高等数学科学出版社下册课后答案第十章曲线积分与曲面积分习题简答(可编辑修改word版)
高等数学第十章曲线积分与曲面积分(考研辅导班内部资料)
第十章 曲线积分与曲面积分曲线积分一 基本概念定义1 第一类曲线积分(对弧长的曲线积分) (1)平面曲线()L AB 的积分:()()01(,)d lim(,)nkkkL AB T k f x y s f sλξη→==∆∑⎰(2)空间曲线()L AB 的积分:()()01(,,)d lim(,,)nkkkk L AB T k f x y z s f s λξηζ→==∆∑⎰其中()T λ表示分割曲线()L AB 的分法T 的细度,即n 段曲线弧长的最大值,(,)k k ξη或(,,)k k k ξηζ是第k 段弧上的任意一点。
物理意义:第一类曲线积分表示物质曲线L 的质量,其中被积函数(,)f x y 或(,,)f x y z 表示曲线的线密度。
定义2 第二类曲线积分(对坐标的曲线积分) (1)平面曲线()L AB 的积分:()()01(,)d (,)d lim[(,)(,)]nkkkk k k L AB T k P x y x Q x y y f xf y λξηξη→=+=∆+∆∑⎰(2)空间曲线()L AB 的积分:()(,,)d (,,)d (,,)d L AB P x y z x Q x y z y R x y z z ++⎰()01lim[(,,)(,,)(,,)]nkkkk k k k k k k k k T k f x f y f z λξηζξηζξηζ→==∆+∆+∆∑其中()T λ表示分割曲线()L AB 的分法T 的细度,即n 段的最大弧长,(,)k k ξη是第k 段弧上的任意一点。
物理意义:第二类曲线积分表示变力F 沿曲线L 所作的功,被积函数(,),(,)P x y Q x y 或(,,),(,,),(,,)P x y z Q x y z R x y z 表示力F 在各坐标轴上的分量。
二 基本结论定理1 (第一类曲线积分的性质) (1)无向性()()(,)d (,)d L AB L BA f x y s f x y s =⎰⎰.(2)线性性质 (1)(,)d (,)d LLk f x y s k f x y s =⎰⎰;(2)[(,)(,)]d (,)d (,)d LLLf x yg x y s f x y s g x y s ±=±⎰⎰⎰.(3)路径可加性 曲线L 分成两段1L 和2L (不重叠),则12(,)d (,)d (,)d LL L f x y s f x y s f x y s =+⎰⎰⎰.(4)弧长公式d Ls L =⎰(L 表示曲线L 的弧长).(5)恒等变换 积函数可用积分曲线方程作变换. (6)奇偶性与对称性 如果积分弧段()L AB 关于y 轴对称,()(,)d L AB f x y s ⎰存在,则()()0,(,)(,)d 2(,)d (,)L AB L OB f x y x f x y s f x y s f x y x ⎧⎪=⎨⎪⎩⎰⎰关于是奇函数,,关于是偶函数.其中O 点是曲线弧段()L AB 与y 轴的交点.定理2 (第二类曲线积分的性质) (1)有向性()()(,)d (,)d L AB L BA P x y x P x y x =-⎰⎰.(2)线性性质 (1)(,)d (,)d LLkf x y x k f x y x =⎰⎰;(2) [(,)(,)]d (,)d (,)d L L Lf x yg x y x f x y x g x y x ±=±⎰⎰⎰.(3)路径可加性 曲线L 分成两段1L 和2L (不重叠),则12(,)d (,)d (,)d LL L f x y x f x y x f x y x =+⎰⎰⎰.定理3 (第一类曲线积分与第二类曲线积分的关系)()()d d d d d d d d d d L AB L AB xy z P x Q y R z P Q R s ss s ⎛⎫++=++ ⎪⎝⎭⎰⎰()(cos cos cos )d L AB P Q R s αβγ=++⎰()d L AB =⋅⎰F s其中cos ,cos ,cos αβγ是曲线AB 上的点的切线的方向余弦,且d cos d ,d cos d ,d cos d x s y s z s αβγ===一般地,积分曲线的方向余弦是变量。
第10章 曲线积分与曲面积分 习题 10- (7)
dxdy ∂ ∂z x− y
a
a
y
x
图 10.50
= ∫∫ −2dydz − 2dzdx − 2dxdy
∑
(化为非组合曲面积分)
1
b 2(a + b) = −2∫∫ ( + 0 + 1)dxdy = − ∫∫ dxdy a a ∑ ∑
=−
2(a + b) 2(a + b) 2 ∫∫ dxdy = − a ⋅ πa = −2πa(a + b). a D
如图 10.55 所示, 取 ∑ 为平面 z = 0 上被 Γ 所围的部分, 取上侧, 则 Γ 是 ∑ 的正向边 界. 利用斯托克斯公式, 可得
3
∫ Γ ( x − z )dx+(x
= ∫∫
∑
3
+yz )dy − 3 xy 2 dz dxdy ∂ ∂z
z
2
dydz ∂ ∂x
dzdx ∂ ∂y
z = 2 − x2 + y 2
3 3 3
∑
z3
x3
y3 O
z = 2( x 2 + y 2 )
1
= ∫∫ 3 y 2 dydz + 3z 2 dzdx + 3x 2 dxdy
∑
y
x
图 10.54
= ∫∫ 3x 2 dxdy =
∑
Dxy
∫∫ 3x dxdy
2
= 3∫ cos 2θ dθ ∫ ρ 3dρ =
0 0
2π
1
3 π. 4
2. (1)
rot r ;
i
(2)
j
rot[ f (r ) r ].
大一下册高数习题册答案第10章
重积分§ 1 二重积分的概念与性质 1、由二重积分的几何意义求二重积分的值dxdy y x I D⎰⎰+=22 其中D 为:422≤+y x( dxdy y x I D⎰⎰+=22=πππ3162.4..312.4.=-) 2、设D 为圆域,0,222>≤+a a y x 若积分dxdy y x a D⎰⎰--222=12π,求a 的值。
解:dxdy y x a D⎰⎰--222=3.34.21a π 81=a3、设D 由圆,2)1()2(22围成=-+-y x 求⎰⎰Ddxdy 3解:由于D 的面积为π2, 故⎰⎰Ddxdy 3=π64、设D :}10,53|),{(≤≤≤≤y x y x ,⎰⎰⎰⎰+=+=DDdxdy y x I dxdy y x I 221)][ln(,)ln(,比较1I , 与2I 的大小关系解:在D 上,)ln(y x +≤ 2)][ln(y x +,故1I ≤2I5、 设f(t)连续,则由平面 z=0,柱面 ,122=+y x 和曲面2)]([xy f z =所围的立体的体积,可用二重积分表示为⎰⎰≤+=1:222)]([y x D dxdy xy f V6、根据二重积分的性质估计下列积分的值⎰⎰Dydxdy x 22sin sin ππ≤≤≤≤y x D 0,0:(≤0⎰⎰Dydxdy x 22sin sin 2π≤)7、设f(x,y)为有界闭区域D :222a y x ≤+上的连续函数,求 ⎰⎰→Da dxdy y x f a ),(1lim20π解:利用积分中值定理及连续性有)0,0(),(lim ),(1lim820f f dxdy y x f a a D a ==→→⎰⎰ηξπ§ 2 二重积分的计算法1、设⎰⎰+=Ddxdy y xI 1,其中D 是由抛物线12+=x y 与直线y=2x ,x=0所围成的区域,则I=( )A : 212ln 3ln 87+-- B : 212ln 3ln 89-+C : 212ln 3ln 89-- D : 412ln 3ln 89--2、设D 是由不等式1≤+y x 所确定的有界区域,则二重积分⎰⎰+Ddxdy y x )(为( )A :0B : 31C :32D : 13、设D 是由曲线xy=1与直线x=1,x=2及y=2所围成的区域,则二重积分 ⎰⎰Dxy dxdy ye 为( )A :e e e 212124-- B :21242121e e e e -+-C :e e 21214+ D :2421e e -4、 设f(x,y)是连续函数,则二次积分dy y x f dx x x ⎰⎰++-2111),(为( )A dx y x f dy dx y x f dy y y ⎰⎰⎰⎰----+112111102),(),( B dx y x f dy y ⎰⎰--1110),(C dx y x f dy dx y x f dy y y ⎰⎰⎰⎰-----+112111102),(),( D dx y x f dy y ⎰⎰---11202),(5、设有界闭域D 1、D 2关于oy 轴对称,f 是域D=D 1+D 2上的连续函数,则二重积分⎰⎰Ddxdy y x f )(2为( )A ⎰⎰1),(22D dxdy y x f B ⎰⎰22),(4D dxdy y x fC ⎰⎰1),(42D dxdy y x f D⎰⎰22),(21D dxdy y x f 6、设D 1是由ox 轴、oy 轴及直线x+y=1所围成的有界闭域,f 是域D:|x|+|y|≤1上的连续函数,则二重积分⎰⎰Ddxdy y x f )(22为( )A ⎰⎰1),(222D dxdy y x f B ⎰⎰1),(422D dxdy y x fC ⎰⎰1),(822D dxdy y x f D⎰⎰1),(2122D dxdy y x f7、.设f(x,y)为连续函数,则⎰⎰a xdy y x f dx 0),(为( )A ⎰⎰a a ydx y x f dy 0),( B ⎰⎰a yadx y x f dy 0),(C ⎰⎰a y dx y x f dy 0),( D ⎰⎰a xdx y x f dy 0),(8、求 ⎰⎰=Ddxdy yx I 22 ,其中 :D 由x=2,y=x,xy=1所围成. (49)9、设I=⎰⎰31ln 0),(xdy y x f dx ,交换积分次序后I 为:I=⎰⎰31ln 0),(xdy y x f dx =⎰⎰3ln 03),(y edx y x f dy10、改变二次积分的次序: ⎰⎰⎰⎰-+4240200),(),(xx dy y x f dx dy y x f dx = ⎰⎰21221xxdx ydx x11、设 D={(x,y)|0≤x ≤1,0≤y ≤1} ,求⎰⎰+Dy x dxdy e 的值解:⎰⎰+Dyx dxdy e=⎰⎰⎰⎰-==+121101)1())((e dy e dx e dy edx y xl yx12设 I=⎰⎰--Ddxdy y x R 222,其中D 是由x 2+y 2=Rx 所围城的区域,求I (331R π)13、计算二重积分⎰⎰-+Ddxdy y x |4|22,其中D 是圆域922≤+y x解:⎰⎰-+Ddxdy y x |4|22==-+-⎰⎰⎰⎰rdr r d rdr r d ππθθ2032220202)4()4(241π 14、计算二重积分⎰⎰Dy xdxdy e },m ax{22,其中D={(x,y)| 0≤x ≤1,0≤y ≤1}解: ⎰⎰Dy xdxdy e }22,max{=1101022-=+⎰⎰⎰⎰e dx e d dy e dx yy xx y15、计算二重积分⎰⎰++Ddxdy yx yx 22,D :.1,122≥+≤+y x y x 解:⎰⎰++D dxdy yx y x 22=24)sin (cos 201sin cos 12πθθθπθθ-=+⎰⎰+rdr r r d§ 3 三重积分1、设Ω是由x=0,y=0,z=0及x+2y+z=1所围成的空间有界域,则⎰⎰⎰Ωxdxdydz 为( )A ⎰⎰⎰--12101y x y xdz d dx B ⎰⎰⎰---2102101y yx xdy dz dxC ⎰⎰⎰---2102101x yx xdz dy dx D ⎰⎰⎰10110xdz dy dx2、设Ω是由曲面x 2+y 2=2z,及z=2所围成的空间有界域,在柱面坐标系下将三重积分⎰⎰⎰Ωdxdydz z y x f ),,(表示为累次积分,I=( )A ⎰⎰⎰120202ρπθρθρρθz)dz ,sin ,cos f(d d B ⎰⎰⎰220202ρπρθρθρρθdz z),sin ,cos f(d dC ⎰⎰⎰2022202ρπρθρθρρθdz z),sin ,cos f(d d D ⎰⎰⎰20220dz z),sin ,cos f(d d ρθρθρρθπ3、设Ω是由1222≤++z y x 所确定的有界闭域,求三重积分⎰⎰⎰Ωdv e z ||解:⎰⎰⎰Ωdv e z ||=⎰⎰⎰--≤+111||222)(z y x z dz dxdy e =2⎰=-122)1(ππdz z e z 4、设Ω是由曲面z=xy, y=x, x=1 及z=0所围成的空间区域,求⎰⎰⎰Ωdxdydz z xy 32(1/364)5、设Ω是球域:1222≤++z y x ,求⎰⎰⎰Ω++++++dxdydz z y x z y x z 1)1ln(222222 (0) 6、计算⎰⎰⎰+Qdxdydz y x )(22 其中Ω为:平面z=2与曲面2222z y x =+所围成的区域 (π564) 7、计算⎰⎰⎰Qzdxdydz x 2其中Ω是由平面z=0,z=y,y=1以及y=x 2所围成的闭区域(2/27))8、设函数f(u)有连续导数,且f(0)=0,求dxdydz z y x f t tz y x t )(1lim 222222240⎰⎰⎰≤++→++π解:dxdydz z y x f tt z y x t ⎰⎰⎰≤++→++222222240(1lim π =)0(')(4limsin )(1lim 42022040f t drr f r dr r r f d d ttt tt ==⎰⎰⎰⎰→→ϕϕθπππ§4 重积分的应用1、(1)、由面积22y x +=2x, 22y x +=4x,y=x,y=0所围成的图形面积为( )A )2(41+πB )2(21+πC )2(43+π D 2+π(2) 、位于两圆θρsin 2=与θρsin 4=之间,质量分布均匀的薄板重心坐标是( )A (0,35)B (0,36)C (0,37) D (0,38)(3)、由抛物面x y z 422=+和平面x=2所围成的质量分布均匀的物体的重心坐标是 ( )A (0,0,34)B (0,0,35) C (0,0,45) D (0,0,47)(4)、 质量分布均匀(密度为μ)的立方体所占有空间区域:}10,10,10|),,{(≤≤≤≤≤≤=Ωz y x z y x ,该立方体到oz 轴的转动惯量I Z =( )A 31μB 32μC μD 34μ2、求均匀上半球体(半径为R)的质心解:显然质心在z 轴上,故x=y=0,z=⎰⎰⎰Ω=831R zdv V 故质心为(0,0,R 38)4、 曲面2213y x z --=将球面25222=++z y x 分割成三部分,由上至下依次记 这三部分曲面的面积为 s 1, s 2, s 3, 求s 1:s 2:s 3解:π102559222=--=⎰⎰≤+dxdy y x y x 1S π2025516222=--=⎰⎰≤+dxdy y x y x 3Sπ70=2S5、求曲面xy Rz =包含在圆柱222R y x =+内部的那部分面积 解:3)122(2222222R dxdy R y x R R y x π-=++=⎰⎰≤+S6、求圆柱体Rx y x 222≤+包含在抛物面Rz y x 222=+和xoy 平面之间那部分立体的体积解:43)(2132222R dxdy y x R Rx y x π=+=⎰⎰≤+V 第九章 自测题一、选择题: (40分) 1、⎰⎰-x dy y x f dx 1010),(=( )A ⎰⎰-1010),(dx y x f dy x B ⎰⎰-xdx y x f dy 1010),( C ⎰⎰11),(dx y x f dy D ⎰⎰-ydx y x f dy 101),(.2、设D 为222a y x ≤+,当=a ( )时,π=--⎰⎰Ddxdy y x a 222. A 1 B 323 C 343 D 321 3、设⎰⎰+=Ddxdy y x I )(22,其中D 由222a y x =+所围成,则I =( B ).A 40220a rdr a d aπθπ=⎰⎰ B 4022021a rdr r d aπθπ=⋅⎰⎰;C 3022032a dr r d a πθπ=⎰⎰ D 402202a adr a d a πθπ=⋅⎰⎰.4、设Ω是由三个坐标面与平面z y x -+2=1所围成的空间区域,则⎰⎰⎰Ωxdxdydz =( ).A481 B 481- C 241 D 241- .5 、设Ω是锥面,0(222222>+=a by a x c z )0,0>>c b 与平面c z y x ===,0,0所围成的空间区域在第一卦限的部分,则⎰⎰⎰Ωdxdydz z xy=( ). A c b a 22361 B b b a 22361 C a c b 22361D ab c 361.6、计算⎰⎰⎰Ω=zdv I ,1,222=+=Ωz y x z 为围成的立体,则正确的为( )和()A ⎰⎰⎰=101020zdz rdr d I πθ B ⎰⎰⎰=11020rzdz rdr d I πθC ⎰⎰⎰=11020rrdr dz d I πθ D ⎰⎰⎰=zzrdr d dz I 02010πθ.7、曲面22y x z +=包含在圆柱x y x 222=+内部的那部分面积=s ( )A π3B π2C π5D π22.8、由直线2,2,2===+y x y x 所围成的质量分布均匀(设面密度为μ)的平面薄板,关于x 轴的转动惯量x I =( ).A μ3B μ5C μ4D μ6二、计算下列二重积分:(20分)1、⎰⎰-Dd y x σ)(22,其中D 是闭区域:.0,sin 0π≤≤≤≤x x y (9402-π)2、⎰⎰Dd xyσarctan ,其中D 是由直线0=y 及圆周1,42222=+=+y x y x ,x y =所围成的在第一象 限内的闭区域 . (2643π) 3、⎰⎰+-+Dd y x y σ)963(2,其中D 是闭区 域:222R y x ≤+ (2494R R ππ+)4、⎰⎰-+Dd y x σ222,其中D :322≤+y x . (.25π) 三、作出积分区域图形并交换下列二次积分的次序: (15分)1、⎰⎰⎰⎰-+yydx y x f dy dx y x f dy 30312010),(),( (⎰⎰-xxdy y x f dx 3220),()2、⎰⎰-+21110),(x xdy y x f dx (⎰⎰⎰⎰-+2220211),(),(y y y dx y x f dy dx y x f dy )3、⎰⎰θθθθ0)sin ,cos (rdr r r f d a (⎰⎰θθθθ0)sin ,cos (rdr r r f d a)四、计算下列三重积分:(15分)1、Ω+⎰⎰⎰Ω,)cos(dxdydz z x y :抛物柱面x y =2,,π=+==z x o z o y 及平面所围成的区域 (21162-π) 2、,)(22⎰⎰⎰Ω+dv z y 其中Ω是由xoy 平面上曲线x y 22=绕x 轴旋转而成的曲面与平面5=x 所围 (π3250) 五、(5分)求平面1=++czb y a x 被三坐标面所割出的有限部分的面积 .(22222221a c c b b a ++)六、(5分)设)(x f 在]1,0[上连续,试证:310101])([61)()()(⎰⎰⎰⎰=dx x f dxdydz z f y f x f x y x 0)0(,)()()()(,)()(1==='=⎰⎰F dx x f t F x f x F dt t f x F x且则=⎰⎰⎰101)()()(x yx dxdydz z f y f x f =-⎰⎰dy x F y F y f dx x f x11)]()()[()(dx x F F x F x F F x f )}()1()()]()1((21){[(2122⎰+--=)1(21)1(61)1(21333F F F -+=)1(613F。
高数 第十章线面积分习题和答案
第十章曲线积分曲面积分练习题A 组一.填空题1. 设L 是 122=+y x 上从)0,1(A 经)1,0(E 到)0,1(-B 的曲线段,则⎰Lydy e 2=2.设⋂MN 是从M(1,3) 沿圆 2)2()2(22=-+-y x 至点 )1,3(N 的半圆,则积分⎰⋂+MNxdy ydx =3. L 是从)6,1(A 沿6=xy 至点)2,3(B 的曲线段,则⎰++Ly x xdy ydx e )( =4. 设L 是从)0,1(A 沿1222=+y x 至点2,0(B )的曲线段,则⎰+Ly x y x dy ye dx xe 222 =5. 设L 是 2x y = 及 1=y 所围成的区域D 的正向边界,则⎰+Ldx y x xy )(33 + dy y x x )(242+ = 6. 设L 是任意简单闭曲线,b a ,为常数,则⎰++L bdy adx )( =7. 设L 是xoy 平面上沿逆时针方向绕行的简单闭曲线,且9)34()2(=++-⎰dy y x dx y x L,则L 所围成的平面区域D 的面积等于8. 常数 k = 时, 曲线积分⎰+Ldy x kxydx 2与路径无关。
9.设是球面 1222=++z y x ,则对面积的曲面积分⎰⎰∑++ds z y x 222 =10.设L 为)0,0(o , )0,1(A 和)1,0(B 为顶点的三角形围成的线, 则对弧长的曲线积分⎰Lds =11. 设L 是从点)1,1(到)3,2(的一条线,则⎰-++Ldy y x dx y x )()(=12. 设L 是圆周 t a x cos =, t a y sin = )20(π≤≤t ,则⎰+LdS y x 322)(=13. 设为曲面2222a z y x =++, 则⎰⎰∑dS z y x 222=二、选择题1.设→→+=j y x Q i y x P A ),(),(,D y x ∈),(且P ,Q 在域D 内具有一阶连续偏导数,又L :⋂AB 是D 内任一曲线,则以下四个命题中,错误的是( )A .若⎰+LQdy Pdx 与路径无关,则在D 内必有yPx Q ∂∂≡∂∂ B .若⎰⋅Lds A 与路径无关,则在D 内必有单值函数),(y x u ,使得dy y x Q dx y x P y x du ),(),(),(+=C .若在D 内yPx Q ∂∂≡∂∂,则必有⎰L ds A ·与路径无关。
高数下第十章的答案
3.设 ,求证 .
证明:因为 ,所以 ;
于是 .
4.设 ,求证 .
证明:已知 ,则 ;所以 .
5.讨论 在任一点处偏导数的存在性.
解:在(0,0)点
;
不在(0,0)点
.
6.求下列函数的二阶偏导数.
(1) ;(2) ;
(3) .
解:(1)
.
(2)
(3)
7.设 ,求 与 .
解:
.
8.设 ,求 、 、 、 .
3.在半径为R的半球内,求出体积最大的长方体的体积.
解:设长方体的在第一卦限内的顶点坐标为 ,则满足 ;则在半径为R的半球内,最大的长方体的体积为 ;即求 在 条件下的条件极值:作辅助函数 ,则 ;联立解得 ,负的舍去;由问题的实际意义知:在半径为R的半球内,体积最大的长方体的体积为 .
4.从斜边长为l的所有直角三角形中,求出周长最大的直角三角形.
;
.
(10)设 ,验证 .
(11)求下列函数的极值.
; .
解:(1)已知 ,则令
有 代入得
即 .
(2)在点 处,
;故不连续;
在点 处,
;故连续.
(3)要使函数 有意义,须使 ; ,所以函数 的定义域为 ;且 .
(4) .
.
.
(5)
.
(6)
.
(7)
;
.
(8)
;
所以 .
(9) 两边去对数得 ;再求导数得 解得 .
1.求下面复合函数的导数或偏导数.
(1)已知 ,求 .
(2)已知 ,求 .
(3)已知 ,求 .
(4)已知 ,求 .
(5)已知 ,求 .
(6)已知 ,求 .
(整理)高等数学科学出版社下册课后答案第十章曲线积分与曲面积分习题简答
第十章曲线积分与曲面积分习题简答习题10—11 计算下列对弧长的曲线积分: (1)LI xds =⎰,其中L 是圆221x y +=中(0,1)A到B 之间的一段劣弧; 解:(1+.(2)(1)L x y ds ++⎰,其中L 是顶点为(0,0),(1,0)O A 及(0,1)B 所成三角形的边界;解:(1)3Lx y ds -+=+⎰.(3)22Lx y ds +⎰,其中L 为圆周22x y x +=;解:222Lx y ds +=⎰.(4)2 Lx yzds ⎰,其中L 为折线段ABCD ,这里(0,0,0)A ,(0,0,2),B (1,0,2),C(1,2,3)D ;解: 2Lx y z d =⎰2 求八分之一球面2221(0,0,0)x y z x y z ++=≥≥≥度1ρ=。
解 故所求重心坐标为444,,333πππ⎛⎫⎪⎝⎭.习题10—21 设L 为xOy 面内一直线y b =(b 为常数),证明xyoABC(,)0LQ x y dy =⎰。
证明:略.2 计算下列对坐标的曲线积分: (1)Lxydx ⎰,其中L 为抛物线2y x =上从点(1,1)A -到点(1,1)B 的一段弧。
解 :45Lxydx =⎰。
(2)⎰-++Ldy y x dx y x 2222)()(,其中L 是曲线x y --=11从对应于0=x 时的点到2=x 时的点的一段弧;解34)()( 2222=-++⎰Ldy y x dx y x .(3),Lydx xdy +⎰L 是从点(,0)A a -沿上半圆周222x y a +=到点(,0)B a 的一段弧;解 0.Lydx xdy +=⎰(4)22Lxy dy x ydx -⎰,其中L 沿右半圆222x y a +=以点(0,)A a 为起点,经过点(,0)C a 到终点(0,)B a -的路径;解 22Lxy dy x ydx -⎰44a π=-。
(5)3223Lx dx zy dy x ydz +-⎰,其中L 为从点(3,2,1)A 到点(0,0,0)B 的直线段AB ;解 3223Lx dx zy dy x ydz +-⎰3187874t dt ==-⎰。
第十章曲线积分与曲面积分习题课
理论上的联系
1.定积分与不定积分的联系
b
a f ( x ) d F x ( b ) F ( a )( F ( x ) f ( x ))
牛顿--莱布尼茨公式
2.二重积分与曲线积分的联系
D( Q x P y)dx d L Py dQ xd (沿 y L 的)正向
格林公式
2020/6/3
3.三重积分与曲面积分的联系
思路:
ILPdxQdy
(x,y)
非闭
I PdxQdy (x0,y0)
P
Q
P
定 义
n
n
f(x,y,z)d sl i0 im 1f(i,i,i) si R (x ,y,z)dx l d i0i m 1 y R (i,i,i)( S i)xy
联 系
PdydQzdzdRxdxd (yP c oQ sco s R co)dsS
计
f(x, y,z)ds
R(x,y,z)dxdy
算
a y 1 (x ) z 1 (x ,y )
f(x ,y )d s bf[x ,y (x )1 ] y 2 d,(d x 线 s ( 曲 元 ))
L
a
f(x ,y )d x bf[x ,y (x )d ],(d x 线 x (投 元 ))影 素
L
a
2020/6/3
f(x ,y ,z)d S f[x ,y ,z(x ,y )]1 zx 2 zy2 dxd
旋度 rA o ( tR Q )i ( P R ) j ( Q P )k y z z x x y
2020/6/3
二、典型例题
例 1 计 算 I (x22x)ydx (x2y4)d, y L
其 中 L为 由 点 O(0,0)到 点 A(1,1)的 曲 线 ysi nx. 2
高等数学第十章《曲线积分与曲面积分》2
第十章 曲线积分与曲面积分一.曲线积分的计算 (1)基本计算1.第一类:对弧长线积分的计算(,)Lf x y ds ⎰关键是用曲线L:(),(),x t y t ϕψ=⎧⎨=⎩()t αβ≤≤做变量替换(被积函数,积分变元,积分范围)(,)[(),(,()Lf x y ds f t t βαϕψαβ=<⎰⎰例 L 为圆周221,x y +=则22xy Le ds +=⎰2e π 参数方程,曲线代入解 cos :(02)sin x L y θθπθ=⎧≤≤⎨=⎩ds d θθ==22x y Leds +=⎰202ed e πθπ=⎰例 计算2⎰L x ds ,其中2222:(0)0⎧++=>⎨-=⎩x y z a L a x y . (8分)解 由于 22222222::00⎧⎧++=+=⇒⎨⎨-=-=⎩⎩x y z a x z a L L x y x y 所以L 的参数方程可表示为:(02)sin θθπθ⎧=⎪⎪⎪=≤≤⎨⎪⎪=⎪⎩x L y t z a (3分)θθ==ds ad (2分) 故23222cos 22ππθθ==⎰⎰La a x ds ad(3分) 【例10.22】求⎰,式中L 为圆周22(0)x y ax a +=>解 L 的极坐标方程为:,(),cos 22L ds ad r a θθππθθθθ=⎧-≤≤==⎨=⎩则222cos 2a ad a ππθθ-=⋅=⎰⎰第二类:对坐标的线积分的计算 关键是用曲线L:(),(),x t y t ϕψ=⎧⎨=⎩(:)t αβ→做变量替换(被积函数,积分变元,积分范围)''(,)(,){[(),()]()[(),()]()}LP x y dx Q x y dy P t t t Q t t t dt βαϕψϕϕψψ+=+⎰⎰例 设L 为抛物线2y x =从点()0,0到()2,4一段弧,则()22Lx y dx -=⎰5615-注意微元,及参数方程的形式【例10.17】 求2L ydx xdy x +⎰,其中L 是曲线ln y x =上从点(1,0)到点(,1)e 的一段弧. 解 由ln y x =得1,ydx dy x e x==,故原式=1121002()|y y ydy e dy y e e +=+=⎰⎰⑵ 基本技巧① 利用对称性简化计算;对弧长的线积分,对称性同二重积分 例 计算3222(),Lx y ds L x y R 其中:++=⎰解:33()LLLx y ds xds y ds =+=0+⎰⎰⎰ 第一个L 关于y 对称,第二个L 关于x 对称【例10.15】 求yL xe ds ⎰,其中L 是由cos (0)sin x a ta y a t =⎧>⎨=⎩所表示的曲线上相应于233t ππ≤≤的一段弧.解 (法一)ds adt ==,故 原式=22sin sin 3333cos |0a ta ta t e adt aeππππ⋅⋅==⎰.(法二)容易看出积分弧段关于y 轴对称,而被积函数是关于变量x 的奇函数,故0y Lxe ds =⎰【例10.18】 求2()Lx y ds +⎰,其中L 为圆周222x y a +=.解 由对称性得0Lxyds =⎰,故22222()(2)()2LLLLx y ds x xy y ds x y ds xyds +=++=++⎰⎰⎰⎰2223022LLa ds a ds a a a ππ=+==⋅=⎰⎰对坐标的线积分,对称性为,当平面曲线L 是分段光滑的,关于x 对称,L 在上半平面与下半平面部分的走向相反时,若P 对y 为偶函数,则,0LPdx =⎰奇函数,则12LL Pdx Pdx =⎰⎰。
大学高数第十章曲线积分与曲面积分课后参考答案及知识总结
,
原式=
注:利用二重积分的被积函数的奇偶性及积分区域的对称性有 .
★★4.利用曲线积分,求星形线 所围成图形的面积。
解:由公式
★★5.求双纽线 所围区域的面积。
解:双纽线的极坐标方程为:
由图形的对称性知:
★★6.计算 ,其中 为圆周 的顺时针方向。
解: 参数方程为: 变化从 到
原式
原式
法二: 线积分与路径无关。
原式 =
★★15.利用曲线积分,求下列微分表达式的原函数:
(1) ;
(2) ;
(3) .
解:(1) ,
是某函数的全微分
.
(2)
是某函数的全微分
.
(3)
是某函数的全微分
★★16.设有一变力在坐标轴上的投影为 , ,改变力确了一个力场.
证明质点在此场内移动时,场力所作的功与路径无关.
(1)螺旋形弹簧关于 轴的转动惯量 ;
(2)螺旋形弹簧的重心.
解:
(1)
.
(2)
螺旋形弹簧关于 平面的静力矩分别为:
同法得:
.
,
.
提高题
★★★1.计算 ,其中 为正向圆周 ,直线 及 轴在第一项限内所围成的扇形的整个边界.
解: 与 在第一象限的交点为 .
如图:
;
; .
则原式
★★★★2.计算 ,其中 为圆柱面 与锥面 的交线.
解:摆线的参数方程为:
原式
★★5.计算曲线积分 ,其中 为螺旋线 上相应于 从 到 的一段弧。
解:
原式
★★6.计算曲线积分 ,其中 为折线 ,这里 , , , 依次为点 , , , .
解:如图,原式=
高等数学第十章《曲线积分与曲面积分》
第十章 曲线积分与曲面积分一.曲线积分的计算 (1)基本计算1.第一类:对弧长线积分的计算(,)Lf x y ds ⎰关键是用曲线L:(),(),x t y t ϕψ=⎧⎨=⎩()t αβ≤≤做变量替换(被积函数,积分变元,积分范围)(,)[(),(,()Lf x y ds f t t βαϕψαβ=<⎰⎰例 L 为圆周221,x y +=则22xy Le ds +=⎰2e π 参数方程,曲线代入解 cos :(02)sin x L y θθπθ=⎧≤≤⎨=⎩ds d θθ==22x y Leds +=⎰202ed e πθπ=⎰例 计算2⎰L x ds ,其中2222:(0)0⎧++=>⎨-=⎩x y z a L a x y . (8分)解 由于 22222222::00⎧⎧++=+=⇒⎨⎨-=-=⎩⎩x y z a x z a L L x y x y 所以L 的参数方程可表示为:(02)sin θθπθ⎧=⎪⎪⎪=≤≤⎨⎪⎪=⎪⎩x L y t z a (3分)θθ==ds ad (2分) 故23222cos 22ππθθ==⎰⎰La a x ds ad(3分) 【例10.22】求⎰,式中L 为圆周22(0)x y ax a +=>解 L 的极坐标方程为:,(),cos 22L ds ad r a θθππθθθθ=⎧-≤≤==⎨=⎩则222cos 2a ad a ππθθ-=⋅=⎰⎰第二类:对坐标的线积分的计算 关键是用曲线L:(),(),x t y t ϕψ=⎧⎨=⎩(:)t αβ→做变量替换(被积函数,积分变元,积分范围)''(,)(,){[(),()]()[(),()]()}LP x y dx Q x y dy P t t t Q t t t dt βαϕψϕϕψψ+=+⎰⎰例 设L 为抛物线2y x =从点()0,0到()2,4一段弧,则()22Lx y dx -=⎰5615-注意微元,及参数方程的形式【例10.17】 求2L ydx xdy x +⎰,其中L 是曲线ln y x =上从点(1,0)到点(,1)e 的一段弧. 解 由ln y x =得1,ydx dy x e x==,故原式=1121002()|y y ydy e dy y e e +=+=⎰⎰⑵ 基本技巧① 利用对称性简化计算;对弧长的线积分,对称性同二重积分 例 计算3222(),Lx y ds L x y R 其中:++=⎰解:33()LLLx y ds xds y ds =+=0+⎰⎰⎰ 第一个L 关于y 对称,第二个L 关于x 对称【例10.15】 求yL xe ds ⎰,其中L 是由cos (0)sin x a ta y a t =⎧>⎨=⎩所表示的曲线上相应于233t ππ≤≤的一段弧.解 (法一)ds adt ==,故 原式=22sin sin 3333cos |0a ta ta t e adt aeππππ⋅⋅==⎰.(法二)容易看出积分弧段关于y 轴对称,而被积函数是关于变量x 的奇函数,故0y Lxe ds =⎰【例10.18】 求2()Lx y ds +⎰,其中L 为圆周222x y a +=.解 由对称性得0Lxyds =⎰,故22222()(2)()2LLLLx y ds x xy y ds x y ds xyds +=++=++⎰⎰⎰⎰2223022LLa ds a ds a a a ππ=+==⋅=⎰⎰对坐标的线积分,对称性为,当平面曲线L 是分段光滑的,关于x 对称,L 在上半平面与下半平面部分的走向相反时,若P 对y 为偶函数,则,0LPdx =⎰奇函数,则12LL Pdx Pdx =⎰⎰。
第10章曲线积分和曲面积分参考解答
第10章曲线积分和曲⾯积分参考解答1l ()()213122001211418312l xds x ==?+= ()1211212Ll l xds xdsxds =+=+??蜒? (2)()22234Lxy x y ds ++??,L 为椭圆22143x y +=,其周长为a 。
解:()()22222342341212LLy ds xyds x y ds ds a ++=++==蜒蜒注意第⼀类曲线积分的对称性:若曲线关于x (y )轴对称,⽽被积函数关于y (x )为奇函数,则曲线积分为零!(3)L,L 为圆周22x y ax +=(0a >)。
解:圆周之参数⽅程为cos 22sin 2a a x t a y t ?=+=??(02t π≤≤),故22200cos22La tdtππ==2222002cos cos cos2a u du a udu udu aππππ(4)Lzds,L为()0 cossin0x t ty t t t tz t==≤≤=解:()322123tLzds t==+-Lx ds,L圆周为2222x y z ax y z++=++=解:因222L L Lx ds y ds z ds==蜒?,故()222223112333L L Lx ds x y z ds a ds aπ=++==蜒?2、计算下列对坐标的曲线积分:(1)()()2222Lx y dx x y dy++-1,1再到点()2,0的⼆线段。
x解:()1:01L y x x=≤≤,()2:212L y x x=-≤≤()()2222LI x y dx x y dy=++-()()()()1222222222L Lx y dx x y dy x y dx x y dy =++-+++-()()()()1222222=++----()122201222x dx x dx =+-??43=(作代换2t x =-,知第⼆个定积分与第⼀个相等)(2)23Lydx xzdy yz dz -+??,L 是圆周2222x y zz ?+=?=?,从z 轴正向看去,该圆周取逆时针⽅向。
(完整版)第十章曲线积分与曲面积分练习题
第十章 曲线积分与曲面积分§10.1 对弧长曲线的积分一、判断题1.若f(x)在(-+∞∞,)内连续,则⎰badx x f )(也是对弧长的曲线积分。
( )2.设曲线L 的方程为x=)(y ϕ在[βα,]上连续可导则⎰⎰'+=Ldyy y y f ds y x f βαϕϕ2)]([1)),((),(( )二、填空题1.将⎰+Lds y x)(22,其中L 为曲线x=a(cost+tsint),y=a(sint-tcost)()20π≤≤t 化为定积分的结果是 。
2.⎰+L ds y x )(= ,其中L 为连接(1,0)和(0,1)两点的直线段。
三、选择题1.⎰+Lds y x )(22=( ),其中L 为圆周122=+y x (A )⎰02πθd (B )⎰πθ2d (C )⎰πθ22d r (D )⎰πθ22d2.⎰Lxds =( ),L 为抛物线2x y =上10≤≤x 的弧段。
(A ))155(121- (B ))155(- (C )121 (D ))155(81-四、计算⎰+Cds y x )(,其中C 为连接点(0,0)、(1,0)、(0,1)的闭折线。
五、计算⎰++L ds z y x )2(22,其中L 为⎩⎨⎧=++=++02222z y x R z y x六、计算⎰+Ln ds y x)(22,L 为上半圆周:)(222N n R y x ∈=+七、计算⎰+Ly x ds e22,其中L 为圆周222a y x =+,直线y=x 和y=0在第一象限内围成扇形的边界。
八、求半径为a ,中心角为ϕ2的均匀圆弧(ρ=1)的重心。
§10.2 对坐标的曲线积分一、判断题1.定积分也是对坐标的曲线积分。
( ) 2.022=+-⎰L y x ydx xdy ,其中L 为圆周122=+y x 按逆时针方向转一周。
( )二、填空题1.ydz x dy y dx x 2233++⎰Γ= ,其中Γ是从点A (1,2,3)到点B (0,0,0)的直线段AB 。
高数第十章线面积分习题和答案
⾼数第⼗章线⾯积分习题和答案第⼗章曲线积分曲⾯积分练习题A 组⼀.填空题1. 设L 是 122=+y x 上从)0,1(A 经)1,0(E 到)0,1(-B 的曲线段,则?Lydy e 2=2.设?MN 是从M(1,3) 沿圆 2)2()2(22=-+-y x ⾄点 )1,3(N 的半圆,则积分+MNxdy ydx =3. L 是从)6,1(A 沿6=xy ⾄点)2,3(B 的曲线段,则++Ly x xdy ydx e )( =4. 设L 是从)0,1(A 沿1222=+y x ⾄点2,0(B )的曲线段,则+Ly x y x dy ye dx xe 222 =5. 设L 是 2x y = 及 1=y 所围成的区域D 的正向边界,则+Ldx y x xy )(33 + dy y x x )(242+ = 6. 设L 是任意简单闭曲线,b a ,为常数,则?7. 设L 是xoy 平⾯上沿逆时针⽅向绕⾏的简单闭曲线,且9)34()2(=++-?dy y x dx y x L,则L 所围成的平⾯区域D 的⾯积等于8. 常数 k = 时,曲线积分?+Ldy x kxydx 2与路径⽆关。
9.设是球⾯ 1222=++z y x ,则对⾯积的曲⾯积分∑++ds z y x 222 =10.设L 为)0,0(o , )0,1(A 和)1,0(B 为顶点的三⾓形围成的线,则对弧长的曲线积分? Lds =11. 设L 是从点)1,1(到)3,2(的⼀条线,则-++Ldy y x dx y x )()(=12. 设L 是圆周 t a x cos =, t a y sin = )20(π≤≤t ,则+LdS y x 322)(=13. 设为曲⾯2222a z y x =++,则??∑dS z y x 222=⼆、选择题1.设→→+=j y x Q i y x P A ),(),(,D y x ∈),(且P ,Q 在域D 内具有⼀阶连续偏导数,⼜L :? AB 是D 内任⼀曲线,则以下四个命题中,错误的是()+LQdy Pdx 与路径⽆关,则在D 内必有yPx Q ??≡?? B .若?Lds A 与路径⽆关,则在D 内必有单值函数),(y x u ,使得dy y x Q dx y x P y x du ),(),(),(+=C .若在D 内yPx Q ??≡??,则必有?L ds A ·与路径⽆关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2 122 5 LL⎰⎝⎭ 第十章曲线积分与曲面积分习题简答习题 10—11 计算下列对弧长的曲线积分:(1) I =⎰Lxds ,其中 L 是圆 x 2 + y 2 = 1中 A (0,1) 到 B (, - ) 之间的一段劣弧;解: (1 +) .(2) ⎰L(x + y +1)ds ,其中 L 是顶点为O (0, 0), A (1, 0)及 B (0,1) 所成三角形的边界;解: ⎰L (x - y + 1)ds = 3 + 2 .(3)⎰x 2 + y 2 ds ,其中 L 为圆周 x 2 + y 2 = x ;解: ⎰ x 2 + y 2 ds = 2 .(4) x 2 yzds ,其中 L 为折线段 ABCD ,这里 A (0, 0, 0) , B (0, 0, 2), C (1, 0, 2),LD (1, 2, 3) ;解:⎰Lx 2 yzds =8.3zB (0, 0, 2)D (1, 2,3)C (1, 0, 2)2 求八分之一球面 x 2+ y 2 + z 2= 1(x ≥ 0, y ≥ 0, z ≥ 0) 的边界曲线的重心,设曲线的密度= 1 。
解 故所求重心坐标为⎛4 , 4 ,4 ⎫ .A (0, 0, 0)yx3 3 3⎪习题 10—21 设 L 为 xOy 面内一直线 y = b ( b 为常数),证明12yAC oxB⎰⎰⎰L x - y + z = 2 , ⎰证明:略.2 计算下列对坐标的曲线积分: ⎰LQ (x , y )dy = 0 。
(1) ⎰Lxydx ,其中 L 为抛物线 y = x 上从点 A (1, -1) 到点 B (1,1) 的一段弧。
24解 : ⎰Lxydx = 5。
(2) (x 2 + y 2 )dx + (x 2 - y 2 )dy ,其中 L 是曲线 y = 1 - 1 - x 从对应于 x = 0 时的点到Lx = 2 时的点的一段弧;解(x 2 + y 2 )dx + (x 2 - y2 )dy = 4 . L 3(3) ⎰Lydx + xdy , L 是从点 A (-a , 0) 沿上半圆周 x 2 + y 2 = a 2 到点 B (a , 0) 的一段弧;解 ⎰L ydx + xdy = 0.(4) xy 2dy - x 2 ydx ,其中 L 沿右半圆 x 2 + y 2 = a 2 以点 A (0, a ) 为起点,经过点C (a , 0) L到终点 B (0, -a ) 的路径;解 ⎰L xy 2dy - x 2 ydx = -a 4。
4(5)⎰L x dx + 3zy dy - x ydz ,其中 L 为从点 A (3, 2,1) 到点 B (0, 0, 0) 的直线段 AB ; 32 20 3 87 解⎰ x 3dx + 3zy 2dy - x 2 ydz = 87⎰ t dt = - 。
L 1 4⎧x 2 + y 2 = 1 ,(6) I = (z - y )dx + (x - z )dy + (x - y )dz , L 为椭圆周⎨ 且从 z 轴⎩正方向看去, L 取顺时针方向。
解: = -2。
习题 10—31. 利用曲线积分求下列平面曲线所围成图形的面积:⎩L2⎰+ + - ⎧x = a cos 3 t ,(1) 星形线⎨ y = a sin 3t , ( 0 ≤ t ≤ 2);)解: = 3a 2 。
8(2) 圆 x 2 + y 2 = 2by ,( b > 0 );解: =b 2 。
2 利用格林公式计算下列曲线积分: (1)方向;⎰ ( y - x )dx + (3x + y )dy ,其中 L 是圆(x - 1)2 + ( y - 4)2 = 9 ,方向是逆时针(2)(2)解:= 18。
ydx + ( 3 sin y - x )dy ,其中 L 是依次连接 A (-1, 0), B (2,1), C (1, 0) 三点的折线 L段,方向是顺时针方向。
解 :2 .(3)(3)(e x sin y - my )dx + (e xcos y - m )dy ,其中 m 为常数, L 为圆 Lx 2 + y 2 = 2ax 上从点 A (a , 0) 到点O (0, 0) 的一段有向弧;解 : = 1ma 2 -0 = 1m a 2 。
(4) (4)针方向; 2 ⎰Lxdy - ydx x 2 + y 2 2,其中 L 为椭圆4x 2 + y 2= 1 ,取逆时 解= ⎰0 d = 2.∂u2 2 2 2 ∂u(5)⎰L∂n ds ,其中u (x , y ) = xu 沿 L 的外法线方向导数。
+ y , L 为圆周 x + y= 6x 取逆时针方向,∂n是解⎰ ∂uds = 36。
L ∂n3 证明下列曲线积分在整个 xOy 面内与路径无关,并计算积分值:(1)(2,1)(0,0)(2x y )dx (x 2 y )dy ;∂P ∂Q解 令 P = 2x + y , Q = x - 2 y ,则 ∂y = 1 = ∂x在整个y0(0, 0)oA (2a , 0) xyB (2,1)⎰ ⎰⎰+ + - (2,1)⎰(1,2)⎰+ (2,1)xOy 面内恒成立,因此,曲线积分 (0,0)(2x y )dx (x 2 y )dy 在整个 xOy 面内与路径无关。
为了计算该曲线积分,取如右图所示的积分路径,则有⎰(0,0)(2x + y )dx + (x - 2 y )dy = 4 +1 = 5 。
(2)(x ,y )(2x cos y - y 2 sin x )dx + (2 y cos x - x 2 sin y )dy ;(0,0)解 令 P = 2x cos y - y 2 sin x , Q = 2 y cos x - x 2 sin y ,则∂P= -2( y sin x + x sin y ) =∂Q在整个 xOy 面内恒成立,因∂y∂x此 ,( x , y )(2x cos y - y 2 sin x )dx + (2 y cos x - x 2 sin y )dy 在(0,0)整个 xOy 面内与路径无关。
为了计算该曲线积分,取如右图所 示的积分路径,则有(x ,y )(2x cos y - y 2 sin x )dx + (2 y cos x - x 2 sin y )dy(0,0)= x 2 cos y + y 2 cos x 。
(3)⎰(2,1)(x )dx +( y )dy ,其中(x ) 和( y ) 为连续函数。
∂P ∂Q解 令 P =(x ) , Q =( y ) ,则 ∂y = 0 = ∂x在整个 xOy 面内恒成立,因此,曲线积(1,2)分(2,1)(x )dx ( y )dy 在整个 xOy 面内与路径无关。
为了计算该曲线积分,取如右图所示的积分路径,则有(1,2)12⎰(2,1)(x )dx +( y )dy = ⎰2(x )dx +⎰1 ( y )dy 。
4 验证下列 P (x , y )dx + Q (x , y )dy 在整个 xOy 面内为某一函数u (x , y ) 的全微分,并求出这样的一个u (x , y ) :(1) (2x + sin y )dx + x cos ydy ; 解 令 P = 2x + sin y , Q = x cos y∂Q= cos y , ∂P= cos y ∂x ∂y∴ 原式在全平面上为某一函数的全微分,取yB (x , y )O A (x , 0)xyC (1, 2)B (1,1) A (2,1)OxyB (x , y )•O•A (x , 0) x⎰⎰⎰ (x0 , y0 ) = (0,0) ,u(x, y) =( x, y ) Pdx +Qdy = x 2+x sin y(0,0)(2)(x2+ 2xy -y2 )dx + (x2- 2xy -y2 )dy ;解 因为 P =x 2+ 2xy -y2,Q =x 2- 2xy -y2∂Q,所以∂x= 2x - 2 y =∂P在整个∂yxOy 面内恒成立,因此,:在整个xOy 面内,(x2+ 2xy -y2 )dx + (x2- 2xy -y2 )dy 是某一函数u(x, y) 的全微分,即有(x2+ 2xy -y2 )dx + (x2- 2xy -y2 )dy =du 。
易知u(x, y) =1x3+x2y -xy2-1y3+C 。
3 3(3)e x(1 + sin y)dx + (e x+ 2sin y) cos ydy 。
解令P(x, y) =e x(1 + sin y) ,Q(x, y) = (e x+ 2sin y) cos y ,则在全平面上有∂Q=∂P=e x cos y ,满足全微分存在定理的条件,故在全平面上,∂x ∂ye x(1 + sin y)dx + (e x+ 2sin y) cos ydy 是全微分.u(x, y) =e x- 1 +e x sin y + sin2y .5可微函数f (x, y) 应满足什么条件时,曲线积分⎰L f (x, y)( ydx +xdy)与路径无关?解令P =yf (x, y) ,Q =xf (x, y) ,则∂P=∂y f (x, y) +yfy(x, y) ,∂Q=∂xf (x, y) +xfx(x, y) 。
当∂P=∂Q∂y ∂x,曲线积分⎰L f (x, y)( ydx +xdy) 在整个xOy 面内与路径无关。
⎩ ⎰⎰ x2+2y⎰⎰ x2+2y⎰⎰ x 2 + 2y习题 10—41当∑ 为 xOy 面内的一个闭区域时,曲面积分⎰⎰ f (x , y , z )dS 与二重积分有什么关系?∑答 当∑ 为 xOy 面内的一个闭区域 D 时, ∑ 在 xOy 面上的投影就是 D ,于是有⎰⎰ f (x , y , z )dS ∑⎰⎰ f (x , y , 0)dxdy 。
D2 计算曲面积分⎰⎰(x 2 + y 2 )dS ,其中∑ 是∑(1) 锥面 z =及平面 z = 1所围成的区域的整个边界曲面;1解= ( 2+1)。
⎧z = y (2) yOz 面上的直线段⎨x = 0(0 ≤ z ≤ 1) 绕 z 轴旋转一周所得到的旋转曲面。
解2 。
23 计算下列曲面积分: (1)⎰⎰ dS ,其中∑ 是抛物面在 xOy 面上方的部分: z = 2 - (x 2 + y 2 ) , z ≥ 0 ;∑解: = 13π.3(2)⎰⎰(x + y + z )dS ,其中∑ 是上半球面 x 2 + y 2 + z 2 = a 2, z ≥ 0 ; ∑解: = 0 + πa 3 = πa 3 . (3) ⎰⎰ (x + 3y + z )dS ,其中∑ 为平面 x + y + z= 1在第一卦限的部分;∑2 2 234 7 61 .61(4)dS ,其中∑ 是柱面 x 2 + y 2 = R 2 被平面 z = 0 ﹑ z = H 所截得的部分.∑同理可求得解1dS =πH .∑1R1dS ∑2= πH . R x 2 + y 2 2⎰⎰ x 2 + 2y所以1dS ∑= 2πH . R4 求抛物面壳 z = 1(x 2 + y 2 ) ( 0 ≤ z ≤ 1 )的质量,此壳的密度为= z 。