统计学第12讲 第12章 方差分析概论

合集下载

方差分析(ANOVA)PPT参考课件

方差分析(ANOVA)PPT参考课件

三、多个样本均数的两两比较
34
2020/1/15
方差分析能说明什么问题?
不拒绝H0,表示拒绝总体均数相等的证据不
足 分析终止
拒绝H0,接受H1, 表示总体均数不全相等
哪两两均数之间相等?哪两 两均数之间不等?
需要进一步作多重比较
35
2020/1/15
能否用T检验呢 当有k个均数需作两两比较时,比较的次数共 有c= = k!/(2!(k-2)!)=k(k-1)/2
18~岁 21.65 20.66
… … 18.82 16 22.07 8.97
30~岁 27.15 28.58
… … 23.93 16 25.94 8.11
45~60岁 20.28 22.88 … … 26.49 16 25.49 27 7.19
2020/1/15
基本步骤
(1)建立假设,确定检验水准
2020/1/15
单因素方差分析 (1) 方差齐性检验
结果分析
2020/1/15
Test of Homogeneity of Variances
no
Levene Statistic 3.216
df1 2
df2 33
Sig. .053
Levene方法检验统计量为3.216,其P值为0.053,可 认为样本所来自的总体满足方差齐性的要求。
方差分析(ANOVA)
1
2020/1/15
n4
n3 n2 n1
Y4
Y3 Y2
Y1
2
2020/1/15
例子:某研究者在某单位工作人员中进行了体重指 数(BMI)抽样调查,随机抽取不同年龄组男性受试 者各16名,测量了被调查者的身高和体重值,由此按 照BMI=体重/身高2公式计算了体重指数,请问,不 同年龄组的体重指数有无差异。

生物统计学课件方差分析一

生物统计学课件方差分析一
详细描述
例如,研究不同品种的玉米在不同施肥条件下产量的差异。通过单因素方差分析 ,可以判断不同品种的玉米在相同施肥条件下是否存在显著产量差异。
双因素方差分析实例
总结词
用于比较两个分类变量与一个连续变量的关系
详细描述
例如,研究不同饲料类型和不同饲养密度对猪生长速度的影响。通过双因素方差分析,可以判断饲料类型和饲养 密度对猪生长速度是否存在显著影响。
判断差异显著性
根据F值和概率P值判断各组间是否 存在显著差异。通常,如果P值小于 预设的显著性水平(如0.05),则认 为各组间存在显著差异。
如果拒绝零假设,则需要进行进一步 的组间比较或使用其他统计方法来了 解差异的性质和方向。
04 方差分析的应用实例
单因素方差分析实例
总结词
用于比较一个分类变量与一个连续变量的关系
02 方差分析的数学模型与假 设检验
方差分析的数学模型
数学模型建立
方差分析通过建立数学模型,将 多组数据之间的差异分解为组间 和组内两部分,以评估各组之间 的差异是否具有统计学显著性。
线性模型
方差分析所使用的数学模型通常是 线性模型,将数据的变化与自变量 关联起来,以解释和预测因变量的 变化。
模型假设
方差齐性
各组数据的方差应大致相等,避免 出现极端值或离群点。
03
02
正态性
数据应符合正态分布,否则可能需 要采用其他统计方法。
样本量
确保样本量足够大,以提高统计检 验的效能和准确性。
04
方差分析的局限性
前提假设严格 交互作用 多元比较
Байду номын сангаас异常值影响
方差分析的前提假设较为严格,如正态分布、方差齐性和独立 性等,如果不能满足这些假设,结果可能不准确。

医学统计学 方差分析

医学统计学 方差分析

100.66
110.31
4
367.60
5
80.57
97.90
115.76
103.56
4
397.79
6
102.77
81.20
90.30
138.54
4
412.81
ni
6
6
6
6
24( n )
Xi
550.01
537.30
618.19
726.28
2431.78( X )
Xi
91.67
89.55
103.03
2 =32 得: F0.05(2,32) 3.30, F0.01(2,32) 5.34 ,P<0.01。按 =0.05 水准,拒绝 H0 ,
差别有统计学意义,可以认为喂养三种不同饲料的大鼠红细胞数的总体均数不 全相同。
随机区组设计的两因素方差分析
例9.2 利用随机区组设计研究不同温
度对家兔血糖浓度的影响,某研究者进行 了如下实验:将 24只家兔按窝别配成6个 区组, 每组 4 只, 分别随机分配到温度 15℃、 20℃、 25℃、 30℃的4个处理组 中,测量家兔的血糖浓度值(mmol/L),结 果如下表9.4所示,分析4种温度下测量家 兔的血糖浓度值是否不同?
23
3742.5521
3
1247.5174 8.2717
1491.2744
5
298.2549 1.9776
2262.2511
15
150.8167
P
<0.01 >0.05
3. 确定 P 值,作出统计推断
根据处理组 F 值的分子的自由度处理 ,分母的自由度 误差 ;区组 F 值的分子的 自由度区组 ,分母的自由度 误差 查 F 界值表(附表 4),得到处理组和区组的 P 值。 根据表 9.6,按 =0.05 水准,对于不同区组间,不拒绝 H0 ,尚不能认为不同窝 别家兔血糖浓度值不同;对于不同处理组间,拒绝 H0 ,接受 H1 ,差异具有统 计学意义,可以认为 4 种温度下家兔血糖浓度值不全相同,即处理组 4 个总体 均数中至少有 2 个不同。

《社会统计学》章节知识点——单选题

《社会统计学》章节知识点——单选题

《社会统计学》章节知识点——单选题第一章总论●变量类型1.下列变量属于数值型变量的是( A )。

A.工资收入B.产品等级C.学生对考试改革的态度D.企业的类型【参考答案】A2.从变量分类看,下列变量属于定序变量的是( C )。

A.专业B.性别C.产品等级D.收入【参考答案】C●总体和样本1.某地区政府想了解全市332.1万户家庭年均收入水平,从中抽取3000户家庭进行调查,以推断所有家庭的年均收入水平,这项研究的样本是( B )。

A.332.1万户家庭B.3000户家庭C.332.1户家庭的年均收入D.3000户家庭的年均收入【参考答案】B2.学校后勤集团想了解学校22000学生的每月生活费用,从中抽取2200名学生进行调查,以推断所有学生的每月生活费用水平,这项研究的总体是( A )。

A.22000名学生B.2200名学生C.22000名学生的每月生活费用 D.2200名学生的每月生活费用【参考答案】A3.为了解某地区的消费,从该地区随机抽取5000户进行调查,其中30%回答他们的月消费在5000元以上,40%回答他们每月用于通讯、网络的费用在300元以上,此处5000户是( C )。

A.变量 B.总体 C.样本 D.统计量【参考答案】C●抽样方式4.从含有N个元素的总体中,抽取n个元素作为样本,同时保证总体中每个元素都有相同的机会入选样本,这样的抽样方式称为( A )。

A.简单随机抽样B.系统抽样 C.整群抽样D.分层抽样【参考答案】A5.某班级有60名男生,40名女生,为了了解学生购书支出,从男生中抽取12名学生,从女生中抽取8名学生进行调查,这种调查方法属于( C )。

A.简单随机抽样 B.整群抽样 C.分层抽样 D.系统抽样【参考答案】C6.先将总体按某标志分为不同的类别或层次,然后在各个类别中采用简单随机抽样或系统抽样的方式抽取子样本,最后将所有子样本合起来作为总样本,这样的抽样方式称为( D )。

医学统计学课件:第十二章 重复测量设计资料的方差分析

医学统计学课件:第十二章  重复测量设计资料的方差分析

111
123
131
B
10
118
114
116
123
133
C
11
131
119
118
135
129
C
12
129
128
121
148
132
C
13
123
123
120
143
136
C
14
123
121
116
145
126
C
15
125
124
118
142
130
2. 未设立对照的重复测量数据
表12-3 受试者血糖浓度(mmol/L)
• 能说明治疗有效吗?
住院休息,环境和情绪的改变?考虑了吗?
二、设立对照的前后测量设计
高血压患者治疗前后的舒张压(mmHg)
编号 1 2 3 4 5 6 7 8 9 10
处理组 前后 130 114 124 110 136 126 128 116 122 102 118 100 116 98 138 122 126 108 124 106
1. 设立对照的重复测量设计
• 将手术要求基本相同的15名患者随机分3
组,在手术过程中分别采用A,B,C三 种麻醉诱导方法,在T0(诱导前)、T1、 T2、T3,T4 五个时相测量患者的收缩压, 数据记录见表。
表 12-16 不同麻醉诱导时相患者的收缩压(mmHg)
方法 序号
T0
麻醉诱导时相
T1
.937**
.882**
Sig. (2-tailed)
.001
.004
N
8

第2章单因素方差分析

第2章单因素方差分析

第12章方差分析(Analysis of V ariance)方差分析是鉴别各因素效应的一种有效统计方法,它是通过实验观察某一种或多种因素的变化对实验结果是否带来显著影响,从而选取最优方案的一种统计方法。

在科学实验和生产实践中,影响一件事物的因素往往很多,每一个因素的改变都有可能影响产品产量和质量特征。

有的影响大些,有的影响小些。

为了使生产过程稳定,保证优质高产,就有必要找出对产品质量有显著影响的那些因素及因素所处等级。

方差分析就是处理这类问题,从中找出最佳方案。

方差分析开始于本世纪20年代。

1923年英国统计学家R.A. Fisher 首先提出这个概念,(ANOV A)。

因当时他在Rothamsted农业实验场工作,所以首先把方差分析应用于农业实验上,通过分析提高农作物产量的主要因素。

Fisher1926年在澳大利亚去世。

现在方差分析方法已广泛应用于科学实验,医学,化工,管理学等各个领域,范围广阔。

在方差分析中,把可控制的条件称为“因素”(factor),把因素变化的各个等级称为“水平”或“处理”(treatment)。

若是试验中只有一个可控因素在变化,其它可控因素不变,称之为单因素试验,否则是多因素试验。

下面分别介绍单因素和双因素试验结果的方差分析。

1.1 单因素方差分析(One Way Analysis of Variance)1.一般表达形式2.方差分析的假定前提3.数学模形4.统计假设5.方差分析:(1)总平方和的分解;(2)自由度分解;(3)F检验6.举例7.多重比较1.1.1 一般表达形式首先通过一个例子引出单因素方差分析方法。

某农业科研所新培养了四种水稻品种,分别用A1,A2,A3,A4表示。

每个品种随机选种在四块试验田中,共16块试验田。

除水稻品种之外,尽量保持其它条件相同(如面积,水分,日照,肥量等),收获后计算各试验田中产量如下表:通过这些数据要考察四个不同品种的单位产量,是否有显著性差异。

方差分析的基本知识.pptx

方差分析的基本知识.pptx
4.计算概率值P: F0.05(2,27) =3.35 F=5.854, P是F所对应的概率値。 P与的大小进行比较,??
5.做出推论:统计学结论方差分析
19
应用条件
各样本是相互独立的随机样本 各样本来自正态分布 各样本方差相等,即方差齐。
方差分析
20
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。20. 8.120.8.1Saturday, August 01, 2020
2.确定显著性水平,用 表示,常取0.05。 3.计算统计量F(见下张) 4.求概率值P: 5.做出推论:统计学结论和专业结论。
方差分析
15
计算统计量F
F=MS组间/MS组内
公式是在H0成立的条件下进行的,即MS组间与MS组内差 别应该很小, F值应该接近于1。那么要接近到什么程 度呢?(Fisher计算出了F的分布规律,即标准的F値) 通过这个公式计算出统计量F,查表求出对应的P值,与 进行比较,以确定是否为小概率事件。
• 13、志不立,天下无可成之事。20.8.120.8.115:34:0815:34:08August 1, 2020
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.

医学统计学第十二章重复测量设计资料的方差分析PPT课件

医学统计学第十二章重复测量设计资料的方差分析PPT课件

医学统计学
8
表11-7 A,B两药联合运用的镇痛时间(min)
A 药物 剂量
1.0 mg
B 药物剂量
5g
1 5g
3g0
105
115
75
80
105
95
65
80
85
75
2.5 mg
115
80
125
135
130
120
90
150
5.0 mg
10.08.2020
85 120 125
医学统计学
65 120 100
前后测量设计不能同期观察试验结果,虽
然可以在前后测量之间安排处理,但本质上比
较的是前后差别,推论处理是否有效是有条件
的,即假定测量时间对观察结果没有影响。
10.08.2020
医学统计学
18
2. 配对 t 检验要求同一对子的两个实 验单位的观察结果分别与差值相互独立, 差值服从正态分布。
18 6983.333 387.963
10.08.2020
医学统计学
10
第十二章
重复测量设计的方差分析
ANOVA of Repeated Measurement Data
10.08.2020
医学统计学
11
Content
• Data characteristic • Analysis of two factors and two levels • Analysis of two factors and several levels • Familiar errors
16 14 10 12 20 18 18 16 18 18 1 6 .0 3 .1 316

统计学知识点[完整]

统计学知识点[完整]

基本统计方法第一章 概论1. 总体(Population ):根据研究目的确定的同质对象的全体(集合);样本(Sample ):从总体中随机抽取的部分具有代表性的研究对象。

2. 参数(Parameter ):反映总体特征的统计指标,如总体均数、标准差等,用希腊字母表示,是固定的常数;统计量(Statistic ):反映样本特征的统计指标,如样本均数、标准差等,采用拉丁字字母表示,是在参数附近波动的随机变量。

3. 统计资料分类:定量(计量)资料、定性(计数)资料、等级资料。

第二章 计量资料统计描述1. 集中趋势:均数(算术、几何)、中位数、众数2. 离散趋势:极差、四分位间距(QR =P 75-P 25)、标准差(或方差)、变异系数(CV )3. 正态分布特征:①X 轴上方关于X =对称的钟形曲线;②X =时,f(X)取得最大值;③有两个参数,位置参数和形态参数;④曲线下面积为1,区间±的面积为68.27%,区间±1.96的面积为95.00%,区间±2.58的面积为99.00%。

4. 医学参考值范围的制定方法:正态近似法:/2X u S α±;百分位数法:P 2.5-P 97.5。

第三章 总体均数估计和假设检验1. 抽样误差(Sampling Error ):由个体变异产生、随机抽样造成的样本统计量与总体参数的差异。

抽样误差不可避免,产生的根本原因是生物个体的变异性。

2. 均数的标准误(Standard error of Mean, SEM ):样本均数的标准差,计算公式:/X σσ=3. 降低抽样误差的途径有:①通过增加样本含量n ;②通过设计减少S 。

4. t 分布特征:①单峰分布,以0为中心,左右对称; ②形态取决于自由度,越小,t 值越分散,t 分布的峰部越矮而尾部翘得越高; ③当逼近∞,X S 逼近X σ, t 分布逼近u 分布,故标准正态分布是t 分布的特例。

课件方差分析

课件方差分析

例子2
五个商店以各自的销售方式卖出新型健身器, 连续五天各商店健身器的销售量如下表所示。销 售量服从正态分布,且具有方差齐性,试考察销 售方式对销售量有无显著影响,并对销售量作两 两比较。
双因素方差分析假设
双因素方差分析数据结构表
双因素方差分析表
双因素方差分析SPSS界面
例子1
例子2
西方国家有一种说法,认为精神病与月亮有关,月 圆时,人盯着州亮看,看得太久,就会得精神病。中医 也有一种说法,认为精神病与季节有关,特别是春季, 人最容易得精神病。为了检验这两种说法是否有道理, 对某地平均每日精神病发病人数统计如下:
SSR与MSR
组间差异(组间平方和,简称SSR): 各组平均值与总平均值离差的平方和, 反映了各水平之间的差异程度或不同 的处理造成的差异。
组间均方: MSR= SSR /(自由度k-l)
SSE与MSE
组内差异(组内平方和、残差平方和, 简称SSE): 每个样本数据与其组平均值离差的平方和, 反映了随机误差造成差异的大小。
例子2
Байду номын сангаас
单因素练习1
某饮料生产企业研制出一种新型饮料。饮料的颜色共 有四种,分别为桔黄色、粉色、绿色和无色透明。随机从 五家超级市场上收集了前一期该种饮料的销售量。
问:饮料的颜色是否对销售量产生影响。
超市 1 2 3 4 5
无色 26.5 28.7 25.1 29.1 27.2
粉色 桔黄色 绿色 31.2 27.9 30.8 28.3 25.1 29.6 30.8 28.5 32.4 27.9 24.2 31.7 29.6 26.5 32.8
概述 方差分析的分类
方差分析按所涉及因素的多少可分为: 单因素方差分析 双因素方差分析 多因素方差分析

统计学方差分析ppt课件

统计学方差分析ppt课件

水平
水平指因素的具体表现,如销售的 四种方式就是因素的不同取值等级。有 时水平是人为划分的,比如质量被评定 为好、中、差。
单元
单元指因素水平之间的组合。如销 售方式一下有五种不同的销售业绩,就 是五个单元。方差分析要求的方差齐就 是指的各个单元间的方差齐性。
元素
元素指用于测量因变量的最小单 位。一个单元里可以只有一个元素, 也可以有多个元素。
均衡
如果一个试验设计中任一因素各水 平在所有单元格中出现的次数相同,且 每个单元格内的元素数相同,则称该试 验是为均衡,否则,就被称为不均衡。 不均衡试验中获得的数据在分析时较为 复杂。
交互作用
如果一个因素的效应大小在另一 个因素不同水平下明显不同,则称为 两因素间存在交互作用。当存在交互 作用时,单纯研究某个因素的作用是 没有意义的,必须分另一个因素的不 同水平研究该因素的作用大小。如果 所有单元格内都至多只有一个元素, 则交互作用无法测出。
地点一 地点二 地点三 地点四 地点五
方式一
77
86
81
88
83
方式二
95
92
78
96
89
方式三
71
76
68
81
74
方式四
80
84
79
70
82
【解】设这四种方式的销售量的均值分别用 1•, 2•, 3•, 4• 表示,四 个销售地点的平均销售量用 •1, •2, •3, •4 表示;则要检验的假设为
例题
Excel操作
构造F统计量
判断与结论
例题
Excel操作
方差分析概述
因素和水平
单元和元素
均衡
交互作用

方差分析-统计学原理

方差分析-统计学原理
模型可以改写为
yij ai ij , j 1 ,2,..., m ,2,..., r, i ,i 1 r m ia i 0 i1 2 相 互 独 立 , 且 都 服 从 N (0, ) ij
H0 :a1 =a2 =…=ar =0
第三节 两因素方差分析 随机区组设计资料的方差分析
方差分析的应用条件
(1)各观测值相互独立,并且服从正态分布; (2)各组总体方差相等,即方差齐性。
方差分析的用途
1 2 3 4 用于两个或多个均数间的比较 分析两个或多个因素的交互作用 回归方程的假设检验 方差齐性检验
第二节 单因素方差分析 完全随机设计资料的方差分析
一、完全随机设计 完全随机设计是采用完全随机化的分组方法, 将全部试验对象分配到g个处理组,各处理组分别 接受不同的处理,试验结束后比较各组均数之间差 别有无统计学意义,以推断处理因素的效应。
一、 随机区组设计 随机区组设计( randomized block design ),又称 配伍组设计,是配对设计的扩展。 具体做法是:先按影响试验结果的非处理因素 将受试对象配成区组(block),再将各区组内的受 试对象随机分配到不同的处理组,各处理组分别接 受不同的处理,试验结束后比较各组均数之间差别 有无统计学意义,以推断处理因素的效应。
方差分析的基本概念
将衡量试验结果的标志称为试验指标。 将影响试验结果的条件称为因素。 因素在试验中所处的不同状态称为该因 素的水平。
只考察一个影响条件即因素的试验称为单因素 试验,相应的方差分析称为单因素方差分析。
二、变异分解 完全随机设计资料的方差分析表 变异来源 自由度 SS MS F 总变异
甲组 4.2 3.3 3.7 4.3 4.1 3.3

统计学课件之方差分析

统计学课件之方差分析

2.9850 2.9320
-1.8100 -1.8960
平均
2.0320 3.8850 2.9585 -1.8530
a1-a2
0.0960 0.0100 0.0530
单独效应 其他因素固定时,同一因素不同水平的差异 主效应 某一因素各水平的平均差别 交互效应 某因素的各单独效应随另一因素改变而变化
完全随机设计方案与随机区组设计方案的比较
方差齐性检验(Bartlett法,求一个卡方值)
方差不齐的处理——非参数检验
在设计阶段未预先考虑或预料到,经假设检验得 出多个总体均数不全相等的提示后,才决定的多 个均数的两两事后比较,多用于探索性研究 方法有:SNK-q test、Bonfferoni-t test等
xi
0.5542 0.4167 0.3438 0.1646 0.3698 ( x )
xi2 3.9350 2.3925 1.7006 0.5906 8.6187 ( x2 )
随机区组设计
方案 配伍组设计,为配对设计的扩展(1:m) 首先将受试对象按可能影响试验结果的属性
相同或相近分组(非随机),如按性别、体重、 年龄、职业、病情等。共形成b个区组,再分别将 各区组内的试验单位随机分配到各处理组。
试问:三组ATP总体均数是否存在差别? 若三组间存在差别,则推论B组和C组的处理对ATP
的影响。
表1 大鼠烫伤后ATP的测量结果(mg)
A组
B组
C组
xij
7.76
11.14
10.85
7.71
11.60
8.58
8.43
11.42
7.19
8.47
13.85
9.36
10.30

方差分析_精品文档

方差分析_精品文档

2021/5/27
44
2.2 组内观测次数相等的方差分析 K组处理中,每一处理皆有n个观测值,其方
差分析方法同前。
表5. 组内观测次数相等的单因素方差分析
2021/5/27
45
例2.测定东北、内蒙古、河北、安徽、贵 州五个地区冬季针矛的长度,每个地区
随机抽取4个样本,测定结果如表示,试 比较各地区针毛长度差异显著性。
27
其中平均数差数标准误计算公式:
s x1x2
s12s22 n1 n2
se2(n11n12)
当n1=n2时,sx1x2
2se2 n
s e 2 为处理内误差方差,n为每一处理观察次数。
2021/5/27
28
例1. 表1. 氨氮含量(ppm)
2021/5/27
29
根据例1, s 2se2 2*9.112.13
2021/5/27
9
1.4.1 平方和的分解 总平方和=处理间平方和+处理内平方和
SSTSSt SSe
k
S S T 1
n(x x )2x 2 ( x )2x 2 T 2
1
k n
k n
令 C T 2 ,
kn
SST x2C
SSt =
Ti2 C n
SSe SSTSSt
2021/5/27
10
2021/5/27
39
例如,分析不同施肥量是否给农作物产
量带来显著影响,考察地区差异是否影 响妇女的生育率,研究学历对工资收入 的影响等。这些问题都可以通过单因素 方差分析得到答案。
2021/5/27
40
• 单因素方差分析的第一步是明确观测变 量和控制变量。例如,上述问题中的观

数理统计课件-方差分析(zijiyong)

数理统计课件-方差分析(zijiyong)

计算各水平样本均值: ①假定从第i个总体中抽取一个容量为ni的简单随机样本, 第i个总体的样本均值为该样本的全部观察值总和除 以观察值的个数 ni ②计算公式为
x
xi
j 1
ij
ni
(i 1,2,, k )
式中: ni为第 i 个总体的样本观察值个数 xij 为第 i 个总体的第 j 个观察值
通过对数据 误差来源的 分析来判断 不同总体的 均值是否相 等
四、方差分析的基本思想和原理
(一)两类误差 1. 组内误差 组内误差:在因素的同一水平(同一个总体)下,样本的各
2.
观察值之间的差异 比如,同一种颜色的饮料在不同超市上的销售量是不同的 不同超市销售量的差异可以看成是随机因素的影响,或者 说是由于抽样的随机性所造成的,称为随机误差 组间误差 组间误差:在因素的不同水平(不同总体)下,各观察值之 间的差异 比如,同一家超市,不同颜色饮料的销售量也是不同的 这种差异可能是由于抽样的随机性所造成的,也可能是由 于颜色本身所造成的,后者所形成的误差是由系统性因素 造成的,称为系统误差
然后加以比较进行统 计判断,得出结论。
ANOVA 由英国统 计学家R.A.Fisher首 创,为纪念Fisher, 以F命名,故方差分析 又称 F 检验 (F test)。
注:方差分析(Analysis of Variance,简称ANOVA),又称 “变异数分析”或“F检验”.
学习目标:
本章的主要学习目标是要求学生在理解方差分 析基本思想的基础上,掌握单因素和双因素方差分 析的应用原理;重点是要学会方差分析的操作与应 用。
SST=SSE+SSA
实例
超市 (j)
1 2 3 4 5 合计
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18
方差估计值 34.62 5.19
df2
F比率 6.67
df1 单侧P 2
0.01
0.05
8.29
4.41
6.67>3.55, 所以按照0.05拒绝H0,三个总体平均数 不同,不是来自一个总体。 请问:这个问题是否到此就结束了?
1. 事前比较或者计划比较:如果想在研究前进行比 较,可使用事前检验而不用做方差分析。
SS组间
( X i )2

( X 总 )2
df1
105.8 F 2.678 39.5
2.678 <4.41,不拒绝H0。结论与前面的 t 检验一致。 注意:当组间自由度=1时,F=t2 ,2.678=1.6362
12.4 方差分析的基本思想 1. 总方差分为 组间方差 + 组内方差 a. 组间方差:由于受到实验处理,包括自变量以及 混杂因素影响而产生的系统差异,这些变量引起因 变量的变化。 b. 组内方差:由个体差异和非控制因素引起的因变 量的变化。精良的设计需要使这个方差最小化。 2. H0: μ1=μ2…=μk 什么意思? 所有样本来自一个总体。 3. H1: μ1,μ2,…,μk 不全相等 所有样本不是来自一个总体。 什么意思?
方差分析(analysis of variance)
对多个样本进行比较并评估其显著性时,可以克服 t 检验存在的问题。它能够帮助我们回答一个问题:是 否可用一个总的指标说明实验处理导致各个不同组间 的平均数有差异? 12.2 平方和的概念
ˆ2 S
( X X )2 n1

X
2
X
SS X 2
SS总= SS组内 +
( X )2 n
SS组间
12.3 举例说明:两个组的情形 12.3.1 总平方和分解为组内平方和与组间平方和
实验组 X1 X2 控制组 X2 X2 36
1296
31 36
961 1296
20 41 34
400 1681 1156
32 34 32 33 和 329
12.9 计算平方和与方差估计值 SS总=SS处理+SS区组+SS误差
1.计算总平方和 SS总 Xi2
表12-6 区组 X1 X 12 实验处理情况 X2 X 22
矫正项CT
( X i )2 ni k
X3
12-8
12-9
X 32 区组和
1
2 3
15
13 12
225
169 144
13
18 0.99
r 等级差 数 3 3.61 4.70
查附表6 q界值表
当df=18 , r=3 ,α=0.05时,查得q=3.61.
HSD 3.61 5.19 / 7 3.10
因为只有第1和3组平均数之间的差异4.43>3.10,结 论:第3种教学方法能够显著提高学生解决逻辑问题 的能力。
12.7 单变量实验设计---相关样本 行为或医学研究中诸多因素都能导致分数的变异。 诸如个体差异,在独立样本中无法识别和量化,其结 果会增大误差。剔除这些误差的方法,可考虑相关样 本设计。这好比选择天线一样,长天线噪音最低,电 台信号就清晰了。 12.8 三个配对组设计 挑选21名业余篮球队员,按照投篮水平分为七个区 组,每组3人投篮水平比较一致。每组站在罚球线 位置,随机使用三种不同的投篮方法,每个人投20 次。试问这21人在不同的区组和不同的投篮方法上 是否存在差异?
S
2 组间
69.24 34.62 2
93.42 5.19 18
S
2 组内
34.62 F 6.67 5.19
第7步;列出分析分析表
表 12-3 方差分析表 变异源 平方和 自由度 69.24 2 组间 93.43 18 组内 20 总计 162.67 12.6 F 值的解释 查F 临界值表,F0.05(2,18)=3.55
9 10
169
81 100
11
10 9
121
100 81
39
32 31
4
5 6 7 和
11
9 8 7 T1=75
121
81 64 49 853
13
5 6 5 T2=61
169
25 36 25 605
12
7 4 2 T3=55
144
49 16 4 515
36
21 18 14 191
2.计算SS处理及估计方差S2
2 组内
/ ni
其中:qα=根据给定的α水平以及组内自由度和 k(平均值的个数),从附表查得。
表12-4 样本平均数以及各组之间平均数差异的矩阵
X1
=3.57
- X 2 =5.43 - X 3 =8.00 -
X 1 =3.57
=5.43 1.86 - -
X2
X 3 =8.00
4.43 1-α df 2.57 - 0.95
16 ∑X12=111 5 ∑X2=38 25 ∑X22=238
方法3 9 X2 81
4 5 9 10 8 11 ∑X3=56 16 25 81 100 64 121 ∑X32=488
第1步:计算总平方和
( 25 38 46)2 SS总 (111 238 488) 21
1192 837 837 674.33 162.67 21
方法1
X2 方法2 X2
3
9 3 9
2
4 3 9
7
2
5
2
4 7 49
4
∑X1=25
49 4 25 7 9 4 49 81 16
16 ∑X12=111 5 ∑X2=38 25 ∑X22=238
方法3 9 X2 81
4 5 9 10 8 11 ∑X3=56 16 25 81 100 64 121 ∑X32=488
4. F 统计量
=组间方差÷组内方差
通过查F 临界值以确定是否拒绝或接受H0。 12.5 以三个实验组为例-----单因素方差分析
例题:某项研究为了评价三种不同教学效果,从学生 总体中随机抽取21名被试,并随机分为三组,让他们 接受三种不同的教学,完成教学后就进行测验,测验 成绩越高,说明解决逻辑问题的能力越高。是否有证 据表明哪种方法更有效? 方法1 方法2 方法3 3 3 9 2 3 4 7 7 5 2 9 9 5 4 10 2 7 8 4 5 11
n
2
n1
SS n1
从公式可以看出,若离差大,则方差也大,离差小 ,数据紧聚在平均数周围,则方差也小。
回忆一下 两样本 t 检验计算公式:
( X 1 X 2 ) ( 1 2 ) t SX1X 2
SX1 X 2
SS1 SS 2 1 1 n n n1 n2 2 1 2
X1 5
X2 9
如果变异较大 ,则统计显著 性所需的平均 数差异也较大
X 1 7.5
X 2 18.5
方差分析包括对两个方差的独立估计: 组间方差 (between-group variance) 组内方差 (with-group variance)
组间方差 F 组内方差
方差分析一个基本概念就是平方和
问:分子和分母分别表示意思? 答:分子表示平均数之间的差异,而分母表示各组内 变异相加的估计值,称为平均数差异的标准误。
平均数之间差异越大,则 t 值越大,否者 t 值越小
图12-1 要想得到统计学显著性,平均数差异大小与 变异大小之间的关系 如果变异较小 ,则统计显著 性所需的平均 数差异也较小
第2步. 三组的组间平方和为;
252 382 562 1192 69.25 SS组 间 21 7 252 382 562 1192 SS组 间 21 69.24 7
第3步: 已知组间SS,总的SS,计算组内SS。 SS组内=162.67-69.24=93.43 第4步;计算组间方差估计值 df组间=K -1=3 -1=2 第5步:计算组内方差估计值 df组内= N- K =21-3=18 第6步:计算F 值 在本例。总自由度=N-1=20
表12-5 接受不同训练后3个配对组的投篮分数(每 投20次投中的次数) 分组 1 2 3 4 5 6 7 合计 X1 15 13 12 11 9 8 7 75 训练方法 X2 X3 13 11 9 10 10 9 13 12 5 7 6 4 5 2 61 55 合计 39 32 31 36 21 18 14 19
225 …
X2
13 …
X 22
169 …
X3
11 …
X 32
121 …
区组和
39 …
7

7
T1=75
49
853
5
T2=61
25
605
2
T3=55
4
515
14
191
∑X2=225…+4=853+605+515=1973 矫正项CT=(∑X)2/nik=1912/21=1737.19 SS总= ∑X2-CT=1973 -1737.19=235.81 df总=nk -1=7×3 -1=20 SS处理=(752+612+552)/7 -1739.19=30.10 df处理=k -1=3 -1=2 12-10 12-11 12-12
ni n df2 单侧 1 2 2 2 P 329 283 612 0.01 8.29 10 10 20 =10824.1+8008.9-18727.2 18 0.05 4.41 =18833-18727.2=105.8 K=2,df=2-1=1
相关文档
最新文档