点到直线的距离.ppt

合集下载

点到直线的距离公式)PPT全文课件

点到直线的距离公式)PPT全文课件
试判断圆C1与圆C2的位置关系. 解法一(几何法):把圆的方程都化成标准形式,为 C 1:(x 1 )2(y4)225 C 2:(x2 )2(y2 )21 0
C 1 的圆心坐标是 (1, ,半4)径长 r1 5 ;
C 2 的圆心坐标是 ( 2 , 2,半) 径长 r2 1 0 ; 所以圆心距 C 1 C 2( 1 2 )2 T名师课件
练 1.圆x +y -2x=0与x +y +4y=0的位置关系是( C ) 点到直线的距离公式)PPT名师课件
22
22
习 A.相离 B.外切 C.相交 D.内切
2.
B
点到直线的距离公式)PPT名师课件
三、两相交圆的公共弦所在的直线方程 点到直线的距离公式)PPT名师课件
1.若圆C1:x2+y2+D1x+E1y+F1=0与圆C2:x2+y2+D2x+E2y+F2=0相交,则两圆公共弦所 在直线的方程为(D1-D2)x+(E1-E2)y+F1-F2=0. 2.当两圆相切时,以上方程表示两圆的公切线方程。 3.公共弦长的求法 (1)代数法:将两圆的方程联立,解出两交点的坐标,利用两点间的距离公式求出弦长. (2)几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形, 根据勾股定理求出弦长. 如图,首先求出圆心 O1 点到相交弦所在直线的距离 d,而 AC=21l, ∴14l2=r21-d2,即 l=2 r21-d2,从而得以解决.
人教版·必修2·第四章《圆与方程》
4.2.2 圆与圆的位置关系
判断直线和圆的位置关系
几何方法
代数方法
求圆心坐标及半径r (配方法)
( x a)2 ( y b)2 r 2 Ax By C 0
消去y

中职数学基础模块下册《点到直线的距离》ppt课件

中职数学基础模块下册《点到直线的距离》ppt课件
选做题:P90 练习 B 组题第 1 题.
精选可编辑ppt
10
4
例1 求点 P(-1,2)分别到直线 l1:2 x+y=5, l2:3 x=1 的距离 d1 和 d2 .
解:将直线 l1,l2 的方程化为一般式
2 x+y-5=0,3 x-5| 5,
d2
|3(1)1| 3
4. 3
精选可编辑ppt
5
求下列点到直线的距离: (1)O(0,0),l1:3x+4y-5=0; (2)A(2,-3),l2:x+y-1=0.
y
(3,4) P
4
3
2
l
1
O 1 2 3 4 5x
精选可编辑ppt
3
点到直线的距离公式
一般地,求点 P(x0,y0) 到直线 l:Ax+By+C=0 的 距离 d 的公式是
问题 3
d| Ax0 By0 C| A2 B2
若点 P 在直线 l 上,点 P 到 l 的距离是多少? 反之成立吗?
精选可编辑ppt
直线


直线
8.2.5点到直线的距离
精选可编辑ppt
1
点到直线的距离
直线外一点到直线的垂线段的长度, 叫点到直线的距离.
y A
O B
l D
C x
精选可编辑ppt
2
问题 1
给定平面直角坐标系内一点的坐标和直线的 方程,如何求点到直线的距离?
问题 2 若 P(3,4),直线 l 的
方程为 x-4=0 ,你能求出 P 点到直线 l 的距离吗? 试一试.
精选可编辑ppt
6
例 2 求平行线 2 x-7 y+8=0 和 2 x-7 y-6=0 的距离.

点到直线的距离PPT教学课件

点到直线的距离PPT教学课件

3、 垂体作用
腺垂体:
A 、促甲状腺激素:作用于甲状腺
作用:促进甲状腺激素的生成和分 泌
B 、生长激素:作用于全部组织
作用:刺激蛋白质合成和组织生长; 减少糖的利用增加糖原生成;促进脂 肪分解
细胞增大与数量增多,它 对肌肉的增生和软骨的形成和 钙化有特别重要的作用
缺少——侏儒症(身材矮小 智力正常) 过多——巨人症
什么是点到直线的距离?
点到直线的距离是指:
过该点(如图所示点P)作直线(图中L)的垂线, 点P与垂足Q之间的线段│PQ│长度.
P
Q
L
问题:已知点P(x。,y。)和直线L:Ax+By+C=0(A•B≠0),
P不在直线L上,试求P点到直线L的距离.
思路一:
y P
L
.Q
o
x
思路二:构造直角三角形。
y
(5)已知点(a,2)(a 0)到直线 l : x y 3 0
a 的距离为1,则 等于( C )
A. 2 B. 2 C. 2 1 D. 2 1
例2:求两条平行直线Ax+By+ C1=0与Ax+By+ C2 =0的
距离.
解:在直线Ax+By+ C1=0上任取一点,如P(x0,y0)
则两平行线的距离就是点P(x0,y0)
二、下丘脑和垂体
1 、垂体:
位置:位于脑下部,脑下垂体 (成人豌豆大) 地位: A 、人和脊椎动物主要内分泌腺, 独立支配性腺、肾上腺、甲状腺
B 、受下丘脑的调节;下 丘脑通过垂体调节影响 其他内分泌腺
激素调节模式
下丘脑
促× ×激素释放激素
垂体
促× ×激素

高中数学必修二《点到直线的距离》PPT

高中数学必修二《点到直线的距离》PPT

d By0 C . B
y l
P
QQ
O
x
(2)当 A≠ 0,B =0 时 d Ax0 C . A
公式的应用
例1:求点 P(1,到2)下列直线的距离。 (1)3x 2;
(2)5x 2y 1 0.
(3)y 3 x 1; 4
答案: (1)5 ; (2) 0 ; (3)3 . 3
公式应用
例2 已知点 A1,3,B3,1,C-1,0 ,求ABC
利用等面积法求出|PQ|。
| PQ | | PM | | PN | | Ax0 By0 C |
| PM |2 | PN |2
A2 B2
点到直线的距离公式
点 P(x到0, y直0 )线
l : Ax的距By离 C公式0为
特殊情形
d Ax0 By0 C A2 B2
yQ
l
P
O
x
(1)当 A=0,B≠ 0 时
点到直线的距离
树不修,长不直; 人不学,没知识。
教学目标: 使学生了解点到直线距离公式的 推导,能记住点到直线距离的公式,并会 应用公式解题,渗透算法思想。 教学重点:点到直线距离的公式及其应用。
教学难点:点到直线的距离公式的推导。
复习引入
两点间的距离公式是什么?
已知点 P1x1, y1 ,P2 x2, y2 ,则
求出点N坐标
M Q N
P
O
求出 PM
求出 PN
利用勾股定理求出 MN x
用面积法求出 PQ
l
求出直角三角形三条边长;
易得,PM Ax0 By0 C B
PN Ax0 By0 C A
| MN | | PM |2 | PN |2 | Ax0 By0 C | A2 B2 | A || B |

高中数学必修二《 点到直线的距离》ppt课件

高中数学必修二《 点到直线的距离》ppt课件
.
新课探究
一、点到直线的距离
过点 P 作直线 l 的
垂线,垂足为 Q 点,线 段 P Q 的长度叫做点 P
到直线 l 的距离.
.
y

·P
O
x
问题1 当A=0或B=0时,直线为y=y1或 x=x1的形式.如何求点到直线的距离?
y y=y1
o
P (x0,y0)
Q(x0,y1) x
y (x1,y0)
4 (2)点P(-1,2)到直线3y=2的距离是___3 ___.
.
练习2 求原点到下列直线的距离:
(1) 3x+2y-26=0 2 13 (2) y=x 0 练习3 (1)A(-2,3)到直线 9 3x+4y+3=0的距离为_____. 5
(2)B(-3,5)到直线 2y+8=0的距离为
______. 9
=0
所以l1:
Byx-Ay-Bx0+Ay0=0
P0(x0, y0)
B x1-Ay1-Bx0+Ay0=0
太麻烦!
x1
B2x0
AB0yAC A2B2
换y1个A角BA 0度2xBB 思02y考BC !
|P| Q (x 0x 1)2 (y0y 1)2
Q
O
x
l:AxByC0
.
Ax1+By1+C=0
B x1-Ay1-Bx0+Ay0=0
.
[思路二] 构造直角三角形求其高。
y
S Q
O
P(x0,y0)
R
x
L:Ax+By+C=0
.
y
S P(x0,y0)
Q

四年级上册数学优秀课件- 点到直线的距离(人教版)(共17张PPT)

四年级上册数学优秀课件- 点到直线的距离(人教版)(共17张PPT)
人教版 数学 四年级 上册
5 平行四边形和梯形
点到直线的距离
课前导入
探究新知
课堂练习
课堂小结
课后作业
点到直线的距离
课前导入
过直线外一点怎样画垂线呢?
1.边线重合。 2.平移到点。 3.画线标号。
返回
点到直线的距离
探究新知
从直线外一点A,到这条直线画几条线段。
A
量一量这些线段的长
度,你有什么发现?
返回
四年级上册数学优秀课件- 点到直线的距离(人教版)(共17张PP T)
点到直线的距离
下图中,游泳运动员如果从南岸游到北岸,怎样 游路线最短?为什么?把最短的路线画出来。
四年级上册数学优秀课件- 点到直线的距离(人教版)(共17张PP T)
从A点向北岸引垂线, 这就是最短路线。
返回
四年级上册数学优秀课件- 点到直线的距离(人教版)(共17张PP T)
点到直线的距离
请用在例3中发现的规律,检验下面各组直线a、b是否平行。
平行线间的垂直线段的长度都相等,直线a、b平行。
四年级上册数学优秀课件- 点到直线的距离(人教版)(共17张PP T)
返回
四年级上册数学优秀课件- 点到直线的距离(人教版)(共17张PP T)
点到直线的距离
判断题。(正确的画“√”,错误的画“✕”) (1)同一平面内,如果两条直线都与同一条直线垂直,那
四年级上册数学优秀课件- 点到直线的距离(人教版)(共17张PP T)
返回
四年级上册数学优秀课件- 点到直线的距离(人教版)(共17张PP T)
点到直线的距离
课后作业
1.从教材课后习题中选取; 2.从课时练中选取。
四年级上册数学优秀课件- 点到直线的距离(人教版)(共17张PP T)

《点到直线的距离》25张ppt

《点到直线的距离》25张ppt

鼓励学生坚持,培养学生知难而上, 顽强拼搏的意志品质。 鼓励学生另辟蹊径,设问“垂足的坐 标能不能设而不求呢?”希望学生能 探究出教材中推导方法。培养学生的 创新意识。
得到点 P到 l 的距离 d PQ
合作探究 形成新知
问题2 求点 P( x1 , y1 )到直线 l : Ax By C 0的距离.
合作探究 形成新知
探究公式 初探方法
优化解法
合作探究 形成新知
问题1 求点 P (1,1) 到直线 l : x y 4 0 的距离.
渗透由特殊到一般的思想
合作探究 形成新知
问题1 求点 P (1,1) 到直线 l : x y 4 0 的距离.
定 义 法
合作探究 形成新知
x5 2
(3) x 2
实践应用 拓展新知
题组2 (1)求平行线l1 : 3x 4 y 8 0, 与l2 : 3x 4 y 2 0 之间的距离. (2)平行线 l1 : Ax By C1 0, 与l2 : Ax By C2 0之间的距离 为 .并证明.
启发2:我们准备怎么做?即制定计划
启发3:我们已知什么?即梳理条件
PQ l Bx0 x1 A y0 y1 0 Q l Ax0 By0 C 0
启发4:我们如何使用条件以达到 目标呢?即沟通已知与未知的联系
合作探究 形成新知
展示成果 优化思维
解:设Q( x0 , y0 ), PQ l B( x0 x1 ) A( y0 y1 ) 0 (1) 又 Q l , Ax0 By0 C 0 (2) (3)
回顾反思 布置作业
学会了…的知识
掌握了…的方法

点到直线的距离 课件(51张)

点到直线的距离 课件(51张)
1 [d=|-73-2+(-422)|=1.]
NO.2
合作探究·释疑难
类型1 类型2 类型3
类型 1 点到直线的距离
【例 1】 求过点 M(-2,1)且与 A(-1,2),B(3,0)两点距离 相等的直线的方程.
[解] 当直线的斜率不存在时,直线为 x=-2,它到 A,B 两点 的距离不相等,故可设直线方程为 y-1=k(x+2),即 kx-y+2k+1 =0.
(1)应用点到直线的距离公式时,直线方程应为一般式,若 给出其他形式,则先化成一般式再用公式求解.例如求点 P(x1,y1) 到直线 y=kx+b 的距离,应先把直线方程化为 kx-y+b=0,再利用 公式,得 d=|kx1-k2y+1+1 b|.
(2)当点 P 在直线 l 上时,点到直线的距离为零,公式仍然适用, 故应用公式时不必判定点 P 与直线 l 的位置关系.
2若已知直线 l1 与已知对称轴相交,则交点必在与直线 l1 对称的 直线 l2 上,然后求出直线 l1 上任意一点关于对称轴对称的点,由两点 式写出直线 l2 的方程.
[跟进训练] 3.求直线 l1:2x+y-4=0 关于直线 l:3x+4y-1=0 对称的直 线 l2 的方程. [解] 法一:解方程组23xx+ +y4-y-4= 1=0,0, 得xy= =3-,2, 所以直线 l1 与 l 相交,且交点坐标为(3,-2),故交点也在直线 l2 上. 在直线 l1:2x+y-4=0 上取点 A(2,0),设点 A 关于直线 l 的对 称点为 B(x0,y0),
3×x+2x0+4×y+2 y0-1=0, 则有yx- -yx00=43,
解得yx00==-7x-2422x52-45y+7y+6,8. 因为点 Q(x0,y0)在直线 l1:2x+y-4=0 上,所以 2×7x-2254y+6 +-24x2-57y+8-4=0,化简得 2x+11y+16=0. 即直线 l2 的方程为 2x+11y+16=0.

《点到直线的距离》优质PPT课件

《点到直线的距离》优质PPT课件
沿着A点到对面马路垂 直线段走。
从直线外一点到这条直 线所画的垂直线段最短。
课堂练习
请用在例3中发现的规律,检验下面各组直线 a、b是否平行。
4cm 4cm 4cm
课堂练习
请用在例3中发现的规律,检验下面各组直线 a、b是否平行。
4cm
2cm
4cm
2cm
4cm
2cm
课堂练习 请用在例3中发现的规律,检验下面各组直线 a、b是否平行。
人教版 数学 四年级 上册
5 平形四边形和梯形
点到直线的距离
复习导入 过直线外一点画已知直线的垂线。
1.边线重合。 2.平移到点。 3.画线标号。
探究新知 交流:从直线外一点A,到这条直线画几条线段。
A
探究新知 交流:从直线外一点A,到这条直线画几条线段。 量一量这些线段的长度,哪一条最短?
A 77mm 74mm90mm
a
b
探究新知 交流:量一量这些线段的长度。
a 42mm42mm42mm
b
探究新知 交流:量一量这些线段的长度。你发现了什么? 端点分别在两条平行线上,且与平行线垂直 的所有线段的长度都相等。 a
42mm 42mm 42mm
b
课堂练习
下图中,小明如果从A点过马路,怎样走路线 最短?为什么?把最短的路线画出来。
下图中,游泳运动员如果从南岸游到北岸,怎样 游路线最短?为什么?把最短的路线画出来。
从A点向北岸引垂线, 这就是最短路线。
从直线外一点到这条 直线所画的垂直线段 最短。
课堂小结 这节课你们都学会了哪些知识?
点到直线的距离:
பைடு நூலகம்
A
从直线外一点到这条直线所画
77mm

高中数学:.3《点到直线的距离》【新人教A版必修2】PPT完美课件

高中数学:.3《点到直线的距离》【新人教A版必修2】PPT完美课件


6.了解和名著有关的作家作品及相关 的诗句 、名言 、成语 和歇后 语等, 能按要 求向他 人推介 某部文 学名著 。

7.能够根据所提供的有关文学名著的 相关语 言信息 推断作 品的作 者、作 品的名 称和人 物形象 ,分析 人物形 象的性 格和作 品的思 想内容 并进行 简要评 价。

8.能够由具体的阅读材料进行拓展和 迁移, 联系相 关的文 学名著 展开分 析,提 出自己 的认识 和看法 ,说出 自己阅 读文学 名著的 感受和 体验。
高中数学:.3《点到直线的距离》【 新人教A 版必修 2】PPT 完美课 件
高中数学:.3《点到直线的距离》【 新人教A 版必修 2】PPT 完美课 件 高中数学:.3《点到直线的距离》【 新人教A 版必修 2】PPT 完美课 件
高中数学:.3《点到直线的距离》【 新人教A 版必修 2】PPT 完美课 件
例6:已知点A(1,3),B(3,1),C(-1,0),求的ABC面积
y
A
h
C O
B
x
高中数学:.3《点到直线的距离》【 新人教A 版必修 2】PPT 完美课 件
两条平行直线间的距离: 高中数学:.3《点到直线的距离》【新人教A版必修2】PPT完美课件
两条平行直线间的距离是指夹在两条平行直
线间的公垂线段的长.
d=
C1 - C2 A2 + B2
高中数学:.3《点到直线的距离》【 新人教A 版必修 2】PPT 完美课 件
练习4 高中数学:.3《点到直线的距离》【新人教A版必修2】PPT完美课件
1.点A(a,6)到直线x+y+1=0的距离为4,求a的值.
2
2.求过点A(-1,2),且与原点的距离等于 2 的直线方程 .

4.3《点到直线的距离》公开课PPT教学课件

4.3《点到直线的距离》公开课PPT教学课件


















Βιβλιοθήκη

点到直线的
距离
想一想:
复习概念
1、在同一平面内两条直线的位置关系 有哪两种? 平行 相交
2、垂直是哪一种位置关系的特殊情况?
特殊在哪里? 两条直线相交成直角时,这两条直 线互相垂直。
复习画平行线,垂线的方法
画一画:
你会分别画一组平行线和一组 互相垂直的线吗?
从A点向已知直线画一条垂直的线段 和几条不垂直的线段,量一量这些线 段的长度,你有什么发现?
4、右图是人行横道线。 如果从A点穿过马路, 怎样走路线最短?为什 么?把最短的路线画出 来。

激励学生学习的名言警句 51关于学习或励志的名言警句 1百川东到海,何时复西归;少壮不努力,老大徒伤悲。 意思是:时间像江河东流入海,一去不复返;人在年轻时不努力学习,年龄大了一事无成,那就只好悲伤、后悔。出自《汉乐府•长歌行》 2 成人不自在,自在不成人。 意思是:人要有所成就,”必须刻苦努力,不可放任自流。出自(宋)罗大经《鹤林玉露引•朱熹小简》 3 读书百遍,其义自见。 意思是:能把一本书读过百遍,其中的含义自然就领会了。出自《三国志•魏书》。 4 读书破万卷,下笔如有神。 意思是:读书多了,下笔写文章就如有神助。出自(唐)杜甫《奉赠韦左丞丈二十二韵》。 5 大志非才不就,大才非学不成。 意思是:没有才,宏伟的志向就不能实现;不学习,就不能成大才。出自6(明)郑心材《郑敬中摘语》。 6 非学无以广才,非志无以成学。 意思是:不学习便无法增长才于,没有志向就难于取得学业上的成功。出自《诸葛亮集•诫子书》。 7发愤忘食,乐以忘忧,不知老之将至。 意思是;下决心学习,连吃饭也忘记了;有所心得便高兴得忘记了忧愁,不知道老年就要逼近了。出自《论语•述而》。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档