA(tRNA)或核糖体RNA(rRNA),这些RNA分子携带着遗传信息参与到蛋白质的合成过程中。

蛋白质翻译蛋白质翻译是将RNA中的遗传信息翻译成氨基酸序列,从而合成蛋白质的过程。

蛋白质翻译发生在细胞质的核糖体上,通过配对规则,每个三个核苷酸对应一个特定的氨基酸,从而组成特定的蛋白质。

翻译过程可分为启动、延伸和终止三个阶段。

以上是生物体内遗传信息的传递过程的重要步骤。

深入了解这些过程有助于理解生物体内的遗传机制和生命周期的维持。

本章节将讨论基因调控的机制和影响因素,包括转录因子、表观遗传学和信号转导等内容。

本章节将探讨生物化学与人体健康的关系,包括营养物质、药物代谢和疾病发生机制等相关内容。

本章节将探讨生物化学与人体健康的关系,包括营养物质、药物代谢和疾病发生机制等相关内容。

生物化学重点笔记(整理版)

生物化学重点笔记(整理版)

教学目标:1.掌握蛋白质的概念、重要性和分子组成。

2.掌握α-氨基酸的结构通式和20种氨基酸的名称、符号、结构、分类;掌握氨基酸的重要性质;熟悉肽和活性肽的概念。

3.掌握蛋白质的一、二、三、四级结构的特点及其重要化学键。

4.了解蛋白质结构与功能间的关系。

5.熟悉蛋白质的重要性质和分类导入:100年前,恩格斯指出“蛋白体是生命的存在形式”;今天人们如何认识蛋白质的概念和重要性?1839年荷兰化学家马尔德(G.J.Mulder)研究了乳和蛋中的清蛋白,并按瑞典化学家Berzelius的提议把提取的物质命名为蛋白质(Protein,源自希腊语,意指“第一重要的”)。

德国化学家费希尔(E.Fischer)研究了蛋白质的组成和结构,在1907年奠立蛋白质化学。

英国的鲍林(L.Pauling)在1951年推引出蛋白质的螺旋;桑格(F.Sanger)在1953年测出胰岛素的一级结构。

佩鲁茨(M.F.Perutz)和肯德鲁(J.C.kendrew) 在1960年测定血红蛋白和肌红蛋白的晶体结构。

1965年,我国生化学者首先合成了具有生物活性的蛋白质——胰岛素(insulin)。

蛋白质是由L-α-氨基酸通过肽键缩合而成的,具有较稳定的构象和一定生物功能的生物大分子(biomacromolecule)。

蛋白质是生命活动所依赖的物质基础,是生物体中含量最丰富的大分子。

单细胞的大肠杆菌含有3000多种蛋白质,而人体有10万种以上结构和功能各异的蛋白质,人体干重的45%是蛋白质。

生命是物质运动的高级形式,是通过蛋白质的多种功能来实现的。

新陈代谢的所有的化学反应几乎都是在酶的催化下进行的,已发现的酶绝大多数是蛋白质。

生命活动所需要的许多小分子物质和离子,它们的运输由蛋白质来完成。

生物的运动、生物体的防御体系离不开蛋白质。

蛋白质在遗传信息的控制、细胞膜的通透性,以及高等动物的记忆、识别机构等方面都起着重要的作用。

随着蛋白质工程和蛋白质组学的兴起和发展,人们对蛋白质的结构与功能的认识越来越深刻。

生物化学必看知识点总结优秀

生物化学必看知识点总结优秀

引言概述:生物化学是研究生物体内化学成分的组成、结构、功能以及各种生物化学过程的机理的学科。

掌握生物化学的基本知识是理解生物体内各种生命现象的基础,也是进一步研究生物医学、生物工程等领域的必备知识。

本文将从分子生物学、酶学、代谢、蛋白质和核酸等五个方面,总结生物化学中必看的知识点。

正文内容:1.分子生物学1.1DNA的结构和功能1.1.1DNA的碱基组成1.1.2DNA的双螺旋结构1.1.3DNA的复制和转录过程1.2RNA的结构和功能1.2.1RNA的种类和功能区别1.2.2RNA的结构和特点1.2.3RNA的转录和翻译过程1.3蛋白质的结构和功能1.3.1氨基酸的结构和分类1.3.2蛋白质的三级结构和四级结构1.3.3蛋白质的功能和种类1.4基因调控1.4.1转录调控和翻译调控1.4.2基因的启动子和转录因子1.4.3RNA的剪接和编辑1.5遗传密码1.5.1遗传密码的组成和特点1.5.2密码子的解读和起始密码子1.5.3用户密码监测2.酶学2.1酶的分类和特点2.1.1酶的命名规则和酶的活性2.1.2酶的结构和功能2.1.3酶的催化机制2.2酶促反应动力学2.2.1酶反应速率和反应速率常数2.2.2酶的最适温度和最适pH值2.2.3酶的抑制和激活调节2.3酶的应用2.3.1酶工程和酶的改造2.3.2酶在医学和工业上的应用2.3.3酶和药物相互作用3.代谢3.1糖代谢3.1.1糖的分类和代谢路径3.1.2糖酵解和糖异生3.1.3糖的调节和糖尿病3.2脂代谢3.2.1脂的分类和代谢途径3.2.2脂肪酸的合成和分解3.2.3脂的调节和脂代谢疾病3.3氮代谢3.3.1氨基酸的合成和降解3.3.2尿素循环和氨的排出3.3.3蛋白质的降解和合成3.4核酸代谢3.4.1核酸的合成和降解途径3.4.2核酸的功能和结构特点3.4.3DNA修复和基因突变3.5能量代谢调节3.5.1ATP的合成和利用3.5.2代谢途径的调节和平衡3.5.3能量代谢和细胞呼吸4.蛋白质4.1蛋白质的结构和维持4.1.1蛋白质结构的层次和稳定性4.1.2蛋白质质量控制和折叠4.2蛋白质表达和合成4.2.1蛋白质的翻译和翻译后修饰4.2.2蛋白质的定位和运输4.2.3蛋白质合成的调节和失调4.3蛋白质与疾病4.3.1蛋白质异常与疾病的关系4.3.2蛋白质药物和治疗策略4.3.3蛋白质组学在疾病研究中的应用5.核酸5.1DNA的复制和修复5.1.1DNA复制的机制和控制5.1.2DNA损伤修复和维持稳定性5.1.3DNA重组和基因转座5.2RNA的合成和调控5.2.1RNA转录的调节和翻译5.2.2RNA剪接和编辑5.2.3RNA和疾病的关系5.3RNA干扰和基因沉默5.3.1RNA干扰机制和调控5.3.2RNA干扰在基因治疗中的应用5.3.3RNA沉默和抗病毒防御总结:生物化学是研究生物体内化学成分和生物化学过程的重要学科,掌握其中的关键知识点对于理解生命的本质和生物体的正常功能至关重要。

(完整版)生物化学笔记(完整版)

(完整版)生物化学笔记(完整版)

第一章绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。

二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。

2.动态生物化学阶段:是生物化学蓬勃发展的时期。

就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。

3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。

三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。

2 •物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收T中间代谢T排泄。

其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。

3 •细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。

4 •生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。

5 •遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。

第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。

构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为a-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L- a-氨基酸。

2 •分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:① 非极性中性氨基酸(8种):②极性中性氨基酸(7种):③酸性氨基酸(Glu和Asp):④ 碱性氨基酸(Lys、Arg和His)。

二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的a-羧基与另一分子氨基酸的a-氨基经脱水而形成的共价键(-C0 -NH-)。

生物化学各章知识点总结

生物化学各章知识点总结

生物化学各章知识点总结一、生物化学基本概念1. 生物化学的基本概念生物化学是在分子水平上研究生物体内各种生物分子之间的相互作用和生物体内生物分子的合成、转化和降解规律的一门学科。

生物体内的生物分子包括蛋白质、核酸、碳水化合物、脂类等,它们是生物体内最基本的能量来源和结构组分。

2. 生物大分子的结构和功能(1)蛋白质是生物体内最重要的大分子,是生命活动的基本组成单元,具有结构、酶、携氧、抗体等生物学功能。

(2)核酸是生物体遗传信息的基本载体,包括DNA和RNA两大类,是生物体的遗传物质,具有储存遗传信息和遗传信息传递的功能。

(3)碳水化合物是生物体内最常见的有机化合物,是生物体内能量转化和物质代谢的主要来源。

(4)脂类是生物体内主要的储存能量的物质,还在细胞膜的结构和功能中起重要作用。

二、蛋白质的结构和功能1. 蛋白质的结构(1)蛋白质的结构级别蛋白质的结构级别包括一级结构、二级结构、三级结构和四级结构。

一级结构是指蛋白质的氨基酸序列,二级结构是指蛋白质的α-螺旋、β-折叠等次级结构,三级结构是指蛋白质的立体构象,四级结构是指蛋白质的多肽链之间的相互作用。

(2)蛋白质的构象变化蛋白质的构象包括原生构象、变性构象和热力学稳定性构象。

蛋白质的构象变化直接影响着蛋白质的功能。

2. 蛋白质的功能蛋白质作为生物体内最主要的功能分子,具有结构、酶、携氧、抗体等多种功能。

其中,酶是蛋白质的主要功能之一,是细胞内代谢调节的主要媒介,参与了生物体内几乎所有的代谢过程。

三、酶的性质和功能1. 酶的结构和功能(1)酶的结构酶是一种大分子蛋白质,其结构由氨基酸残基序列决定,具有特定的三级结构和活性位点。

(2)酶的功能酶是生物体内最主要的催化剂,能够加速生物体内化学反应的进行,参与了生物体内的新陈代谢。

2. 酶的性质(1)酶的活性酶的活性受到多种因素的影响,包括温度、pH值、金属离子等。

(2)酶的抑制酶的活性可以被抑制,包括竞争性抑制、非竞争性抑制等。

生物化学知识点总整理

生物化学知识点总整理

生物化学知识点总整理生物化学是研究生物体化学组成和生命过程中化学变化规律的一门科学。

它是生命科学领域的重要基础学科,对于理解生命现象、疾病发生机制以及药物研发等方面都具有重要意义。

以下是对生物化学一些重要知识点的总整理。

一、生物大分子1、蛋白质蛋白质的组成:蛋白质由氨基酸通过肽键连接而成。

氨基酸有 20 种,分为必需氨基酸和非必需氨基酸。

蛋白质的结构:包括一级结构(氨基酸的线性排列顺序)、二级结构(如α螺旋、β折叠等)、三级结构(整条肽链的三维空间构象)和四级结构(多个亚基的组合)。

蛋白质的性质:具有两性解离、胶体性质、变性和复性等。

蛋白质的功能:催化、运输、调节、免疫防御、结构支持等。

2、核酸核酸的分类:包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。

DNA 的结构:双螺旋结构,由两条反向平行的多核苷酸链围绕同一中心轴构成。

RNA 的种类:信使 RNA(mRNA)、转运 RNA(tRNA)和核糖体 RNA(rRNA)。

核酸的功能:DNA 是遗传信息的携带者,RNA 参与遗传信息的表达和调控。

3、糖类单糖:如葡萄糖、果糖、半乳糖等,是最简单的糖类。

寡糖:由 2 10 个单糖分子组成,如蔗糖、麦芽糖等。

多糖:包括淀粉、糖原、纤维素等,具有储存能量和构成结构的作用。

4、脂质脂肪:由甘油和脂肪酸组成,是生物体储存能量的重要形式。

磷脂:构成生物膜的重要成分。

固醇:如胆固醇,参与细胞膜的组成和激素的合成。

二、酶1、酶的概念:酶是具有催化作用的生物大分子,大多数是蛋白质。

2、酶的特性:高效性、专一性、可调节性和不稳定性。

3、酶的作用机制:通过降低反应的活化能来加速反应的进行。

4、影响酶活性的因素:温度、pH、底物浓度、酶浓度、抑制剂和激活剂等。

三、生物氧化1、生物氧化的概念:物质在生物体内进行的氧化分解过程,最终生成二氧化碳和水,并释放能量。

2、呼吸链:由一系列电子传递体组成,包括 NADH 呼吸链和FADH2 呼吸链。

(完整版)生物化学知识点重点整理

(完整版)生物化学知识点重点整理

(完整版)生物化学知识点重点整理1.生物化学的概述生物化学是研究生物体内化学组成、结构、功能和变化的学科,是生物学和化学的交叉学科。

它研究的内容包括生物大分子(蛋白质、核酸、多糖和脂质)、酶、代谢、信号传导等生物体内的化学过程和物质的转化。

生物化学的研究对于理解生命的机理和病理过程具有重要意义。

2.蛋白质结构与功能蛋白质是生物体中最重要的生化分子之一,它们具有结构多样性和功能多样性。

蛋白质的结构包括四级结构:一级结构是氨基酸的线性序列;二级结构是氨基酸间的氢键形成的α螺旋和β折叠;三级结构是螺旋和折叠的空间结构;四级结构是多个多肽链的组合形成的复合体。

蛋白质的功能包括催化酶活性、调节信号传导、结构支架等。

3.核酸结构与功能核酸是生物体中的遗传物质,包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。

DNA是双螺旋结构,由磷酸二酯键连接的脱氧核苷酸组成。

RNA是单链结构,由磷酸二酯键连接的核苷酸组成。

核酸的功能包括存储遗传信息、传递遗传信息和调控基因表达。

4.代谢与能量转化代谢是生物体内的化学反应过程,包括合成反应和分解反应。

合成反应是通过合成物质来维持生物体的正常生理功能;分解反应是通过分解物质来提供能量。

能量转化是代谢过程中最重要的一环,包括能量的捕获、传递和释放。

生物体通过代谢和能量转化来获取能量、转化能量和维持生命活动。

5.酶的催化机制酶是生物体内催化反应的生物分子,能够加速化学反应的速率,降低反应的活化能。

酶的催化机制包括底物识别、底物结合、酶底物复合物的形成、催化反应和生成产物。

酶的催化过程中涉及到酶活性位点的氨基酸残基和底物之间的相互作用。

6.信号传导与细胞通讯细胞内和细胞间的信号传导是维持生物体内稳态和调节机体功能的重要手段。

信号传导包括外部信号的接受、内部信号的传递和效应的产生。

细胞间的信号传导有兴奋性传导和化学信号传导两种方式。

7.糖的分类与代谢糖是生物体内最重要的能量源,也是合成生物大分子的前体。

(完整版)生物化学知识点整理

(完整版)生物化学知识点整理

生物化学知识点整理注:1.此材料根据老师的PPT及课堂上强调需掌握的内容整理而成,个人主观性较强,仅供参考。

(如有错误,请以课本为主)2.颜色注明:红色:多为名解、简答(或较重要的内容)蓝色:多为选择、填空第八章脂类代谢第一节脂类化学脂类:包括脂肪和类脂,是一类不溶于水而易溶于有机溶剂,并能为机体利用的有机化合物。

脂肪:三脂肪酸甘油酯或甘油三酯。

类脂:胆固醇、胆固醇酯、磷脂、糖脂。

分类含量分布生理功能脂肪95%脂肪组织、 1. 储能供能血浆 2. 提供必需脂肪酸3. 促脂溶性维生素吸收4. 热垫作用5. 保护垫作用6. 构成血浆脂蛋白类脂5%生物膜、神经、血浆1. 维持生物膜的结构和功能2. 胆固醇可转变成类固醇激素、维生素、胆汁酸等3. 构成血浆脂蛋白第二节脂类的消化与吸收脂类消化的主要场所:小肠上段脂类吸收的部位:主要在十二指肠下段及空肠上段第三节三酰甘油(甘油三酯)代谢一、三酰甘油的分解代谢1.1)脂肪动员:储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为脂肪酸及甘油,并释放入血以供其他组织氧化利用的过程。

2)关键酶:三酰甘油脂肪酶(又称“激素敏感性三酰甘油脂肪酶”,HSL)3)脂解激素:能促进脂肪动员的激素,如胰高血糖素、去甲肾上腺素、肾上腺素等。

4)抗脂解激素:抑制脂肪动员,如胰岛素、前列腺素、烟酸、雌二醇等。

2.甘油的氧化甘油在甘油激酶的催化下生成3-磷酸甘油,随后脱氢生成磷酸二羟丙酮,再经糖代谢途径氧化分解释放能量或经糖异生途径生成糖。

3.脂肪酸的分解代谢饱和脂肪酸氧化的方式主要是β氧化。

1)部位:组织:脑组织及红细胞除外。

心、肝、肌肉最活跃;亚细胞:细胞质、线粒体。

2)过程:①脂酸的活化——脂酰CoA的生成(细胞质)脂肪酸脂酰消耗了2②脂酰CoA进入线粒体酶:a.肉碱酰基转移酶 I(脂肪酸氧化分解的关键酶、限速酶)b.肉碱酰基转移酶Ⅱc.脂酰肉碱——肉碱转位酶(转运体)③脂酸的β氧化a.脱氢:脂酰α,β-烯脂酰CoA + FADH2 b.加水c.再脱氢:β-羟脂酰CoA + NAD+β-酮脂酰CoA + NADH +H+④硫解3)脂酸氧化的能量生成活化:消耗2个高能磷酸键以软脂酸(16C)β氧化为例:7 次β氧化,生成8分子乙酰CoA、7分子NADH+H+、7分子FADH2。

(完整word版)生物化学部分总结

(完整word版)生物化学部分总结

第19章代谢总论1、分解代谢: 有机营养物, 不管是从环境获得的, 还是自身储存的, 通过一系列反应步骤变为较小的, 较简单的物质的过程称为分解代谢。

2、合成代谢: 又称生物合成, 是生物体利用小分子或大分子的结构原件建造成自身大分子的过程。

3、ATP储存自由能为生物体的一切生命活动提供能量。

满足以下四方面的需要: ①生物合成、②肌肉收缩、③营养物逆浓度梯度跨膜运送、④在DNA、RNA、蛋白质能生物合成中, 以特殊方式起递能作用。

4、能够直接提供自由能推动生物体多种化学反应的核苷酸类分子除ATP外, 还有GTP, UTP, CTP。

GTP对G蛋白的活化, 蛋白质的生物合成, 蛋白质的寻靶作用, 蛋白质的转运等等都作为推动力提供自由能。

5、FMN, 黄素腺嘌呤单核苷酸, FAD, 黄素腺嘌呤二核苷酸, 它们是另一类在传递电子和氢原子中起作用的载体。

FMN和FAD都能接受两个电子和两个氢原子, 它们在氧化还原反应中, 特别是在氧化呼吸链中起着传递电子和氢原子的作用。

6、辅酶A, 简写为CoA, 分子中含有腺嘌呤、D-核糖、磷酸、焦磷酸、泛酸和巯基乙胺。

在水解时释放出大量的自由能。

第20章遗传缺欠症缺乏尿黑酸氧化酶, 导致酪氨酸的代谢中间物尿黑酸不能氧化而随尿排出体外, 在空气中使尿变成黑色。

苯丙酮尿症, 是苯丙氨酸发生异常代谢的结果, 这是尿中出现苯丙氨酸。

但酪氨酸的代谢仍然正常。

通过以上两种不正常的代谢现象, 是苯丙氨酸的代谢途径得到了阐明。

第21章生物能学1、高能磷酸化合物的类型.碳氧键..氮磷键型-如胍基磷酸化合物。

1.磷酸肌酸。

2.磷酸精氨酸..硫酯键型-活性硫酸基.1.3’-腺苷磷酸5’-磷酰硫酸.2.酰基辅酶A..甲硫键型-活性甲硫氨.2、ATP水解释放的自由能收到许多因素的影响。

当ph升高时ATP释放的自由能明显升高。

还受到Mg2+等其他一些2价阳离子的复杂的影响。

3、ATP在磷酸基团转移中作为中间递体而起作用。

生化知识点(DOC)

生化知识点(DOC)

生物化学知识点by 平邑一中实验2班LY糖类淀粉:是植物贮藏的养料,供给人类能量的主要营养素。

天然淀粉为颗粒状,外层为支链淀粉组成,约占80%~90%,内层为直链淀粉,约占10%~20%。

淀粉为D-葡萄糖组成。

1.直链淀粉:由葡萄糖单位所组成,连接方式和麦芽糖相同,以α-葡萄糖苷键(α-1,4-苷键)连接而成,其空间构象是卷曲成螺旋的,每一转有6个葡萄糖基。

在冷水中不溶解,略溶于热水,不与磷酸结合。

2.支链淀粉:是由多个较短(<90)的1,4-糖苷键直链结合而成。

每两个短直链之间的连接为α-1,6-糖苷键。

支链淀粉分子中的小支链又和临近的短链相结合,因此其分子形式为树枝状。

其各分支也是卷曲成螺旋。

能吸收水分,吸水后膨胀成糊状。

常与磷酸结合。

3.水解过程中有不同的糊精产生(淀粉→红糊精→无色糊精→麦芽糖)。

直链淀粉与支链淀粉皆与碘作用而显色。

直链淀粉与碘作用显蓝色,支链淀粉与碘作用则呈紫红色。

淀粉水解后产生的红色糊精与碘作用呈红色,无色糊精与碘作用不显色。

其中,与碘作用的颜色深浅与聚合度有关:>6时,无色;20左右,红色;20~60,紫色;>60,蓝色。

糖原:广泛存在于人及动物体中,肝及肌肉中含量尤多。

糖原也是由D-葡萄糖构成,主链中的葡萄糖以α-1,4糖苷键相连接。

支链连接方式亦为α-1,6糖苷键。

糖原性质与红糊精类似,溶于沸水,遇碘呈红色,无还原性,亦不能与苯肼成糖脎。

完全水解后生成D-葡萄糖。

纤维素:虽也由葡萄糖构成,但葡萄糖间连接方式则与淀粉、糖原完全不同。

纤维素是β-D-葡萄糖以β-1,4糖苷键相连接,不含支链。

纤维素分子的空间构象成带状,糖链之间可通过氢键而堆积起来成为紧密的片层结构,使其具有很大的机械强度。

纤维素极不溶于水在稀酸液中不易水解,但溶于发烟盐酸、无水氟化氢、浓硫酸及浓磷酸。

纤维素与碘无颜色反应。

琼脂:又称琼胶,是海藻所含的胶体,其化学成分为D-及L-半乳糖。

生化实验知识点总结

生化实验知识点总结

一、生物分子的结构和功能1. 蛋白质蛋白质是生物体内最重要的组成分子之一,它们参与了几乎所有生物体内的反应和过程。

蛋白质的结构包括一级结构、二级结构、三级结构和四级结构。

一级结构是指氨基酸的线性排列,二级结构是指氨基酸的空间排列方式,通常分为α-螺旋和β-折叠两种。

三级结构是指蛋白质的整体立体构象,四级结构是指不同的多肽链之间的空间排列方式。

蛋白质的功能取决于其结构,因此研究蛋白质的结构和功能对于了解生物体内的生化反应和生物过程非常重要。

2. 核酸核酸是生物体内的遗传物质,包括DNA和RNA两种。

它们的结构包括磷酸骨架、含氮碱基和核苷酸。

DNA的含氮碱基包括腺嘌呤、鸟嘌呤、胸腺嘧啶和鸟嘌呤四种,RNA的含氮碱基包括腺嘌呤、鸟嘌呤、尿嘧啶和胸腺嘧啶四种。

DNA和RNA的功能是遗传信息的储存和传递,因此研究核酸的结构和功能对于了解生物体的遗传机制和基因表达非常重要。

3. 多糖多糖是一类碳水化合物,包括淀粉、糖原、纤维素和珍珠质等。

多糖的结构包括单糖的聚合物,其功能包括能量储存、结构支持和细胞信号传导等。

研究多糖的结构和功能对于了解生物体内的能量代谢和细胞信号传导等方面非常重要。

二、化学与生物学的交叉学科知识1. 酶学酶是生物体内催化化学反应的蛋白质,其作用是降低化学反应的活化能,从而加速反应的进行。

酶的活性和稳定性受到多种因素的影响,包括温度、pH、离子强度和底物浓度等。

研究酶的结构和功能对于了解生物体内的代谢反应和细胞信号传导等方面非常重要。

2. 脂质学脂质是生物体内的重要组成分子,包括脂类、磷脂、甘油三酯和胆固醇等。

脂质在生物体内具有能量储存、细胞膜构成和信号传导等多种功能。

脂质的结构、代谢和功能对于了解生物体内的脂质代谢和细胞膜传导等方面非常重要。

3. 生物大分子的生物合成和降解生物大分子包括蛋白质、核酸、多糖和脂质等,它们的生物合成和降解过程受到多种调控因素的影响,包括基因表达、酶活性和底物浓度等。

完整版)生物化学知识点重点整理

完整版)生物化学知识点重点整理

完整版)生物化学知识点重点整理蛋白质是由C、H、O、N、S等元素构成的,其中N是其特征性元素。

根据含氮量可以计算蛋白质的含量,即样品蛋白质含量=样品含氮量*6.25(各种蛋白质的含氮量接近,平均值为16%)。

蛋白质由20种氨基酸构成,其中酸性氨基酸/带负电荷的R基氨基酸有天冬氨酸(D)和谷氨酸(E);碱性氨基酸/带正电荷的R基氨基酸有赖氨酸(K)、组氨酸(H)和精氨酸(R);非极性脂肪族R基氨基酸有甘氨酸(G)、丙氨酸(A)、脯氨酸(P)、缬氨酸(V)、亮氨酸(L)、异亮氨酸(I)和甲硫氨酸(M);极性不带电荷R基氨基酸有丝氨酸(S)、苏氨酸(T)、半胱氨酸(C)、天冬酰胺(N)和谷氨酰胺(Q);芳香族R基氨基酸有苯丙氨酸(F)、络氨酸(Y)和色氨酸(W)。

肽是蛋白质的基本组成单元,其基本特点包括:一级结构的定义通常描述为蛋白质多肽链中氨基酸的连接顺序,简称氨基酸序列(由遗传信息决定)。

维持稳定的化学键有肽键(主)和二硫键(可能存在)。

二级结构的种类包括α螺旋、β折叠、β转角、无规卷曲和超二级结构。

四级结构的特点是肽键数≧2,肽链之间无共价键相连,可独立形成三级结构,是否具有生物活性取决于是否达到其最高级结构。

蛋白质的一级结构与功能密切相关,因为一级结构决定了蛋白质的构象,一级结构相似则其功能也相似,改变蛋白质的一级结构可以直接影响其功能。

基因突变可能导致蛋白质结构或合成量异常而导致的疾病称为分子病,如镰状细胞贫血(溶血性贫血)和疯牛病是二级结构改变引起的。

等电点(pI)是蛋白质的一个重要指标,定义为在某一pH值条件下,蛋白质的净电荷为零。

蛋白质在不同pH条件下的带电情况取决于该蛋白质所带酸碱基团的解离状态。

若溶液pHpI,则蛋白质带负电荷,在电场中向正极移动。

碱性蛋白质含碱性氨基酸多,等电点高,在生理条件下净带正电荷,如组蛋白和精蛋白;酸性蛋白质含酸性氨基酸多,等电点低,在生理条件下净带负电荷,如胃蛋白酶。

生物化学专业知识要点整理

生物化学专业知识要点整理

生物化学专业知识要点整理生物化学是研究生物体内分子结构、组成、代谢和功能的一门学科,它涉及到生物体内各种生物大分子的结构、性质和功能等方面的内容。

本文将对生物化学专业的一些重要知识要点进行整理,以帮助读者更好地理解和掌握这门学科。

一、生物大分子的结构和功能1. 蛋白质:蛋白质是生物体内最重要的大分子,它具有多种功能,包括酶催化、结构支持、运输传递、免疫防御等。

蛋白质的结构包括一级结构(氨基酸序列)、二级结构(α-螺旋、β-折叠)、三级结构(立体构象)和四级结构(多个蛋白质亚基的组装)。

2. 核酸:核酸是遗传信息的携带者,包括DNA和RNA两类。

DNA是双链结构,RNA是单链结构。

DNA的功能是存储和传递遗传信息,RNA参与蛋白质的合成。

3. 碳水化合物:碳水化合物是生物体内重要的能量来源,也参与到细胞识别和信号传导等过程中。

常见的碳水化合物有单糖、双糖和多糖,如葡萄糖、蔗糖和淀粉等。

4. 脂质:脂质是生物体内重要的结构和能量储存物质,包括甘油三酯、磷脂和固醇等。

脂质在细胞膜的形成和维持、能量代谢等方面发挥重要作用。

二、酶的性质和功能1. 酶的性质:酶是生物体内催化化学反应的蛋白质,具有高度的专一性和效率。

酶的活性受到温度、pH值和底物浓度等因素的影响。

2. 酶的功能:酶在生物体内参与几乎所有的代谢过程,包括消化、呼吸、光合作用等。

常见的酶包括氧化还原酶、水解酶、脱羧酶等。

三、能量代谢1. ATP:三磷酸腺苷是生物体内最重要的能量储存和释放分子,其通过磷酸键的形成和断裂实现能量的转换。

2. 糖酵解:糖酵解是生物体内糖类分子的分解过程,通过一系列的反应将葡萄糖转化为乳酸或乙醇释放能量。

3. 女性酸循环:女性酸循环是生物体内氧化葡萄糖、脂肪和氨基酸产生能量的过程,其产生的还原剂NADH和FADH2通过呼吸链参与ATP的合成。

4. 光合作用:光合作用是植物和一些细菌利用光能将二氧化碳和水转化为葡萄糖和氧气的过程,它是地球上最重要的能量来源。

生物化学知识点总结

生物化学知识点总结

生物化学知识点总结第二章一、名词解释1.生物化学:生物化学是研究生物体的化学组成以及生物体内发生的各种化学变化的学科2.肽键:一个氨基酸的α–羧基与另一个氨基酸的α–氨基脱水缩合而成的酰胺键(–CO–NH–)称为肽键3.蛋白质的等电点:当蛋白质溶液处于某一PH时,蛋白质分子解离成阴阳离子的趋势相等,净电荷为零,呈兼性离子状态,此时溶液的PH称为该蛋白质的等电点4.蛋白质的一级结构:蛋白质分子中氨基酸的排列顺序称为蛋白质的一级结构5.二级结构:蛋白质的二级结构是指多肽链中主链原子的局部空间排布,不涉及侧链原子的构象6.亚基:四级结构中每一条具有独立三级结构的多肽链称为亚基(本章考的最多的名词解释)二、问答1.蛋白质的基本组成单位是什么?其结构特点是什么?基本组成单位:氨基酸结构特点:组成蛋白质的20种氨基酸都属于α–氨基酸(脯氨酸除外)组成蛋白质的20种氨基酸都属于L–氨基酸(甘氨酸除外)2.什么是蛋白质的变性?在某些物理或化学因素作用下,蛋白质分子中的次级键断,特定的空间结构被破坏,从而导致蛋白质理化性质改变和生物学活性丧失的现象,称为蛋白质的变性3.什么是蛋白质的二级结构?它主要有哪几种?维持二级结构稳定的化学键是什么?蛋白质的二级结构是指多肽链中主链原子的局部空间排布,不涉及侧链原子的构象种类:α–螺旋、β–折叠、β–转角、无规卷曲维持蛋白质二级结构稳定的化学键是氢键重点:蛋白质的基本组成单位:氨基酸氨基酸的结构通式维持蛋白质一级结构稳定的是肽键二级结构稳定的化学键是氢键三级结构稳定的是疏水键α–螺旋是蛋白质中最常见最典型含量最丰富的二级结构形式由一条多肽链构成的蛋白质,只有具有三级结构才能发挥生物活性。

如果蛋白质只由一条多肽链构成,则三级结构为其最高级结构只有完整的四级结构才具有生物学功能,亚基单独存在一般不具有生物学功能胰岛素虽然由两条多肽链组成,但肽链间通过共价键(二硫键)相连,这种结构不属于四级结构蛋白质的变构现象例子:老年痴呆症、舞蹈病、疯牛病蛋白质分子表面的水化膜和同种电荷是维持蛋白质亲水胶体稳定的两个因素(填空题)凝固的前提是发生变性,凝固的蛋白质一定发生变性加热使蛋白质变性并凝聚成块状称为凝固第三章一、名词解释1.核苷酸:2.增色效应:由于DNA变性后波长260nm的吸光度值会增加,这种现象称为增色效应3.DNA的变性: DNA的变性是指在某些理化因素作用下,DNA分子中碱基对之间的氢键断裂,使DNA双链结构解开变成单链的过程。

(完整版)生物化学知识点总结

(完整版)生物化学知识点总结

生物化学知识点总结一、蛋白质蛋白质的元素组成:C、H、O、N、S 大多数蛋白质含氮量较恒定,平均16%,即1g氮相当于6.25g蛋白质。

6.25称作蛋白质系数。

样品中蛋白质含量=样品中含氮量×6.25蛋白质紫外吸收在280nm,含3种芳香族氨基酸,可被紫外线吸收等电点(pI):调节氨基酸溶液的pH值,使氨基酸所带净电荷为零,在电场中,不向任何一极移动,此时溶液的pH叫做氨基酸的等电点。

脯氨酸和羟脯氨酸与茚三酮反应产生黄色物质,其余的氨基酸与茚三酮反映均产生蓝紫色物质。

氨基酸与茚三酮反应非常灵敏,几微克氨基酸就能显色。

肽平面:肽键由于C-N键有部分双键的性质,不能旋转,使相关的6个原子处于同一平面,称作肽平面或酰胺平面。

生物活性肽:能够调节生命活动或具有某些生理活动的寡肽和多肽的总称。

1)谷胱甘肽:存在于动植物和微生物细胞中的一种重要三肽,由谷氨酸(Glu)、半胱氨酸(Cys)和甘氨酸(Gly)组成,简称GSH。

由于GSH含有一个活泼的巯基,可作为重要的还原剂保护体内蛋白质或酶分子中的巯基免遭氧化,使蛋白质或酶处在活性状态。

寡肽:10个以下氨基酸脱水缩合形成的肽多肽:10个以上氨基酸脱水缩合形成的肽蛋白质与多肽的区别:蛋白质:空间构象相对稳定,氨基酸残基数较多多肽:空间构象不稳定,氨基酸残基数较少蛋白质的二级结构:多肽链在一级结构的基础上,某局部通过氢键使肽键平面进行盘曲,折叠,转角等形成的空间构象。

??-螺旋的结构特点:1)以肽键平面为单位,以α-碳原子为转折盘旋形成右手螺旋;肽键平面与中心轴平行。

2)每3.6个氨基酸残基绕成一个螺圈,螺距为0.54nm,每个氨基酸上升0.15nm。

3)每一个氨基酸残基中的NH和前面相隔三个残基的C=O之间形成氢键,氢键的方向与中心轴大致平行,是稳定螺旋的主要作用力4)肽链中的氨基酸R基侧链分布在螺旋的外侧,R基团的大小、性状及带电荷情况都对螺旋的形成与稳定起作用。

生物化学知识点总结完整版

生物化学知识点总结完整版

生物化学知识点总结完整版生物化学是研究生物体在细胞、组织和器官水平上的化学过程的一门学科。

它涉及了生命体内物质的合成、降解和转化过程,以及这些过程对生命活动的调控和影响。

生物化学知识点包括了生物分子的结构及功能、生物体内的代谢过程、遗传信息的传递及表达等内容。

下面就对生物化学的一些重要知识点进行总结:一、生物分子的结构和功能1. 蛋白质:蛋白质是生物体内最丰富的一类生物大分子,由氨基酸通过肽键连接而成。

蛋白质在生物体内起着结构支持、酶催化、运输、信号传导等重要功能。

2. 碳水化合物:碳水化合物是生物体内最基本的能量来源,也是构成细胞壁、核酸、多糖等物质的重要成分。

3. 脂类:脂类是生物体内主要的能量储存物质,同时也是细胞膜的主要构成成分。

4. 核酸:核酸是生物体内的遗传物质,包括DNA和RNA两类,它们负责存储遗传信息和传递遗传信息。

二、生物体内的代谢过程1. 糖代谢:糖代谢是生物体内重要的能量来源,包括糖原合成、糖原降解、糖酵解等过程。

2. 脂质代谢:脂质代谢包括脂肪酸的合成、分解和氧化,以及胆固醇的合成和降解。

3. 蛋白质代谢:蛋白质代谢包括蛋白质合成、降解和氨基酸的代谢。

4. 核酸代谢:核酸代谢包括核苷酸的合成和降解过程。

5. 能量代谢:生物体内能量的产生主要依靠有机物的氧化和磷酸化过程。

这些过程包括糖酵解、三羧酸循环和氧化磷酸化等。

三、遗传信息的传递和表达1. DNA的结构和功能:DNA是双螺旋结构,由脱氧核苷酸通过磷酸二酯键连接而成。

DNA负责存储遗传信息,并通过转录和翻译的过程进行表达。

2. RNA的结构和功能:RNA是单链结构,由核糖核苷酸通过磷酸二酯键连接而成。

RNA包括mRNA、tRNA和rRNA等,它们分别参与遗传信息的转录、转运和翻译。

3. 蛋白质合成的过程:蛋白质合成包括转录和翻译两个过程。

转录是指DNA的信息转录成RNA的过程,而翻译是指mRNA上的密码子与tRNA上的反密码子匹配,从而在核糖体上合成蛋白质的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生物化学实验知识点整理
实验一 还原糖的测定、实验二 粮食中总糖含量的测定
1.还原糖测定的原理
3,5-二硝基水杨酸与还原糖溶液共热后被还原成棕色的氨基化合物,在550nm 处测定光的吸收增加量,得出该溶液的浓度,从而计算得到还原糖的含量
2.总糖测定原理
多糖为非还原糖,可用酸将多糖和寡糖水解成具有还原性的单糖,在利用还原糖的性质进行测定,这样就可以分别求出总糖和还原糖的含量
3.电子天平使用
4.冷凝回流的作用:
使HCl 冷凝回流至锥形瓶中,防止HCl 挥发,从而降低HCl 的浓度。

5.多糖水解方法:
加酸进行水解
6.怎样检验淀粉都已经水解:
加入1-2滴碘液,如果立即变蓝则说明没有完全水解,反之,则说明已经完全水解。

7.各支试管中溶液的浓度计算
8.NaOH 用量:HCl NaOH n n =
9.不能中途换分光光度计,因为不同的分光光度计的光源发光强度不同
10.分光光度计的原理:在通常情况下,原子处于基态,当通过基态原子的某辐射线所具有的能量(或频率)恰好符合该原子从基态跃迁到激发态所需的能量(或频率)时,该基态原子就会从入射辐射中吸收能量,产生原子吸收光谱。

原子的能级是量子化的,所以原子对不同频率辐射的吸收也是有选择的。

这种选择吸收的定量关系服从式/E h hc νλ∆==。

实验证明,在一定浓度范围内,物质的吸光度A 与吸光样品的浓度c 及厚度L 的乘积成正比,这就是光的吸收定律,也称为郎伯-比尔定律
分光光度计就是以郎伯比尔定律为原理,来测定浓度
11.为什么要水解多糖才能用DNS
因为DNS 只能与还原糖溶液在加热的条件下反应生成棕红色的氨基化合物,不能与没有还原性的多糖反应。

12.为什么要乘以0.9
以0.9才能得到多糖的含量。

13.为什么要中和后再测?
因为DNS 要在中性或微碱性的环境下与葡萄糖反应
实验三 蛋白质的水解和纸色谱法分离氨基酸、实验四 考马斯亮蓝法测定蛋白质浓度
1.纸色谱分离氨基酸分离原理
由于各氨基酸在固定相(水)和流动相(有机溶剂)中的分配系数不同,从而移动速度不同,经过一段时间后,不同的氨基酸将存在于不同的部位,达到分离的目的。

2.天然氨基酸为L 型
3.酸式水解的优点是:是保持氨基酸的旋光性不变,原来是L 型,水解后还是L 型,由于甘氨酸所有的R 基团是氢原子,所以它不是L 型
5.酵母粉水解后绝对不含有色氨酸
6.根据分离原理不同分离色谱可分为:有吸附色谱、离子交换色谱、分配色谱等
7.不同物质的R f 值不同,同种物质不同条件的R f 值不同
吹分时不能吹的过热和过干,与滤纸结合太紧密。

流动相带走不是很容易。

容易出现拖尾
8.喷完茚三酮后不能直接放入烘箱,先自然晾干再放入烘箱内,茚三酮乙醇高温易着火,烘箱的金属条过热也会显色。

会出现拖尾或斑点状,样品显色后成条状,;酵母分解后不知有5个斑点,会有很多种,两种之间可能还有其它的氨基酸,
9.茚三酮的反应方程式
10.考马斯亮蓝测定蛋白质浓度 :范德瓦尔键通过分子间静电吸引力结合
11.考马斯亮蓝分为G-250(反应速度快,不易洗脱,用定量测定)、R-250反应速度慢,易洗脱,通常用于定性测定
12.考G-250与蛋白质结合后稳定时间为1h 左右
13.蛋白质的盐析反应
蛋白质中加入某些饱和盐,蛋白质溶液中浓度下降,蛋白质析出
14.蛋清:NaCl 溶液=1:9 10%卵清蛋白
实验五 血清蛋白的醋酸纤维薄膜电泳、实验六 维生素C 的定量测定
1.醋酸纤维薄膜电泳的原理、影响迁移的因素
血清中各种蛋白质离子在电场的作用下,向着与其电性相反的电极移动。

由于各种蛋白质的等电点不同,从而在同一pH 环境中所带电荷量有所不同,同时分子大小形状各有差异,所以在统一电场中泳动速度不同。

一般来说,所带的电荷多且颗粒小的,泳动速度快,反之则慢。

2.影响电泳的因素:
(1)粒子本身 (电荷量、粒子大小、形状)
(2)黏度
(3)电场
(4)电渗
(5)支持物的筛口
3.醋酸纤维薄膜的优点
具有均一的泡沫样结构,厚度仅120微米,有强渗透性,对分子移动无阻力,作为区带电泳的支持物进行蛋白质电泳有简便、快速、样品用量少,应用范围广,分离清晰,没有吸附现象等优点。

4.pH8.6中带负电,往阳极移动
5.五条带的顺序:血清蛋白、1α球蛋白、2α球蛋白、β球蛋白、γ球蛋白
6.层析时,粗糙面朝上,电泳时粗糙面朝下,记号做在光泽面
7.实验成败的关键P43-P45
8测定VC 的原理:还原型抗坏血酸能还原2,6-二氯酚靛酚染料,本身则氧化为脱氢型。

在酸性溶液中,2,6-二氯酚靛酚呈红色,还原后变为无色。

因此,当染料滴定含有维生素C 的酸性溶液时,维生素C 尚未全部被氧化前,则滴下的染料立即变成无色。

一旦溶液中的维生素C 全部被氧化,则滴下的染料立即使溶液变成粉红色。

9.1%草酸有何作用
(1)提供一个显色环境
(2)保护维生素C
(3)作空白对照
实验七蛋白质总氮含量的测定、实验八正交法测定几种因素对酶活性的影响1.凯氏定氮法的原理:
含氮有机化合物在浓硫酸中消化生成硫酸铵,再在凯氏定氮仪中加入强碱碱化消化液使硫酸铵分解放出氨气。

用水蒸气蒸馏法将氨蒸入过量标准无机酸溶液中,然后用标准酸溶液进行滴定,准确测定按量,从而计算出含氮量。

2.用此方法通常会高于实际含量?
3.H3BO3指示剂在pH<5.4时为紫红,pH>5.4时为绿色
4.CuSO4催化反应
K2SO4与NaSO4提高反应沸点
5.凯氏定氮法的优点:可以测定固液试样
6.怎样检测蒸馏器已洗净(P53)
7.为什么小漏斗内要作保留一点30%NaOH
NaOH加进后会立即反应放出氨气,主要作水封
8.正交法实验原理
利用正交表来安排多因素实验的方法。

它是由试验因素的全部水平组合中,挑选部分有代表性的水平组合进行试验,通过对这部分试验的结果的分析,了解全部实验的情况,找出最优组合。

特点:
用部分试验代替全部试验,通过部分试验结果分析,了解全部实验的情况。

相关文档
最新文档