数列放缩法

合集下载

高中数学课程数列中的放缩法

高中数学课程数列中的放缩法

数列中的放缩法
在全国卷高考中,数列已经远远降低了难度,再也不会出现那种丧心病狂,虐死人不犯罪的压轴题了。

相应的放缩技巧,在数列考查中也几乎绝迹了,就算偶尔出现意外,也不会太难,掌握下面这几类,完全可以搞定。

一·放缩法
1·放缩法的步骤:
【注意】
放缩法在很多时候会保留第一项或前几项不放缩,这样才不至于使得结果过大或者过小。

2·放缩成等比数列模型:
3·放缩成裂项相消模型:
二·放缩法的应用 1·直接可求和放缩:
2·放缩成等比数列:
3·错位相减法放缩:
4·裂项相消放缩:。

数列放缩法技巧全总结

数列放缩法技巧全总结

数列放缩法技巧全总结引言数列放缩法(Sequence Squeezing Method)是指在解决数学问题时,通过限制或放缩数列的取值范围,从而简化问题的求解过程。

数列放缩法是数学竞赛和高等数学中常见的一种技巧,本文将总结数列放缩法常用的技巧和应用场景。

1. 加减不等式放缩法加减不等式放缩法是通过对等式进行加减操作,使得所得不等式比原来的不等式更易于求解。

常见的加减不等式放缩技巧有如下几个:1.1. 约束条件加减法设原不等式为A<B,通过针对不等式的约束条件进行加减操作,将原不等式放缩为C<D。

常见的约束条件包括正整数、正实数等。

1.2. 平方项加减法对于不等式中的平方项,可以通过改变平方项的系数进行加减操作,从而得到一个更易于处理的不等式。

例如,对于a2+b2<2ab,可以将不等式变换为(a−b)2>0,从而得到更容易求解的形式。

1.3. 倒数项加减法对于不等式中的倒数项,可以通过改变倒数项的系数进行加减操作,从而放缩不等式。

例如,在2ab<a2+b2中,可以将不等式变换为$\\frac{1}{a}+\\frac{1}{b} > \\frac{2}{a+b}$,从而得到更容易处理的形式。

2. 乘除不等式放缩法乘除不等式放缩法是通过对等式进行乘除操作,使得所得不等式比原来的不等式更易于求解。

常见的乘除不等式放缩技巧有如下几个:2.1. 约束条件乘除法设原不等式为A<B,通过针对不等式的约束条件进行乘除操作,将原不等式放缩为C<D。

常见的约束条件包括正整数、正实数等。

2.2. 平方项乘除法对于不等式中的平方项,可以通过改变平方项的系数进行乘除操作,从而得到一个更易于处理的不等式。

例如,在a2+b2<2ab中,可以将不等式变换为a2−2ab+b2<0,从而得到更容易求解的形式。

2.3. 倒数项乘除法对于不等式中的倒数项,可以通过改变倒数项的系数进行乘除操作,从而放缩不等式。

放缩法证明数列不等式

放缩法证明数列不等式

放缩法证明数列不等式一、基础知识:1、放缩法证明数列不等式的理论依据——不等式的性质: (1)传递性:若,a b b c >>,则a c >(2)若,a b c d >>,则a c b d +>+,此性质可推广到多项求和: 若()()()121,2,,n a f a f a f n >>>,则:()()()1212n a a a f f f n +++>+++(3)若需要用到乘法,则对应性质为:若0,0a b c d >>>>,则ac bd >,此性质也可推广到多项连乘,但要求涉及的不等式两侧均为正数 注:这两条性质均要注意条件与结论的不等号方向均相同 2、放缩的技巧与方法:(1)与求和相关的不等式的放缩技巧:① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。

④ 若放缩后求和发现放“过”了,即与所证矛盾,通常有两条道路选择:第一个方法是微调:看能否让数列中的一些项不动,其余项放缩。

从而减小放缩的程度,使之符合所证不等式;第二个方法就是推翻了原有放缩,重新进行设计,选择放缩程度更小的方式再进行尝试。

(2)放缩构造裂项相消数列与等比数列的技巧:① 裂项相消:在放缩时,所构造的通项公式要具备“依项同构”的特点,即作差的两项可视为同一数列的相邻两项(或等距离间隔项)② 等比数列:所面对的问题通常为“n S <常数”的形式,所构造的等比数列的公比也要满足()0,1q ∈ ,如果题目条件无法体现出放缩的目标,则可从所证不等式的常数入手,,常数可视为11a q-的形式,然后猜想构造出等比数列的首项与公比,进而得出等比数列的通项公式,再与原通项公式进行比较,看不等号的方向是否符合条件即可。

数列的放缩技巧

数列的放缩技巧

数列的放缩技巧
数列的放缩技巧主要有以下几种:
1. 利用单调性放缩:如果数列的前n项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式。

2. 分式放缩:通过改变数列的项的分母来达到放缩的目的。

3. 部分放缩:只对数列的部分项进行放缩,常用方法有:舍弃一部分不需要的项,或者将一部分项的值直接取为1等。

4. 迭代放缩:通过多次迭代的方式,逐步将数列的项进行放缩。

5. 基于递推结构的放缩:根据数列的递推公式,通过逐步推导的方式进行放缩。

6. 利用导数不等式放缩:对数列的项进行求导,再利用不等式,达到放缩的目的。

高中数列放缩法技巧

高中数列放缩法技巧

高中数列放缩法技巧
高中数列放缩法是一种用于求解数列问题的技巧。

通过适当的方法对数列进行放缩,可以简化问题的求解过程,提高解题效率。

在高中数学中,数列是一个非常重要的概念。

通过研究数列的性质和规律,可以帮助学生培养数学思维和分析问题的能力。

数列放缩法的基本思想是通过一系列变换将原始数列转化为一个更
加简单或者更加易于处理的数列,从而使问题的求解变得更加容易。

下面介绍几种常用的数列放缩方法:
1. 数列的倍数放缩:如果一个数列的每一项都乘以一个相同的常数,那么这个数列的性质和规律不会改变。

这种放缩方法常用于求解具有明显倍数关系的数列问题,可以通过放缩将数列转化为一个等比数列,从而更加方便地求解。

2. 数列的平移放缩:如果一个数列的每一项都加上或者减去一个相
同的常数,那么这个数列的性质和规律不会改变。

这种放缩方法常用于求解具有明显递推关系的数列问题,可以通过放缩将数列转化为一个等差数列,从而更加方便地求解。

3. 数列的递推放缩:如果一个数列的每一项都是前一项的某个函数,
那么这个数列的性质和规律不会改变。

这种放缩方法常用于求解具有复杂递推关系的数列问题,可以通过放缩将数列转化为一个递推公式,从而更加方便地求解。

除了以上几种基本的放缩方法,还可以根据具体问题的特点进行其他类型的放缩。

数列放缩法在高中数学中有着广泛的应用,可以帮助学生解决各种数列问题,提高数学分析和推理能力。

总之,高中数列放缩法是一种重要的解题技巧,通过适当的放缩方法可以简化数列问题的求解过程,提高解题效率。

掌握数列放缩法对于高中数学的学习和应试都具有重要的意义。

八个放缩公式一览表

八个放缩公式一览表

以下是八个放缩公式一览表:
1.等差数列的放缩公式:如果将每一项都乘以一个常数k,那么新得到的数列仍然是等差数列,且公差变为原来的k倍。

2.等比数列的放缩公式:如果将每一项都乘以一个常数k,那么新得到的数列仍然是等比数列,且公比变为原来的k倍。

3.y=c(c为常数):这个公式表示当x取任意值时,y都等于常数c。

4.y'=0:这个公式表示函数y的导数为0,即函数y是常数函数。

5.y=x^n:这个公式表示当x取任意值时,y等于x的n次方。

6.y'=nx^(n-1):这个公式表示函数y的导数为nx的n-1次方,即函数y是x的n次方的导数。

7.y=a^x:这个公式表示当x取任意值时,y等于a的x次方。

8.y'=a^xlna:这个公式表示函数y的导数为a的x次方的自然对数,即函数y是a的x次方的导数。

高中数学讲义:放缩法证明数列不等式

高中数学讲义:放缩法证明数列不等式

放缩法证明数列不等式一、基础知识:在前面的章节中,也介绍了有关数列不等式的内容,在有些数列的题目中,要根据不等式的性质通过放缩,将问题化归为我们熟悉的内容进行求解。

本节通过一些例子来介绍利用放缩法证明不等式的技巧1、放缩法证明数列不等式的理论依据——不等式的性质:(1)传递性:若,a b b c >>,则a c >(此性质为放缩法的基础,即若要证明a c >,但无法直接证明,则可寻找一个中间量b ,使得a b >,从而将问题转化为只需证明b c >即可 )(2)若,a b c d >>,则a c b d +>+,此性质可推广到多项求和:若()()()121,2,,n a f a f a f n >>>L ,则:()()()1212n a a a f f f n +++>+++L L (3)若需要用到乘法,则对应性质为:若0,0a b c d >>>>,则ac bd >,此性质也可推广到多项连乘,但要求涉及的不等式两侧均为正数注:这两条性质均要注意条件与结论的不等号方向均相同2、放缩的技巧与方法:(1)常见的数列求和方法和通项公式特点:① 等差数列求和公式:12nn a a S n +=×,n a kn m =+(关于n 的一次函数或常值函数)② 等比数列求和公式:()()1111n n a q S q q -=¹-,n n a k q =×(关于n 的指数类函数)③ 错位相减:通项公式为“等差´等比”的形式④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项(2)与求和相关的不等式的放缩技巧:① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。

高考数学难点---数列放缩法技巧总结

高考数学难点---数列放缩法技巧总结

高考数学备考之一 放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩例1.(1)求∑=-n k k 12142的值; (2)求证:35112<∑=nk k .解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n nn k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk技巧积累:(1)⎪⎭⎫⎝⎛+--=-<=1211212144441222n n n n n(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC T r r rn r(4)25)1(123112111)11(<-++⨯+⨯++<+n n n n (5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8) n n n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21≥---=--=--<--=--n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n nn n 11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n (13) 3212132122)12(332)13(2221nn n n n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14) !)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n (15)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:n n412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n n n (4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222n nn -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合n n n -+<+221进行裂项,最后就可以得到答案 (4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析: 一方面: 因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n kn k 另一方面: 1111)1(143132111914112+=+-=+++⨯+⨯+>++++n nn n n n 当3≥n 时,)12)(1(61++>+n n nn n ,当1=n 时,2191411)12)(1(6nn n n ++++=++ ,当2=n 时,2191411)12)(1(6n n n n ++++<++ , 所以综上有35191411)12)(1(62<++++≤++n n n n例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>. 解析: 由数学归纳法可以证明{}n a 是递增数列, 故 若存在正整数k m ≤, 使b a m ≥, 则b a a k k ≥>+1,若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m n k m nk m m k k k m k k1111111])1[()1(])1([,即等价于m m mm m k k k m k k-+<+<--+++111)1()1()1(, 即等价于11)11(11,)11(11++-<+-+<++m m kk m k km 而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,n nn a a a T +++= 212,求证:23321<++++n T T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n nn n nnn T -+-=-----=+++-++++= 所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nnT⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n n T T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n ,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明: nn n n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++ . 解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n nn+++--<++++cause ⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111nn n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---n例 例11.例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n 解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到: 12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x , 所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n ,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知11111,(1).2n n a a a n n +==+++证明2n a e <.解析:n n n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到n n n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+nnn a n n a )2111(21⇒++++≤+nn an n a ln )2111ln(ln 1nn n n a 211ln 2+++≤。

数列型不等式的放缩技巧九法

数列型不等式的放缩技巧九法

数列型不等式的放缩技巧九法证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下九种:一 利用重要不等式放缩1. 均值不等式法例1 设.)1(3221+++⋅+⋅=n n S n 求证.2)1(2)1(2+<<+n S n n n例2已知函数bxa x f 211)(⋅+=,若54)1(=f ,且)(x f 在[]1,0上的最小值为21,求证:.2121)()2()1(1-+>++++n n n f f f例3 求证),1(221321N n n n C C C C n nn n n n ∈>⋅>++++- .2.利用有用结论例4 求证.12)1211()511)(311)(11(+>-++++n n(变式)证明.13)2311()711)(411)(11(3+>-++++n n例5 已知函数.2,,10,)1(321lg )(≥∈≤<⋅+-++++=*n N n a n n a n x f xx x x 给定求证:)0)((2)2(≠>x x f x f 对任意*∈N n 且2≥n 恒成立。

例6 已知112111,(1).2n n na a a n n +==+++ (1)用数学归纳法证明2(2)n a n ≥≥; (2)对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828e ≈)例7 已知不等式].[log 2,],[log 211312122n n N n n n >∈>+++* 表示不超过n 2log 的最大整数。

设正数数列}{n a 满足:.2,),0(111≥+≤>=--n a n na a b b a n n n求证.3,][log 222≥+<n n b b a n例8 设nn na )11(+=,求证:数列}{n a 单调递增且.4<n a二 部分放缩例9 设++=a n a 211.2,131≥++a n a a求证:.2<n a例10 设数列{}n a 满足()++∈+-=N n na a a n n n 121,当31≥a 时证明对所有,1≥n 有2)(+≥n a i n ;21111111)(21≤++++++n a a a ii三 添减项放缩上述例4之法2就是利用二项展开式进行减项放缩的例子。

放缩法在数列求和中的基本策略

放缩法在数列求和中的基本策略

“放缩法”在数列求和中的基本策略放缩法:为放宽或缩小不等式的范围的方法。

常用在多项式中“舍掉一些正(负)项”而使不等式各项之和变小(大),或“在分式中放大或缩小分式的分子分母”,或“在乘积式中用较大(较小)因式代替”等效法,而达到其证题目的。

所谓放缩的技巧:即欲证B A ≤,欲寻找一个(或多个)中间变量C ,使B C A ≤≤,由A 到C 叫做“放”,由B 到C 叫做“缩”。

常用的放缩技巧有:(1)若,A t A ,A t A ,0t <->+>(2,n 1n <-n n 2>,1n 11n ,1n ->-+-+),0n (n n )1n (n 2>=>+<<+=+-2n 1)1n (n 11n 1n 1 ).1n n (2n1n n 21n n 2)n 1n (2),1n (n 11n 1)1n (n 1--<=+<++=-+>--=-(3)若,R m b a +∈、、则.b ma b a ,m b a b a +<+>(4)+++<++++221211!n 1!31!211 .211n -+ (5).n 12)n 11n 1()3121()211(1n131211222-=--++-+-+<++++ (6)11n n1n 11n 11n 1n 212n 11n 1<+=++++++≤+++++ 或≥+++++n 212n 11n 1 .21n 2n n 21n 21n 21==++ (7)nn n n 1n 1n 1n 131211==+++>++++ 等等。

注:1、放缩法的理论依据,是不等式的传递性,即若,D C ,C B ,B A >>>则D A >。

2、使用放缩法时,“放”、“缩”都不要过头。

3、放缩法是一种技巧性较强的不等变形,一般用于两边差别较大的不等式。

《数列中的放缩法》课件

《数列中的放缩法》课件

面临的挑战
未来发展放缩法,需要解决的关键问题包括 如何提高放缩法的适用性和可靠性,如何克 服其局限性,以及如何与其他数学工具或算 法更好地结合。此外,如何将放缩法的理论
应用于实际问题的解决也是一大挑战。
放缩法的挑战
在使用放缩法时,需要具备深厚的数学基础 和敏锐的观察力,以选择合适的放缩策略。 此外,如何掌握好放缩的尺度,避免过度或 不足的放缩,也是一大挑战。
放缩法的未来发展
发展方向
随着数学理论和计算机技术的发展,放缩法 有望在更多领域得到应用。例如,结合机器 学习算法,可以自动寻找最优的放缩策略。 此外,随着数学与其他学科的交叉融合,放 缩法有望在解决实际问题中发挥更大的作用 。
洛必达法则
洛必达法则是微积分中的一个重要定理,它可以用来计算某些极限。当一个极限 的分子和分母都趋于零时,洛必达法则可以用来求极限。
在数列中,洛必达法则可以用来研究数列的收敛性和发散性。通过应用洛必达法 则,我们可以对数列的项进行放缩,从而证明一些数学命题。
拉格朗日中值定理
拉格朗日中值定理是微积分中的一个 重要定理,它说明了一个函数在两个 点之间的值与这两点之间某点的导数 之间的关系。
解决导数问题
总结词
在解决与导数相关的问题时,放缩法可 以帮助我们更好地理解函数的性质和行 为。
VS
详细描述
在导数问题中,放缩法可以帮助我们更好 地理解函数的性质和行为。通过放缩法, 可以将函数的导数进行放大或缩小,从而 更好地理解函数的增减性、极值点等性质 。此外,放缩法还可以用于解决一些与导 数相关的不等式问题,例如证明函数的导 数满足某种不等式关系。
泰勒级数展开
泰勒级数展开是数学分析中的一个重要概念,它可以将一 个函数表示为无穷级数的形式。通过泰勒级数展开,我们 可以更好地理解函数的性质和行为。

高考数学:数列放缩法

高考数学:数列放缩法

⾼考数学:数列放缩法
数列放缩法需要把握两⽅⾯:
⼀、放缩⽅向
数列放缩的⽅向包含两层意思:
1.放缩成什么形式?
2.放⼤呢还是缩⼩呢?
第2个问题看题⽬要求即可.
对于第1个问题,⾼中阶段,数列放缩主要有两个⽅向.
1.朝等⽐数列去放缩,即把数列放缩为等⽐数列.
看这样⼀个例题:
从解答过程能够看出,本题需要放⼤,原数列⽆法求和,放⼤之后为等⽐数列,顺利实现求和.
2.朝裂项相消去放缩,即把数列放缩为能够采⽤裂项相消法求和的形式.
看这个例题:
数列⽆法求和,需要放缩,⽽且需要放⼤.
注意:为保证n-1有意义,n从2开始取值.
⼆、放缩的度
看个例题,体会放缩的“度”:
先分析通项,貌似能够朝裂项相消去放缩.
从上式结论看出,我们没有达到题⽬的要求,放的过⼤了.
为此,我们需要重新放⼤⼀次,这⼀次要往回收⼀些.
⼩结:
1.根据不等式符号决定放⼤还是放⼩;
2.常⽤的放缩⽅向:朝等⽐放缩和朝裂项相消法放缩;
3.放缩“度”的调节⽅法:不同形式放缩.。

数列放缩法

数列放缩法

数列放缩法数列放缩法是一种常见的数学证明方法,它通常用于证明不等式。

该方法的基本思想是利用已知的不等式将目标不等式转化为一个更容易证明的不等式。

这种方法在数学竞赛和研究中被广泛使用,因为它可以使证明更加简单和直观。

一般来说,数列放缩法可以分为两种类型:基于平均值不等式(AM-GM不等式)的放缩和基于柯西-施瓦茨不等式(Cauchy-Schwarz 不等式)的放缩。

这两种方法都有其独特的优点和适用范围,可以根据具体问题的特点选择合适的方法。

基于平均值不等式的放缩方法通常适用于求证一些简单的不等式,例如求证a+b>=2√ab。

该方法的基本思想是利用AM-GM不等式将目标不等式转化为一个更容易证明的形式。

例如,对于上述不等式,我们可以将其转化为(a+b)/2>=√ab,然后应用AM-GM不等式即可得到证明。

基于柯西-施瓦茨不等式的放缩方法通常适用于求证一些复杂的不等式,例如求证(a+b+c)^2>=3(ab+bc+ca)。

该方法的基本思想是利用柯西-施瓦茨不等式将目标不等式转化为一个更容易证明的形式。

例如,对于上述不等式,我们可以将其转化为(a^2+b^2+c^2)(1+1+1)>= (a+b+c)^2,然后应用柯西-施瓦茨不等式即可得到证明。

除了AM-GM和柯西-施瓦茨不等式外,数列放缩法还可以使用其他的不等式,例如夹逼准则、均值不等式等。

这些不等式都有其独特的优点和适用范围,可以根据具体问题的特点选择合适的方法。

值得注意的是,数列放缩法虽然可以使证明更加简单和直观,但也存在一些限制和注意事项。

首先,该方法只适用于证明不等式,不能用于证明其他类型的数学问题。

其次,该方法需要掌握一定的数学知识和技巧,否则容易出现错误。

最后,该方法只能在特定的条件下使用,不能滥用。

综上所述,数列放缩法是一种常见的数学证明方法,它可以使证明更加简单和直观。

该方法可以分为基于平均值不等式的放缩和基于柯西-施瓦茨不等式的放缩两种类型,还可以使用其他的不等式。

数列放缩法在证明中的应用

数列放缩法在证明中的应用

数列放缩法在证明中的应用[解题策略]放缩法是不等式证明的重要方法,其中的放缩技巧既有模式可循但更有创意之变,如何灵活运用放缩法解题是衡量解题者思维好坏的标杆. 常见的放缩形式有:(1)1n 2的放缩: 1n 2<1nn -1=1n -1-1n (n ≥2), 1n 2>1n n +1=1n -1n +1, 1n 2<1n 2-14=1n -12-1n +12; (2)1n !的放缩: 1n !=11·2·3·…·n <1nn -1=1n -1-1n (n ≥2), 1n !=11.2.3.....n <11.2.2.. (2)=12n -1(n ≥2); (3)1n的放缩: 1n =22n >2n +n +1=2(n +1-n ),1n =22n <2n +n -1=2(n -n -1);(4)真分式b a的放缩: 若a >b >0,m >0,则b a <b +m a +m. 另外,利用重要不等式放缩、导数应用中有关ln x 型的放缩(如:ln(1+x )<x ,x >0)等也是常见的放缩方式.利用放缩法证明不等式的难点是放缩的“度”不好把握,放大了或放小了都得不出所证不等式,这样需要回头调整,留一项或几项不放缩逐步试验向所证结论靠扰,下面举例说明.例1 设n ∈N *,求证:∑i =1n1i 2<6136. 分析 当n ≥2时,1n 2<1n n -1=1n -1-1n , 所以112+122+132+ (1)2 <1+11·2+12·3+…+1n -1n=1+⎝ ⎛⎭⎪⎫1-12+…+⎝ ⎛⎭⎪⎫1n -1-1n =2-1n <2, 而2>6136,放大了,若从第三项开始放缩如何呢? 当n ≥3时,112+122+132+ (1)2 <1+122+12·3+13·4+…+1n -1n=1+122+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1-1n =1+14+12-1n =74-1n <74, 而74>6136,仍放大了,若从第四项开始放缩呢? 当n ≥4时,112+122+132+…+1n 2<1+122+132+13·4+…+1n -1n=1+122+132+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1-1n =1+14+19+13-1n =6136-1n <6136,恰好证得结果. 又易知当n =1,2,3时,不等式显然成立.因此, 1i 2<6136. 例2 设n ∈N *,求证:n n +12< k k +1<n +122. 分析 因为kk +1>k 2=k , 所以∑k =1n k k +1> =n n +12,左边得证. 又因为kk +1<k +12=k +1, 所以 k k +1< (k +1)=n n +32,n n +32≥n +122,放大了,得不到所证结论,于是应该作调整.事实上,k k +1< k 2+k +14=k +12, 所以∑k =1n kk +1< ⎝⎛⎭⎪⎫k +12 =n n +12+n 2=n 2+2n 2<n +122. 故n n +12< k k +1<n +122. 例3 求证:16<1k <17. 证明 因为1k =22k <2k +k -1=2(k -k -1), 所以 1k <1+2(2-1)+2(3-2)+…+2(80-79)=280-1<281-1=17.又1k =22k >2k +1+k =2(k +1-k ),所以 1k >2(2-1)+2(3-2)+…+2(81-80) =281-2=16.故16< 1k <17.评注 在证明1k <17时,对第一项没有进行放缩.。

数列的放缩法总结

数列的放缩法总结

数列的放缩法总结数列的放缩法是一种常用的证明方法,它可以通过对数列进行放缩,从而得到一些有用的结论,进而证明某个定理或命题。

下面是数列的放缩法的详细总结:1. 什么是数列的放缩法?数列的放缩法是一种通过对数列进行放缩,从而得到一些有用的结论,进而证明某个定理或命题的方法。

它通常是通过对数列的每一项进行某种变换,使得变换后的数列具有一些特殊的性质,然后利用这些性质来证明定理或命题。

2. 数列的放缩法的基本思想是什么?数列的放缩法的基本思想是通过对数列的每一项进行某种变换,使得变换后的数列具有一些特殊的性质,然后利用这些性质来证明定理或命题。

这种变换通常是通过对数列的每一项进行乘法或加法变换,从而得到一个新的数列。

3. 数列的放缩法的具体步骤是什么?数列的放缩法的具体步骤如下:(1)确定要证明的定理或命题。

(2)对数列的每一项进行某种变换,使得变换后的数列具有一些特殊的性质。

(3)利用这些特殊的性质来证明定理或命题。

4. 数列的放缩法的常用技巧有哪些?数列的放缩法的常用技巧有以下几种:(1)利用数学归纳法。

(2)利用柯西-施瓦茨不等式。

(3)利用阿贝尔变换。

(4)利用柯西定理。

(5)利用特殊的数列性质,如单调性、凸性等。

5. 数列的放缩法的应用范围有哪些?数列的放缩法可以应用于各种数学领域,如代数、几何、概率等。

它可以用于证明各种定理和命题,如不等式、极限、级数等。

在数学竞赛中,数列的放缩法也是一种常用的证明方法。

总之,数列的放缩法是一种常用的证明方法,它可以通过对数列进行放缩,从而得到一些有用的结论,进而证明某个定理或命题。

在实际应用中,需要根据具体情况选择合适的技巧和方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列放缩法
1. 已知正项数列{}n a 的前n 项和为s n ,且1a =2,*1,4N n a a s n n n ∈⋅=+,(1)求数列{}n a 的
通项公式;(2)设数列⎭
⎬⎫⎩⎨⎧21n a 的前n 项和为n T ,求证:21<<T 44n +n n 。

2. 已知数列{}n a 和{}n b 满足()()*
3212N n a a a a n b n ∈=Λ。

若{}n a 为等比数列,且21
=a ,236b b +=。

(1)求数列n a 和n b 。

(2)设数列()
*11N n b a c n n n ∈-=。

记数列{}n c 的前n 项和n s 。

(1)求n s ;(2)求正整数k ,使得对任意实数*N n ∈均有n k s s ≥。

3. 已知正项数列{}n a 的前n 项和为s n ,满足:()
*22N n n a s n n ∈-=。

(1)求数列{}n a 的通项公式;
(2)若数列{}()n n n T a b ,2log 2+=为数列⎭⎬⎫⎩⎨⎧+2n n a b 的前n 项和,求证21≥n T 。

4.设各项均为正数的数列{}n a 的前n 项和为s n ,且n s 满足()()
*222,033N n n n s n n s n n ∈=+--+-。

(1)求1a 的值; (2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有
()()()3
1<1111112211++++++n n a a a a a a Λ。

练习:1.设数列{}()Λ,3,2,1=n a n 的前n 项和满足,21a a s n n -=且321,1,a a a +成等差数列。

(1)求数列{}n a 的通项公式;
(2)记数列⎭
⎬⎫⎩⎨⎧n a 1的前n 项和为n T ,求使得10001<1-n T 成立的n 的最小值。

2. n S 为数列{}n a 的前n 项和。

已知n a >0,3422+=+n n n s a a 。

(1)求数列{}n a 的通项公式;
(2)设1
1+=n n n a a b ,求数列{}n b 的前n 项和。

3. 数列{}n a 满足Λ,3,2,1,2
sin 2cos 1,2,122221=+⎪⎭⎫ ⎝⎛
+===+n n a n a a a n n ππ。

(1)求43,a a ,并求数列{}n a 的通项公式;
(2)设n n n n n b b b s a a b Λ++==-21212,。

证明:当6≥n 时,n 1<2-n s 。

4.已知函数f (x )满足f (x +y )=f (x )·f (y )且f (1)=12
. (1)当n ∈N *时,求f (n )的表达式;
(2)设a n =n ·f (n ),n ∈N *,求证:a 1+a 2+a 3+…+a n <2;
(3)设b n =(9-n )f (n +1)f (n )
,n ∈N *,S n 为{b n }的前n 项和,当S n 最大时,求n 的值.。

相关文档
最新文档