300MW火电机组给水控制系统的设计
300MW机组给水控制系统设计分析
目录摘要....................................................... 错误!未定义书签。
Abstract.................................................... 错误!未定义书签。
1.绪论 (1)1.1课题研究意义 (1)1.2国内外研究现状综述 (1)1.2.1 国内现状综述 (1)1.2.2 国外现状综述 (2)1.3论文的主要工作 (2)2 给水全程控制系统 (4)2.1给水调节对象的动态特性 (4)2.1.1 给水扰动对水位的影响 (4)2.1.2 负荷扰动对水位的影响 (4)2.1.3 燃料量扰动对水位的影响 (5)2.2测量信号的自动校正 (6)2.2.1 水位信号的压力校正 (6)2.2.2 过热蒸汽流量信号压力、温度校正....................... 错误!未定义书签。
2.2.3 给水流量测量信号的温度校正 (9)2.3给水泵安全运行特性要求 (10)3 单元制给水全程自动控制系统 (12)3.1单元制机组给水系统介绍 (12)3.1.1 汽水循环过程概述 (12)3.1.2 主给水系统流程 (12)3.2锅炉给水全程控制的特点 (13)3.3汽包水位三冲量给水控制系统 (14)3.3.1 三冲量控制系统结构原理 (14)3.3.2 三冲量控制系统的工程整定 (15)3.3.3 汽包水位的串级控制系统 (17)3.4控制中的跟踪和切换 (18)3.4.1 三冲量和单冲量之间的无扰切换 (19)3.4.2 阀门和泵的运行及切换 (19)3.4.3 电动泵和汽动泵间的切换 (19)3.4.4 执行机构的手、自动切换 (19)4 丰城电厂300MW机组给水控制系统分析 (21)4.1300MW机组给水系统简介 (21)4.2MAX1000给水控制画面分析 (22)4.2.1 MAX1000中CCS画面基本功能介绍 (22)4.2.2 给水系统主要操作过程 (23)4.3给水控制系统的逻辑分析 (24)4.3.1 给水控制系统逻辑简图 (24)4.3.2 给水控制系统逻辑分析 (25)结论 (27)参考文献 (28)致谢....................................................... 错误!未定义书签。
给水系统分析
沈阳工程学院课程设计设计题目:300MW机组给水全程控制系统设计学院自动化学院班级自动化B13 学生姓名学号 2000000000 指导教师邓玮李玉杰职称副教授副教授起止日期:2014年06月23日起——至2014年06月29日止沈阳工程学院课程设计任务书课程设计题目:300MW机组给水全程控制系统设计学院自动化学院班级自动化B13学生姓名学号 2000000000 指导教师邓玮李玉杰职称副教授、副教授课程设计进行地点:教学楼F座619室任务下达时间:2014 年06 月23日起止日期2014年06月23日起——至2014年06月29日止自动化系主任2014年06月20日批准1.设计主要内容及要求;(1)给水控制对象动态特性分析;(2)给水控制系统控制方案设计与原理分析;(3)控制系统组态图分析;(4)CAD制图。
2.对设计说明书、论文撰写内容、格式、字数的要求;(1).课程设计说明书(论文)是体现和总结课程设计成果的载体,一般不应少于3000字。
(2).学生应撰写的内容为:中文摘要和关键词、目录、正文、参考文献等。
课程设计说明书(论文)的结构及各部分内容要求可参照《沈阳工程学院毕业设计(论文)撰写规范》执行。
应做到文理通顺,内容正确完整,书写工整,装订整齐。
(3).说明书(论文)手写或打印均可。
手写要用学校统一的课程设计用纸,用黑或蓝黑墨水工整书写;打印时按《沈阳工程学院毕业设计(论文)撰写规范》的要求进行打印。
(4). 课程设计说明书(论文)装订顺序为:封面、任务书、成绩评审意见表、中文摘要和关键词、目录、正文、参考文献。
3.时间进度安排;沈阳工程学院热工过程控制系统课程设计成绩评定表学院(系):自动化学院班级:自动化B13 学生姓名:摘要火力发电厂在我国电力工业中占有主要地位,是我国的重点能源工业之一。
大型火力发电机组具有效率高、投资省、自动化水平高等优点,在国内外发展很快。
给水控制系统是火电厂非常重要的控制子系统。
300MW火电机组DCS组态系统分析与调试课程标准.doc
成果由企业评审团(学生)和用户(授课教师、特约嘉宾)共同评议,并作为过程考核依据记录
在相关学习手册中。 课程设计的八个项目分别是:
项目一除盐水箱控制策略设计与调试;
项ห้องสมุดไป่ตู้二
凝汽器水位控制策略设计与调试;项目三除氧器水位、压力控制策略设计与调试;项目四
汽包给水控制策略设计与调试;项目五
项目一:除盐水箱控制策略设计与调试(4学时)
达成的能力标准:
1.能进行简单PID参数设置与调试;
2.能进行简单控制逻辑回路的跟踪与超驰策略阅读与测试;
3.能进行单元控制系统的物理意义分析、控制策略设计与调试。教学重点和难点:
教学重点:单元控制系统的物理意义分析、控制策略设计。教学难点:单元控制系统的物理意义分析、控制策略设计。教学内容:
(11)能掌握在线解除单元机组DCS逻辑闭锁的方法和原则;
3、职业素质养成目标
(1)团结协作;
(2)严谨细致;
(3)用于承担
4、职业技能证书考核要求:
不安排。
四、先修课程
《火电机组运行实习》课程基本内容为: (1)300MW火电机组仿真系统简介,各操作站的操作功能介绍;(2)锅炉点火操作体验; (3)单元机组启动前各辅机系统的恢复; (4)单元机组的点火、
(3)XDPS画面设
计;(4)XDPS的组态设计; (5)单元控制系统设计与调试;
(6)分散控制系统维护与故障排除。
通过本门课程学习, 学生可以掌握组态阅读基础,
为在线调试参数打下设备基础。
热工保护与程
序控制设计与调试课程内容为:
(1)单元机组
FSSS系统(含燃油顺序控制)逻辑测试与验收;
电厂应急消防供水自动控制系统
电厂应急消防供水自动控制系统在电厂运行过程中,消防供水系统的自动控制是非常重要的一环。
及时准确的供水可以有效应对突发火灾等紧急情况,保障人员的生命安全和电厂的正常运行。
因此,电厂应急消防供水自动控制系统的设计和运行至关重要。
首先, 在设计系统时,应该考虑到应急情况下的供水需求。
为了满足突发火灾等紧急情况下的大量水源需求,应急消防供水自动控制系统应具备足够的供水能力。
系统应该能够及时感知火灾,迅速启动供水设备,并向消防人员提供所需的水源。
其次, 在应急消防供水自动控制系统中,自动化控制是必不可少的。
系统应具备自动检测、自动报警、自动启动等功能。
当火灾发生时,系统应能够自动检测到火灾信号,并通过自动报警装置向消防人员发送警报。
同时,系统应能够自动启动供水设备,保障消防水源的及时供应。
另外, 应急消防供水自动控制系统的稳定性也是需要考虑的重要因素。
系统在长期运行过程中,应能够保持稳定的性能,不受外界因素的影响。
系统应采用可靠的设备,具备抗干扰能力,确保在紧急情况下的供水正常进行。
总之, 电厂应急消防供水自动控制系统的设计和运行对于电厂的生产安全至关重要。
合理的设计、自动化控制、稳定的性能是系统的关键要素。
只有通过科学规划和合理安装,才能保障系统的高效运行,最大限度地保护人员的生命安全和电厂的正常运行。
最后, 电厂应急消防供水自动控制系统的建设不仅仅是技术上的考量,还需要进行定期的检查和维护,确保系统的正常运行。
此外,相关人员应受到专业的培训,了解系统操作规程,提高应对紧急情况的能力。
只有在全面考虑各方面因素的基础上,电厂应急消防供水自动控制系统才能发挥最大的效用,确保电厂的安全生产。
300MW火电机组锅炉启动采用无电泵上水优化方案
连箱 来 汽切换 到 4段抽 汽直 至满 负荷 。
( )机 组 热态 ( 极 热态 ) 动 时 , 接 利 用 高 4 或 启 直
辅 汽源 冲动小 汽轮 机 . 动 主汽泵 上水 。 启
4 优 化 方 案 可 行 性 分 析
图 1 锅 炉 给 水 原 则 性连 接 系统
4 1 采 用除 氧器加 压法 向锅炉 上 水可行 性分 析… . 如图 l 示 . 所 由理 想流 体 的伯努里 方程有 :
步 满 足 锅 炉 给水 压 力 的需 要 。这 时仍 然 不 启 动 电
水 f 及 旁路 调节 f ( 1) - 以下简 称旁 路 f ) j -。 j
泵, 而是 利 用 高 压 辅 汽 联 箱 来 汽 作 为 汽 源 , 直接 启
动 主 汽 泵 , 以满 足 锅 炉 上 水 的 需要 。 当 负荷 升 至 10MW 时 , 2 进行 小 汽轮机 汽 源 的切换 , 高压 辅汽 从
摘 要 :针对山 东华 电国际十里泉发 电厂 30MW 机组 自然循环 汽包锅 炉启动 时给 水泵组运行 启动方式存在 的 0
问题 进 行 了分析 , 锅 炉 启 动 上 水 方 式进 行 了优 化 分 析研 究 。 阐 述 了 十 里泉 发 电厂 3 0 W 机 组 启 动 时 采 用 除氧 对 0M 器加 压 法 上 水 与 汽 动 给 水 泵组 上 水 代 替 电动 给 水 泵上 水的 锅 炉 上 水 优 化 方 案 的 应 用 实践 , 对 此 上 水 方 案 的优 越 并 性进行分析。
维普资讯
江
20 0 6年 5月
苏
电
机
工
程
第2 5卷 第 3期 7 3
Ja g uE e t c l n ie rn in s lcr a gn e g i E i
300MW火电机组锅炉给水泵汽轮机的优化
(h nhi t m T rieC . t . S aga 20 4 ,C i ) Sa ga Se ubn o Ld , hn hi 0 2 0 h a a n
Ab t a t Me s r s icu ig te p lc to fn w tc n lge a d n w o sr to sr c : au e , n ldn h a piain o e e h oo is n e c n tucin, a o td b ta d pe y se m tr ie u b n ma ua t in r si hsc u t n fcur g wo k n ti o nr y,fri rvn n e e tn fte a xlay se m u bn o rvn e d p mp f 0 o mpo ig a d p r cig o u iir ta tr ie frd ig fe u so f h i 30 MW o rg n rto es h rwi asn h i thn blt p we e e ain st , ee t riig t ermac ig a i y,a e b ig d ie td. h i r en el ae n Ke wo d : e r ya d p we n n e n y r s neg n o re gie r g;se m u b n c n tu to i ta tr ie; o srcin;p r cin eet f o
维普资讯
30弑 0 W火o2
, ’’’ ,’,’,, ,、
: 轮机 技术 : 汽
~t I… ・… ・ 一
3 0MW 火 电机 组 锅 炉 给 水 泵 汽 轮 机 的优 化 0
300MW火电机组给水控制系统的设计.
目录1选题背景 (2)1.1引言 (2)1.2设计目的及要求 (2)2方案论证 (3)2.1方案一 (3)2.2方案二 (4)3过程论述 (5)3.1总体设计 (5)3.2详细设计 (6)3.2.1信号的测量部分 (6)3.2.2单冲量控制方式 (10)3.2.3串级三冲量控制方式 (11)3.3信号监测 (12)3.3.1给水旁路调节阀控制强制切到手动 (12)3.3.2电动给水泵强制切到手动 (13)3.3.3汽动给水泵强制切到手动 (13)3.4工作方式 (13)3.5切换与跟踪 (13)3.5.1切换 (13)3.5.2跟踪 (14)3.6控制器选型 (14)4结论 (14)5课程设计心得体会 (15)6参考文献 (15)1选题背景:1.1引言火电厂在我国电力工业中占有主要地位,大型火力发电机组具有效率高,投资省,自动化水平高等优点,在国内外发展很快,如今随着科技的进步,大型火力发电厂地位显得尤为重要。
但由于其内部设备组成很多,工艺流程的复杂,管道纵横交错,有上千个参数需要监视、操作和控制,这就需要有先进的自动化设备和控制系统使之正常运行,并且电能生产要求高度的安全可靠和经济性。
大型发电单元机组是一个以锅炉,高压和中、低压汽轮机和发电机为主体的整体。
锅炉作为电厂中的一个重要设备,起着重要的作用,根据生产流程又可以分为燃烧系统和汽水系统。
其中,汽包锅炉给水及水位的调节已经完全采用自动的方式加以控制。
给水全程控制系统是一个能在锅炉启动、停炉、低负荷以及在机组发生某些重大事故等各种不同的工况下,都能实现给水自动控制的系统而且从一种控制状态到另一种控制状态的判断、转换、故障检测也常常靠系统本身自动完成。
1.2设计目的及要求本次课程设计的要求是根据大型火电机组的生产实际设计出功能较为全面的300 MW火电机组全程给水控制系统,该控制系统的设计任务是使给水量与锅炉的蒸发量相适应,维持汽包水位在规定的范围内。
300mw锅炉给水dcs控制系统设计进程日记
300mw锅炉给水dcs控制系统设计进程日记第一部分:主题介绍1.1 了解300mw锅炉给水dcs控制系统设计在工业生产中,锅炉给水系统是一个非常重要的部件,它直接影响着锅炉的稳定运行和产生的蒸汽质量。
而dcs控制系统则是一种用于工业自动化控制的先进技术,它能够提高生产效率,降低能耗,保证生产安全。
对于300mw锅炉给水dcs控制系统的设计进程,我们需要进行全面的评估和深入的探讨。
1.2 本文结构本文将从300mw锅炉给水dcs控制系统的设计背景、流程、关键技术和个人观点等方面展开探讨。
通过对整个设计进程的梳理和分析,希望能够为读者提供一份高质量、深度和全面的文章。
第二部分:300mw锅炉给水dcs控制系统设计背景介绍2.1 300mw锅炉给水系统的重要性300mw锅炉给水系统是整个锅炉系统中至关重要的一个环节。
它主要负责给水、减温、净化等工作,直接关系到锅炉的安全运行和蒸汽产量。
而dcs控制系统的应用,则能够提高系统的自动化、集成化和智能化程度,从而更好地控制给水流量、调节温度和保证水质。
2.2 设计背景的重要性了解300mw锅炉给水dcs控制系统设计的背景,并不仅是对一个具体项目的了解,更是对工业制造技术的认识。
只有了解了项目所处的背景,我们才能更深入地理解设计的必要性和实际应用,这对于提高我们的专业水平具有非常重要的意义。
第三部分:300mw锅炉给水dcs控制系统设计流程3.1 需求分析和系统设计在锅炉给水dcs控制系统的设计过程中,首先需要进行需求分析。
这包括对给水系统的工作环境、工艺要求、安全标准等方面的详细了解,以及对dcs控制系统的功能、性能、稳定性等方面的分析。
根据需求分析的结果,设计出合理的系统框架和硬件配置,为后续的软件编程和调试奠定基础。
3.2 软件编程和调试软件编程是整个dcs控制系统设计的关键环节,它直接影响着系统的运行效果和稳定性。
在这个阶段,需要根据需求分析的结果,针对系统的各项功能进行精细化的编程设计,并运用先进的算法和技术,提高系统的响应速度和控制精度。
300MW火电机组协调控制系统的设计说明
目录1.选题背景 (1)1.1 设计背景 (1)1.2 设计任务 (1)2.方案论证 (1)2.1 协调控制系统的功能 (1)2.2 单元机组的运行方式 (2)2.2.1 定压运行方式 (2)2.2.2 滑压运行方式 (2)2.2.3 联合运行方式 (2)2.3 单元机组负荷控制方式 (3)2.3.1 以锅炉跟随为基础的协调控制方式 (3)2.3.2以汽轮机跟随为基础的协调控制方式 (4)2.3.3 综合型协调控制方式 (5)3.过程论述 (5)3.1负荷指令管理部分 (6)3.1.1负荷指令运算回路 (6)3.1.2负荷指令限制回路 (7)3.1.3 负荷增/减闭锁BLOCK I/D (10)3.1.4 负荷迫升/迫降 RUN UP/DOWP (11)3..2机炉负荷控制部分 (12)3.2.1 锅炉主控制器 (12)3.2.2 汽轮机主控制器 (13)4.结果分析 (14)5.总结 (14)6.心得体会 (14)7.参考文献 (15)1.选题背景1.1 设计背景随着电力工业的发展,高参数、大容量的火力发电机组在电网中所占的比例越来越大。
大容量机组的汽轮发电机和锅炉都是采用单元制运行方式。
所谓单元制就是由一台汽轮发电机组和一台锅炉所组成的相对独立的系统。
单元制运行方式与以往的母管制运行方式相比,机组的热力系统得到了简化,而且使蒸汽经过中间再热处理成为可能,从而提高了机组的热效率。
单元机组的协调控制系统(Coordinated Control Systen简称CCS)是根据单元机组的负荷控制特点,为解决负荷控制中的外两个能量供求平衡关系而提出来的一种控制系统。
从广义上讲,这是单元机组的负荷控制系统。
它把锅炉和汽轮发电机作为一个整体进行综合控制,使其同时按照电网负荷需求指令和部主要运行参数的偏差要求协调运行,即保证单元机组对外具有较快的功率响应和一定的调频能力,对维持主蒸汽压力偏差在允许围。
1.2 设计任务本设计要求通过运用过程控制的基本概念、基础理论与方法,根据大型火电机组的实际生产,对火电机组的过程控制系统进行分析,设计出原理正确,功能较为全面的300MW火电机组协调控制系统。
华能上安电厂300 MW机组给水泵汽轮机控制系统的改造开发及应用
华能上安电厂300 MW机组给水泵汽轮机控制系统的改造开发及应用景效国;张建军;张伟;刘伟;刘玉杰;郄彦明;刘庆红;李素芳;陈勇【期刊名称】《热力发电》【年(卷),期】2000(000)005【摘要】介绍华能上安电厂1号机组给水泵汽轮机控制系统(MEH)改造背景、系统配置、主要功能及其软件结构.实践表明,采用INFI90硬件对GE 公司的给水泵汽轮机控制系统进行改造,能够提高机组运行经济性和自动化水平,为同类型机组MEH改造提供了经验.【总页数】2页(P41-42)【作者】景效国;张建军;张伟;刘伟;刘玉杰;郄彦明;刘庆红;李素芳;陈勇【作者单位】国家电力公司热工研究院,西安,710032;国家电力公司热工研究院,西安,710032;国家电力公司热工研究院,西安,710032;国家电力公司热工研究院,西安,710032;华能上安发电厂,河北井陉,050310;华能上安发电厂,河北井陉,050310;华能上安发电厂,河北井陉,050310;华能上安发电厂,河北井陉,050310;华能上安发电厂,河北井陉,050310【正文语种】中文【中图分类】TM61【相关文献】1.广州珠江电厂300 MW机组分散控制系统一体化改造的经验 [J], 郑建平2.湛江发电厂一期2×300MW机组给水泵汽轮机保护系统的换型改造及完善 [J], 庞继清;黄康强;梁中荣3.铁岭发电厂300MW机组DCS改造及协调控制系统投入 [J], 韩庆民;刘双宝;王迎东4.铁岭电厂300MW机组给煤机控制系统改造 [J], 杨庆柏;韩希昌5.华能上安电厂2×350MW机组2号机给水泵汽轮机电液调节控制系统改造 [J], 张伟;倪申;景效国;李轶因版权原因,仅展示原文概要,查看原文内容请购买。
分散控制系统设计若干技术问题规定
分散控制系统设计若干技术问题规定能源部电力规划设计管理局关于颁发《分散控制系统设计若干技术问题规定》的通知电规发(1993)103号各电管局、省(自治区)电力局、各部属电力设计院、各省(自治区)电力设计院:为适应大型火电机组推广应用分散控制系统的需要,我局于1991年底委托华北电力设计院编制《分散控制系统设计技术规定》。
但为了满足当前设计工作的急需,我局研究决定由华北电力设计院先行编制了《分散控制系统设计若干技术问题规定》,经组织审查,现批准颁发执行。
各单位在执行过程中如发现不妥之处,请随时函告我局。
1993年4月19日分散控制系统设计若干技术问题规定一、单机容量为300MW及以上机组的工程或成套进口机组工程且供货商有配套提供分散控制系统成功经验时,宜采用分散控制系统(DCS)。
二、分散控制系统应选用在大型火电机组上有成功应用经验,适合电站特点,且性能/价格比好的产品。
采用进口分散控制系统时,宜从与国内制造厂有合作关系和有良好技术支撑的产品中招(议)标择优确定。
三、分散控制系统的功能应包括:数据采集和处理系统(DAS)以及主要模拟量控制系统(MCS)。
经技术经济比较合理时,也可将单元机组的辅机顺序控制系统(SCS)和锅炉炉膛安全监控系统(FSSS)等纳入分散控制系统。
辅助车间或辅助系统不采用分散控制系统。
四、采用分散控制系统后,宜按以CRT和键盘为监视和控制中心,配以少量必要的常规仪表和控制设备,实现一套单元机组炉机电统一集中控制的原则设计。
五、单元机组辅机顺序控制设计宜以子组级控制为主。
300MW及以上容量机组宜具有汽轮机自动升速和升负荷控制功能,但不设置汽轮机、锅炉或单元机组全自动启停的机组级顺序控制功能。
六、在单元控制盘(台)上控制的单机容量为300MW及以上机组的主要辅机和阀门(挡板)的顺序逻辑控制宜纳入单元机组的顺序控制系统。
当顺序控制系统与分散控制系统能联网通信时,需在单元控制盘(台)上控制的其他辅机和阀门(挡板)也可利用DCS的CRT显示和键盘操作。
本科生毕业设计-串级三冲量给水控制系统
引言自动控制技术在工程和科学发展中起着极为重要的作用,在火电厂的生产过程中也采用了自动控制技术。
在火电厂的生产过程中采用的热工自动控制系统,是伴随着社会对电能需求的日益增加、单机容量的日益扩大和自动控制技术在火力发电厂中应用的深度与广度与日俱增而逐步发展起来的。
电厂热工自动化水平的高低是衡量电厂生产技术的先进与否和企业现代化的重要标志。
其中,汽包锅炉给水及水位的调节已经完全采用自动的方式加以控制,在不需要操作人员干预的情况下,可以很好的完成生产过程中的给水及水位控制,大大提高了生产效率。
汽包锅炉给水控制系统的任务是使给水量适应锅炉蒸发量,并使汽包中水位保持在一定的范围内。
只有保证汽包水位的波动在允许范围内,才能实现机组安全经济运行。
因此,汽包水位是影响整个机组安全经济运行的重要因素,所以就要有一套较好的控制方案,来实现汽包水位的控制。
从传统的控制方式来看,它们要么系统结构简单成本低,却不能有效的控制锅炉汽包“虚假水位”现象,要么能够在一定程度上控制“虚假现象”,系统却过于复杂,成本投入过大。
目前工业控制急需一种系统简单,并且能够控制“虚假水位”,具有高性价比的控制系统。
汽包锅炉的给水调节系统有三种基本结构:单冲量调节系统结构、单级三冲量调节系统结构、串级三冲量调节系统结构,低负荷阶段,由于疏水和锅炉排污等因素的影响,给水和蒸汽流量存在着严重的不平衡,而且流量太小时,测量误差大,故在低负荷阶段,很难采用三冲量调节方式,一般均采用单冲量调节方式。
负荷达到一定值以上时,疏水和排污阀逐渐关闭,汽、水趋于平衡,流量逐渐增大,测量误差逐渐减小,这时原则上可采用三冲量调节方式。
但由于单级三冲量调节系统要求蒸汽流量和给水流量信号在稳态时必须相等,否则汽包水位存在静态偏差,而且由于测量装置及变送器的误差等因素的影响,实际上现场这两个信号在稳态时,经常难以做到完全相等,而且单级三冲量调节系统一个调节器参数整定需兼顾的因素多。
300MW火电机组给水控制的设计
300MW火电机组给水控制的设计摘要:随着发电机组容量的增加和参数的不断提高,机组的控制与运行管理变得越来越复杂和困难。
为了减轻运行人员的劳动强度,保证机组的安全运行,要求实现更为先进,适合范围更宽,功能更为完备的自动控制系统。
这就产生了全程控制系统。
所谓全程控制系统是指在启停和正常运行时均能实现自动控制的系统。
给水控制系统是火力发电厂非常重要的控制子系统,稳定的汽包水位是汽包锅炉安全运行的重要指标。
火电厂给水系统构成复杂,汽包水位受到机组负荷,汽包压力、温度,给水量等多项参数的影响;不同负荷阶段,给水设备不同,又需要采取不同的控制方式。
关键词:全程控制系统无扰切换单级三冲量串级三冲量300 MW thermal power unit water control designAbstract:Along with the increase of generating unit capacity and parameter unceasing enhancement, the unit control and operation management become more and more complex and difficult. In order to reduce the operational personnel Labour intensity, guarantee the unit operation, demanding more advanced, suitable for a wider, function and more complete automatic control system. This creates the whole control system. So-called process control system refers to the start-stop and normal operation are to achieve automatic control system. Water control system is the coal-fired power plant very important control subsystem, stable drum drum water level is an important index of the safe operation of the boiler. Thermal water system structure is complex, the drum water level by the unit loads, steam pressure, temperature, water etc. Several parameters influence; Different load stage, water supply equipment, and the need to adopt different different control modes.Key words:Process control system Undisturbed switch Single grade three impulse Cascade three impulse1选题背景随着发电机组容量的增加和参数的不断提高,机组的控制与运行管理变得越来越复杂和困难。
300MW火电机组给水控制系统的设计
300MW火电机组给水控制系统的设计课程设计说明书学生姓名: LIUBORAN 学院: 班级:学号: 0807240705 自动化工程学院自动087班题目: 300MW火电机组给水控制系统的设计指导教师:蔚伟、侯一民职称: 副教授2021年11月14日目录1.1选题背景 .................................................................................................................................... 3 1.2技术要求 ........................................................................... ......................................................... 3 1.3 设计内容 ........................................................................... ...................................................... 4 2方案论证............................................................................ ............................................................ 5 2.1给水调节的动态特征 ........................................................................... ..................................... 5 2.2扰动信号 ........................................................................... ......................................................... 6 2.2.1给水扰动 ........................................................................... ..................................................... 6 2.2.2蒸汽流量扰动 ........................................................................... ............................................. 7 2.2.3 燃料量扰动 ........................................................................... ................................................ 8 2.3控制方案的选择 ........................................................................... ............................................. 9 2.3.1前馈-反馈三冲量给水控制系统 ........................................................................... ............. 10 2.3.2给水流量的调节的实现方法 ........................................................................... ................... 11 2.3.3系统的组成 ........................................................................... ............................................... 12 3、过程论述 ........................................................................... ........................................................ 12 3.1常规的水位控制系统的构成 ........................................................................... ....................... 12 3.1.1汽包水位测量器的选择 ........................................................................... ........................... 13 3.1.2液位检测元件的选择 ........................................................................... ............................... 14 3.1.3 流量变送器的选择 ........................................................................... .................................. 14 3.1.4调节器的选择 ........................................................................... ........................................... 15 3.1.5执行器的选择 ........................................................................... ........................................... 15 3.1.5.1阀门定位器的选择 ........................................................................... ............................... 15 3.1.5.2其他执行元件的选择 ........................................................................... ........................... 16 3.2测量信号的自动校正 ........................................................................... ................................... 16 3.2.1汽包水位的压力校正 ........................................................................... ............................... 16 3.2.2过热蒸汽流量信号的压力和温度校正 ........................................................................... ... 18 3.2.3给水流量测量信号的校正 ........................................................................... ....................... 18 3.3各种工况之间的互相切换与跟踪 ........................................................................... ................ 20 3.3.1工况之间的切换 ........................................................................... ......................................... 20 3.3.2 工况之间的跟踪 ........................................................................... ...................................... 21 3.4控制系统静态试验 ........................................................................... ....................................... 21 3.4.1汽包水位测量系统检查 ........................................................................... ........................... 21 3.4.2信号流程检查 ........................................................................... ........................................... 22 3.4.3跟踪功能检查 ........................................................................... ........................................... 22 3.4.4其它一些控制功能检查 ........................................................................... ........................... 22 4、结论............................................................................ ............................................................... 22 5、课程设计心得体会 ........................................................................... ........................................ 23 6、参考文献 ........................................................................... .. (24)21选题背景:1.1选题背景火力发电厂是我国电力工业中占有主要地位,是我国的重点能源工业之一,大型火力发电机组具有效率高,投资省,自动化水平高等优点,在国内外发展很快,如今随着科技的进步,大型火力发电厂地位显得尤其重要。
300MW火电机组协调控制系统解读
课程设计说明书学生姓名:学号:学院:班级:题目:300MW火电机组协调控制系统指导老师:2010年 12 月 23 日1选题背景1.1设计目的通过本课程设计,使学生能较好的运用过程控制的基本概念、基础理论与方法,根据大型火电机组的生产实际,对火电机组的过程控制系统进行分析,设计出原理正确,功能较为全面的300MW火电机组协调控制系统。
随着单元机组的发展,必须将汽轮机和锅炉作为一个整体进行控制,而机、炉的调节特性有相当大的差别,锅炉是一个热惯性大、反应很慢的调节对象,而汽轮机相对是一个惯性小、反应快的调节对象。
因此要用协调控制系统,保证在满足负荷要求的同时,保持主要运行参数的稳定。
1.2设计内容和要求(1)负荷指令管理部分输入参数:外部负荷要求指令(就地指令,中调指令ADS,电网频率变化所要求负荷指令)。
输出参数:实际负荷指令错误!未找到引用源。
,锅炉负荷指令。
负荷指令限制回路:a、最大/最小允许负荷限制回路b、负荷返回回路(RB)常用辅机:送风机、引风机、给水泵、发电机失磁、备用、规定返回速率c、迫升/迫降回路(RUN UP/DOWN)d、闭锁增/减回路(BLOCK INCERASE/DECREASE)e、负荷快速切断回路(Fast Cut Back)负荷操作:LMCC(负荷管理中心)面板:增、减负荷按钮:中、高、低速选择;速度限制(速率整定在3%-5%)(2)机炉负荷控制部分:输入参数:第一级压力错误!未找到引用源。
,机前压力错误!未找到引用源。
、机前压力定值错误!未找到引用源。
、锅炉负荷指令、实际负荷指令错误!未找到引用源。
、频率偏差错误!未找到引用源。
、实发功率错误!未找到引用源。
输出参数:锅炉指令、至DEH的负荷指令锅炉主控制器:a、前馈信号形成错误!未找到引用源。
b、机前压力定值形成定压、滑压汽机主控:三个调节器:汽机机前压力调节器、电功率调节器、蒸汽流量调节器工作方式:a、以锅炉跟随为基础的CCS(功率控制)b、锅炉跟随(非电功率)c、汽机跟随(电功率)d、手动系统跟踪:a、汽机基本,且汽机处于(就地)控制时,实际负荷指令跟踪DEH负荷基准b、炉基本时,锅炉主控指令跟随锅炉负荷指令c、非功率控制方式时,电功率调节器输出跟踪错误!未找到引用源。
水位控制系统
讲师:
主要任务
锅炉给水控制系统是协调控制系统的主要 系统之一。锅炉给水控制的主要任务是使 锅炉的给水量与锅炉的蒸发量保持相对一 致,保证锅炉进出的物质平衡和正常运行 所需的工质。对于300MW火电机组普遍采 用的汽包锅炉来说,就是维持汽包水位在 允许范围内变化。所以,锅炉给水控制又 称“锅炉水位控制”
•
。
• 论采用何种控制手段,
对于汽包锅炉给水控 制系统来说,不外乎 采用以下三种基本结 构
(二)单级三冲量控制系统
• 单级三冲量给水控制系统 的基本结构如图所示,该 系统采用一个 PI 调节器, 并根据汽包水位、蒸汽流 量和给水流量三个信号的 变化去控制给水量。三冲 量给水控制系统在克服扰 动、维持汽包水位稳定、 提高给水控制质量方面优 于单冲量给水控制系统。
i 1 n
1-2、旁路阀单冲量控制回路
• 机组在启动或地负荷(0到X范围)时,由 一台电动给水泵向锅炉给水。控制回路特 点: • 单回路:之所以没有选择三冲量是因为, 小负荷时汽包虚假水位不太严重,另外小 负荷时流量测量误差很大。当然首先是单 回路在小负荷时已经能够很好的控制水位。
• 旁路阀:旁路阀原本是在开启大的给水阀 门之前开启的一种小流量阀们,目的是减
• 蒸汽流量信号作为前馈信号用 来维持负荷变动时的物质平衡, 由此构成的是一个前馈——反 馈双回路控制系统
二、给水全程控制系统
• 所谓给水全程控制,是指机组从启动到带
满负荷的全过程所实现的给水控制。目前, 大型火电机组,特别是300MW及以上的机 组,其汽包锅炉的给水控制系统大都采用 给水全程控制系统。这种系统并不是某种 单一的单冲量或三冲量控制系统,而是单 冲量和三冲量控制系统有机结合所构成的 给水控制系统,且具有完善的控制方式自 动切换和联锁逻辑。
300MW火电机组协调控制系统的设计(东北电力大学)
目录1.选题背景 1设计背景 1设计任务 12.方案论证 1协调控制系统的功能 1单元机组的运行方式 2定压运行方式 2滑压运行方式 2联合运行方式 2单元机组负荷控制方式 3以锅炉跟随为基础的协调控制方式 3以汽轮机跟随为基础的协调控制方式 4综合型协调控制方式 53.过程论述 5负荷指令管理部分 6负荷指令运算回路 6负荷指令限制回路 7负荷增/减闭锁BLOCK I/D 10负荷迫升/迫降 RUN UP/DOWP 113..2机炉负荷控制部分 12锅炉主控制器 12汽轮机主控制器 134.结果分析 145.总结 146.心得体会 147.参考文献 151.选题背景设计背景随着电力工业的发展,高参数、大容量的火力发电机组在电网中所占的比例越来越大。
大容量机组的汽轮发电机和锅炉都是采用单元制运行方式。
所谓单元制就是由一台汽轮发电机组和一台锅炉所组成的相对独立的系统。
单元制运行方式与以往的母管制运行方式相比,机组的热力系统得到了简化,而且使蒸汽经过中间再热处理成为可能,从而提高了机组的热效率。
单元机组的协调控制系统(Coordinated Control Systen简称CCS)是根据单元机组的负荷控制特点,为解决负荷控制中的内外两个能量供求平衡关系而提出来的一种控制系统。
从广义上讲,这是单元机组的负荷控制系统。
它把锅炉和汽轮发电机作为一个整体进行综合控制,使其同时按照电网负荷需求指令和内部主要运行参数的偏差要求协调运行,即保证单元机组对外具有较快的功率响应和一定的调频能力,对内维持主蒸汽压力偏差在允许范围内。
设计任务本设计要求通过运用过程控制的基本概念、基础理论与方法,根据大型火电机组的实际生产,对火电机组的过程控制系统进行分析,设计出原理正确,功能较为全面的300MW火电机组协调控制系统。
2.方案论证协调控制系统的功能现代大型锅炉——汽轮机单元机组属于多变量控制对象。
机、炉相互影响,且机、炉的动态特性差异很大。
300MW火电机组协调控制系统的设计
目录1.选题背景 (1)1.1 设计背景.................................... 错误!未定义书签。
1.2 设计任务.................................... 错误!未定义书签。
2.方案论证.............................. 错误!未定义书签。
2.1 协调控制系统的功能.......................... 错误!未定义书签。
2.2 单元机组的运营方式.......................... 错误!未定义书签。
2.2.1 定压运营方式........................... 错误!未定义书签。
2.2.2 滑压运营方式........................... 错误!未定义书签。
2.2.3 联合运营方式........................... 错误!未定义书签。
2.3 单元机组负荷控制方式........................ 错误!未定义书签。
2.3.1 以锅炉跟随为基础的协调控制方式......... 错误!未定义书签。
2.3.2以汽轮机跟随为基础的协调控制方式....... 错误!未定义书签。
2.3.3 综合型协调控制方式..................... 错误!未定义书签。
3.过程论述.............................. 错误!未定义书签。
3.1负荷指令管理部分............................. 错误!未定义书签。
3.1.1负荷指令运算回路....................... 错误!未定义书签。
3.1.2负荷指令限制回路....................... 错误!未定义书签。
3.1.3 负荷增/减闭锁BLOCK I/D ............... 错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1选题背景 (2)引言 (2)设计目的及要求 (2)2方案论证 (3)方案一 (3)方案二 (4)3过程论述 (5)^总体设计 (5)详细设计 (6)信号的测量部分 (6)单冲量控制方式 (10)串级三冲量控制方式 (11)信号监测 (12)给水旁路调节阀控制强制切到手动 (12)电动给水泵强制切到手动 (13))汽动给水泵强制切到手动 (13)工作方式 (13)切换与跟踪 (13)切换 (13)跟踪 (14)控制器选型 (14)4结论 (14)5课程设计心得体会 (15)}6参考文献 (15)《1选题背景:引言-火电厂在我国电力工业中占有主要地位,大型火力发电机组具有效率高,投资省,自动化水平高等优点,在国内外发展很快,如今随着科技的进步,大型火力发电厂地位显得尤为重要。
但由于其内部设备组成很多,工艺流程的复杂,管道纵横交错,有上千个参数需要监视、操作和控制,这就需要有先进的自动化设备和控制系统使之正常运行,并且电能生产要求高度的安全可靠和经济性。
大型发电单元机组是一个以锅炉,高压和中、低压汽轮机和发电机为主体的整体。
锅炉作为电厂中的一个重要设备,起着重要的作用,根据生产流程又可以分为燃烧系统和汽水系统。
其中,汽包锅炉给水及水位的调节已经完全采用自动的方式加以控制。
给水全程控制系统是一个能在锅炉启动、停炉、低负荷以及在机组发生某些重大事故等各种不同的工况下,都能实现给水自动控制的系统而且从一种控制状态到另一种控制状态的判断、转换、故障检测也常常靠系统本身自动完成。
设计目的及要求本次课程设计的要求是根据大型火电机组的生产实际设计出功能较为全面的300 MW火电机组全程给水控制系统,该控制系统的设计任务是使给水量与锅炉的蒸发量相适应,维持汽包水位在规定的范围内。
设计要求:(1)设计功能基本全面的全程给水控制系统,要求图纸采用SAMA标准图例,系统布局规范。
(2)参考输入参数:汽包水位、汽包压力、给水流量、给水温度、汽机第一级压力、主汽温度、过热减温水流量等信号。
(3)参考输出参数: A、B汽动泵转速、电动给水泵转速、给水旁路调节阀开度。
(4)信号准确性:考虑汽包水位、给水流量和蒸汽流量等信号的修正。
[(5)信号监测与报警:重要信号需要监测与报警,同时注意信号的可靠性,考虑冗余。
(6)工作方式:给水旁路阀单冲量控制、电动泵单级单冲量控制、电动泵串级三冲量控制、汽动泵串级三冲量控制。
(7)切换与跟踪:电动泵运行时大小给水阀门、电动泵、汽动泵之间;单、三冲量;单、串级之间的切换。
跟踪原则:(1)电动泵单级单冲量工作时,电动泵三冲量副调跟踪单冲量调节器输出;(2)电动泵三冲量工作时,单冲量调节器跟踪阀位信号(电动泵手动);(3)电动泵手动时,单冲量调节器跟踪副调输出(电动泵自动);(4)汽动泵手动工作时,三冲量主调跟踪给水流量信号,副调跟踪阀位信号。
-(5)注意泵的安全经济工作区。
(6)控制部分:控制方案考虑采用单回路、串级、前馈等控制,控制器的控制规律(PI、PID、PD、P)选择准确,调节器可共用。
(7)逻辑关系准确全面。
2方案论证方案一给系统设计如图1。
在这个方案中,低负荷时采用但冲量系统(PI1)高负荷时采用三冲量系统(PI2),而且都是通过改变调速泵转速来实现给水的调节。
为了保证给水泵工作在安全工作区内,设计了一个给水泵出口压力调节系统(PI3),通过改变阀门开度来改变泵的出口压力。
高压加热器出口分别取给水压力信号送入小值选择器。
当机组正常运行时,高压加热器出口的给水压力总是低于泵的出口压力。
这时,应选高压加热器出口给水压力作为压力测量值,使泵的实际工作点在泵下限特性曲线偏左一些,确保泵工作在安全工作区内。
当机组热态启动时,高压加热器出口的给水压力高于泵的出口压力,小组选件输出为泵出口压力,保证泵出口给水压力升压过程中,两个调节阀门均处于关闭状态,直到泵出口压力大于高压加热器出口给水压力时才按高压加热器出口的给水压力进行调节,控制两个阀门开度。
图1 方案一系统示意图<这个方案结构合理,经济性好,切换较简单,安全可靠性也较好,不足之处是压力调节系统和水位调节系统互相影响,同时两个系统切换动作频繁,使调节阀磨损较快。
方案二如图2所示。
这是一个一段调节的方案,在低负荷时采用PI1单冲量系统,GH1值经大值选择器来控制调速泵,是泵维持在允许的最低转速。
此时给水量是通过改变调节阀开度来调节的。
高负荷时,阀门开到最大,为了减小阻力,把并联的调节阀也开到最大,三冲量调节器PI2的输出大于GH1的值,故可直接改变调速泵转速控制给水量。
在冷态启动时,GH1起作用,既让泵工作在最低转速。
在热态启动时取决于Pd值,泵可以直接工作在较高的转速。
该方案中午专门设计泵的出口压力安全调节系统,解决给水泵在安全工作取得办法是利用调速泵运行的自然特性,即在定压运行使用两台泵同时给水地方法,使每台泵的负荷不超过86%,可使泵工作在安全区内。
图2方案系统示意图该方案结构最简单,系统和调节段两种切换相互错开,Pd是开换调节,调节段是无触点自由过度,安全性能好,是一个好方案。
¥3过程论述总体设计典型的300MW机组给水热力系统如图3所示。
每台机组拍有一台50%容量的电动给水泵和两台均为50%容量的启动给水泵。
在机组启动阶段,由于需要的给水流量小,且没有稳定的汽源,汽动给水泵无法使用,故先用电动给水泵。
为满足机组启动过程中最小控制流量的需要,在电动泵出口至水母管之间装有两条并联的管路,一条支路上装有主给水截止阀,另一条之路上装有给水旁路截止阀和一只约15%容量的给水旁路调节阀。
启动时通过给水旁路调节阀控制汽包水位,旁路阀接近全开时,打开主给水截止阀,调整电动给水泵的转速控制器包水位,电动给水泵转速通过液力耦合器调整。
两台汽动给水泵由给水泵汽轮机驱动,给水泵汽轮机电液控制系统(MEH)接受锅炉给水控制系统的指令,独立完成汽动给水泵的转速控制任务。
给水全程控制系统通常采用变结构控制,随负荷变化进行单冲量和三冲量控制方式的切换,同时,给水泵的运行方式以及控制作用方式也进行相应的切换。
需设计较为复杂的跟踪回路,以实现系统之间的勿扰切换。
通常的设计原则为:在单冲量调节器工作(低负荷)时,三充量调节器的主调跟踪给水流量信号,副调跟踪阀位信号;在三冲量调节器工作(高负荷)时,单冲量调节器跟踪阀位信号。
图3 300MW机组给水热力系统图详细设计汽包水位决定于汽包中的储水量和水面下的气泡容积。
因此凡是引起汽包中储水量变化和水面下的气泡容积变化的各种因素都是给水控制对象的扰动,给水对象的主要扰动包括:给水流量扰动、蒸汽负荷扰动和炉膛热负荷扰动。
为了实现全程给水控制,需要设计的系统要克服以上的扰动。
)信号的测量部分锅炉从启动到正常运行或是从正常运行到停炉的过程中,蒸汽参数和负荷在很大的范围内变化,这就使水位、给水流量和蒸汽流量的测量准确性受到很大影响。
为了实现全程给水自动控制,要求这些测量信号能够自动的进行温度、压力校正。
测量信号自动校正的基本方法是:先推导出被测参数随温度,压力变化的数学关系,然后利用各种功能模块进行运算,实现自动控制。
(1)汽包水位的测量和校正汽包锅炉通常利用压差原理来测量其水位,而锅炉从启、停到正常负荷的整个运行范围内,汽包内饱和蒸汽和饱和水密度随压力变化,这样就不能直接用压差信号来代表水位,需对测量信号进行压力校正。
由单室平衡容器取样装置的水位测量原理可知:g)(g )(w s s a P L H ρρρρ-∆--= (1) 式中:P ∆为输入差压变送器的压差;w ρ为饱和水的密度;s ρ为饱和蒸汽的密度;a ρ为汽包外平衡容器内水的密度;g 是重力加速度。
有上式可见,水位H 是差压和汽、水密度的函数。
密度a ρ与环境温度有关。
在锅炉启动过程中,水温略有升高,这两方面变化对a ρ的影响基本上可以抵消,既可以近似的认为a ρ是恒值。
饱和水和饱和蒸汽的密度均为汽包压力的函数,在汽包压力小于的范围内,(s a ρρ-)与汽包压力可近似为线性关系,而(s ρρ-w )与汽包压力为非线性关系。
这样水位表达式可写成:, (2) 由以上校正原理,可设计汽包水位的测量部分如图4。
为了提高测量的准确性,采用三路汽包水位测量信号分别经过压力补偿,采取“三取中”的方法。
选取中间值作为系统控制使用的汽包水位测量信号H 。
为防止变送器故障,将信号H 分别与三路补偿后的水位信号进行比较,如果偏差值超限,产生高低值报警的逻辑信号,使系统切手动,同时发出声光报警,待故障切除后,系统才正常工作。
)(21b b b P f P P K K H ∆--=图4 汽包水位测量信号(2)蒸汽流量的测量和校正①采用标准节流装置测量过热蒸汽流量。
这种设计的测量精度高,但当被测工质的压力、温度偏离设计值时,工质密度变化会造成流量测量误差,所以需进行压力、温度校正。
蒸汽流量D 的校正公式如下:(3)式中:D 为过热蒸汽流量; p 为过热蒸汽压力;为过热蒸汽温度,△p 为节流件压差;为过热蒸汽密度;K 是流量系数。
\②利用汽轮机调节级后压力或级组压力差测量主蒸汽流量。
采用节流装置测量蒸汽流量会造成一定的节流损失,降低机组的经济性,目前大容量火电机组多采用汽轮机调节级后压力或级组压力差测量主蒸汽流量。
采用汽轮机调节级后压力测量主蒸汽流量的基本理论公式是弗留格尔公式: 11T p K D (4) 式中:K 为当量比例系数,由汽机类型和设计工况确定;p1、T1为调节级后气压和汽温。
该式成立的条件是:调节级后流通面积不变;在调节级后各通流部分的汽压均比例于蒸汽流量;在不同流量条件下,流动过程相同。
实际汽轮机运行中不能完全满足上诉条件,同时不易直接测量调节级后汽温,即使测得也不能代表调节级后的平均气温,一次一般用主汽参数相关的量推算级后温度。
用压力机组前后压力测量主蒸汽流量的方法也是基于弗留格尔公式,其导出形式为:122211T p p K D -= (5)式中:2p 为第一压力级后的压力。
由于调节级后温度T1难以测量,可通过测量第一级抽汽温度T2推算T1,根据21T K T T =则22221KT p p D -= (6)》由以上校正原理可设计主蒸汽流量信号测量部分。
如图五,主蒸汽流量信号的获取采用了两种方法:一种是采用汽轮机就调节级压力经主气温修正后形成主蒸汽流量D ;另一种方法是采用调节级压力和一级抽汽压力经主汽温修正后形成主蒸汽流量D ,当高压旁路投入时,主蒸汽流量信号还要加上旁路蒸汽流量。
图5 主蒸汽流量测量信号(3)给水流量信号的测量和校正计算表明:当给水温度为100摄氏度时,压力在~范围内变化时,给水流量的测量误差为%;压力不变,给水温度在100~290摄氏度范围内变化时,给水流量的测量误差为13%。