多普勒效应_大物实验

合集下载

大学物理实验多普勒效应

大学物理实验多普勒效应

多普勒效应实验报告学院化学与生物工程学院班级化学1701 学号姓名一、实验目的与实验仪器实验目的1、了解多普勒效应原理,并研究相对运动的速度与接收到的频率之间的关系。

2、利用多普勒效应,研究做变速运动的物体其运动速度随时间的变化关系,以及机械能转化的规律。

实验仪器ZKY-DPL-3多普勒效应综合实验仪、电子天平、钩码等。

二、实验原理(要求与提示:限400字以内,实验原理图须用手绘后贴图的方式)1、声波的多普勒效应当声源相对介质静止不动时,声波的频率f0,波长λ0以及波速U0表示为f0=U0/λ0则观测频率f、观测波长λ和观测波速U的关系f=U/λ当接收器以一定的速率向声源移动时U=U0+V0,则f=(U0+V0)/λ0联立,得f=(U0+V0)/λ0=(f0λ0)/λ0=(1+V/U0)f0当声源以一定的速率向接收器移动时V =U0-V0,则f’=U’/λ’=U0/( U0-V0)/T= U0/( U0-V0) f当声源与接收器运动如图时f=(U0+V1COSθ1)/( U0-V2 COSθ2)2、马赫锥a=arcsin(U0/V0)=arcsin(1/M)U0为波速,V为飞行器速率,a为马赫角,M为V/U0马赫数3、天文学中的多普勒效应观察两波面的时间t=(λc/(C+Vc))/(1/(1-V2c/C2c)1/2)=(1-V2c/C2c)1/2/((1+Vc/Cc)fc)三、实验步骤(要求与提示:限400字以内)1、超声波的多普勒效应(1)、组装仪器(2)、打开实验控制箱,调至室温,记录共振频率f0(3)、选择多普勒效应验证实验(4)、修改测试总数(5)、为仪器充电,确定失锁指示灯处于灯灭状态(6)、选定滑车速率,开始测试(7)、选择存入或者重测(8)、重新选择速度,重复(6)、(7)(9)、记录实验数据2、用多普勒效应研究恒力下物体的运动规律(1)、测量钩码质量和滑车质量(2)、连接仪器(3)、选中变速运动测量(4)、修改测量总次数(5)、选中开始测试,立即松开钩码(6)、记录测量数据(7)、改变砝码质量,重复(1)到(6)四、数据处理(要求与提示:对于必要的数据处理过程要贴手算照片)表4.12-1 多普勒效应的验证与声速的测量t c = 24 ℃f0 = 40001 Hz次数i 1 2 3 4 5v/(m/s) 0.41 0.59 0.75 0.87 0.98Fi/Hz 40049 40070 40089 40103 40116斜率k=f0/u0=117.6声速u0= 340.1m/s当t= 24℃时,u t = 345.7 m/s误差|σ|= 1.6 %表4.12-2 滑车在钩码驱动作用下的运动规律测量滑车质量m0= 595.2 g 采样步距t0= 0.05 s序号i 1 2 3 4 5 6 7 8 9 10 砝码质量m1/gt i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 56.4f i/Hz 40040 40042 40051 40048 40053 40057 40063 40065 40067 40075t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 92.6f i/Hz 40067 40075 40077 40083 40087 40095 40102 40112 40118 40124t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 104.5f i/Hz 40073 40077 40083 40087 40097 40100 40114 40118 40126 40132t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 116.4f i/Hz 40067 40069 40081 40087 40100 40100 40114 40120 40130 40136m1= 56.4 g v-t 关系表t i/(s) 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 v/(m/s)0.337 0.354 0.432 0.406 0.449 0.484 0.536 0.553 0.570 0.640理论值:a0= 0.848 m/s2实验值:a= 0.638 m/s2误差|σ|= 24.8%m1= 92.6 g v-t 关系表t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45v/(m/s)0.570 0.640 0.657 0.709 0.743 0.812 0.873 0.960 1.011 1.063理论值:a0= 1.319 m/s2实验值:a= 1.104 m/s2误差|σ|= 16.3%t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45v/(m/s)0.622 0.657 0.709 0.743 0.830 0.856 0.977 1.011 1.080 1.132理论值:a0= 1.464 m/s2实验值:a= 1.187 m/s2误差|σ|= 18.9 %t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 v/(m/s)0.570 0.588 0.691 0.743 0.856 0.856 0.977 1.028 1.115 1.167理论值:a0= 1.603 m/s2实验值:a= 1.387 m/s2误差|σ|= 13.5%五、分析讨论(提示:分析讨论不少于400字)研究相对运动的速度与接收到的频率之间的关系的实验时1、应该先调好皮带松紧度(1)皮带过松,带动皮带的转轮与皮带之间打滑,使小车速度发生变化,且容易导致小车自动返回后与控制器存在碰撞。

大连理工大学《大学物理实验报告》多普勒效应 实验报告

大连理工大学《大学物理实验报告》多普勒效应 实验报告

大连理工大学大 学 物 理 实 验 报 告院(系) 材料学院 专业 班级 姓 名 学号 实验台号 实验时间 年 月 日,第 周,星期 第 节实验名称 多普勒效应及声速的测试与应用教师评语实验目的与要求:1. 加深对多普勒效应的了解2. 测量空气中声音的传播速度及物体的运动速度主要仪器设备:DH-DPL 多普勒效应及声速综合测试仪,示波器其中, DH-DPL 多普勒效应及声速综合测试仪由实验仪、智能运动控制系统和测试架三个部份组成。

实验原理和内容: 1、 声波的多普勒效应实际的声波传播多处于三维的状态下, 先只考虑其中的一维(x 方向)以简化其处理过程。

设声源在原点,声源振动频率为f ,接收点在x 0,运动和传播都在x 轴向上, 则可以得到声源和接收点没有相对运动时的振动位移表达式:⎪⎪⎭⎫⎝⎛-=000cos x c t p p ωω , 其中00x c ω-为距离差引起的相位角的滞后项, 0c 为声速。

然后分多种情况考虑多普勒效应的发生: 1.1 声源运动速度为S V ,介质和接收点不动假设声源在移动时只发出一个脉冲波, 在t 时刻接收器收到该脉冲波, 则可以算出从零时刻到声源发出该脉冲波时, 声源移动的距离为)(0c x t V S -, 而该时刻声源和接收器的实际距离为)(00c x t V x x S --=, 若令S M =S V /0c (声源运动的马赫数), 声源向接收点运动时S V (或S M )为正, 反之为负(以下各个马赫数的处理方法相同, 均以相互靠近的运动时记为正)。

则距离表达式变为)1/()(0S S M t V x x --=, 代回到波函数的普适表达式中, 得到变化的表达式:⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛--=0001cos c x t M p p S ω可见接收器接收到的频率变为原来的SM 11-, 即:1.2 根据同样的计算法, 通过计算脉冲波发出时的实际位移并代换普适表达式中的初始位移量, 便可以得到声源、介质不动,接收器运动速度为r V 时, 接收器接收到的频率为1.3介质不动,声源运动速度为S V,接收器运动速度为r V ,可得接收器接收到的频率为1.4 介质运动。

大学物理实验多普勒效应

大学物理实验多普勒效应
通过测量仪器测量声波的频率 、波长等参数,并将数据记录 在记录仪上。
准备实验器材
确保声源和接收器能够正常工 作,测量仪器和记录仪已校准 。
放置接收器
将接收器放置在声源的一侧, 确保声波能够被接收器接收。
分析数据
根据记录的数据,分析多普勒 效应的现象和规律。
数据记录与处理
数据记录
在实验过程中,应实时记录声波 的频率、波长等参数,以及接收 器和声源的位置和角度等信息。
大学物理实验多普勒效应
汇报人: 2024-01-04
• 多普勒效应概述 • 实验目的与要求 • 实验器材与步骤 • 实验结果与分析 • 实验总结与思考
01
多普勒效应概述
多普勒效应的定义
总结词
多普勒效应是指波源和观察者之间相对运动时,观察者接收到的波长和频率发生 变化的现象。
详细描述
多普勒效应是物理学中一个重要的概念,它描述了波源和观察者之间相对运动时 ,观察者接收到的波长和频率的变化情况。当波源和观察者之间存在相对运动时 ,观察者感受到的波长和频率会发生变化,这种现象被称为多普勒效应。
VS
减小误差的方法
为了减小误差,我们采用了高精度的测量 工具,严格控制实验条件,并对数据进行 多次测量和取平均值处理,以提高结果的 可靠性。同时,我们还采用了合适的数学 模型和统计方法对数据进行处理和分析, 以减小误差对结果的影响。
05
实验总结与思考
实验总结
实验目的达成情况
通过本次实验,学生成功观察到了多普勒效 应的现象,并利用公式测量了声源与观察者 之间的相对速度。
实验操作流程
实验操作流程清晰,从设备安装到数据测量,再到 结果分析,每一步都有详细的指导。
数据记录与处理

大学物理实验-多普勒效应的应用与声速的测量

大学物理实验-多普勒效应的应用与声速的测量

实验17 多普勒效应的应用与声速的测量对于机械波、声波、光波和电磁波而言,当波源和观察者(或接收器)之间发生相对运动,观察者接收到的波的频率和发出的波的频率不相同的现象,称为多普勒效应.多普勒效应在核物理,天文学、工程技术,交通管理,医疗诊断等方面有十分广泛的应用.如用于卫星测速、光谱仪、多普勒雷达,多普勒彩色超声诊断仪等.电磁波与机械波(包括声波)的多普勒效应在定量计算上有所不同,本实验只研究超声波的多普勒效应.【实验目的】1. 加深对多普勒效应的了解2. 测量空气中声音的传播速度及物体的运动速度【实验仪器】DH-DPL 多普勒效应及声速综合测试仪,示波器.【实验原理】1.声波的多普勒效应设声源在原点,声源振动频率为f ,接收点在x ,运动和传播都在x 轴方向,声速为u 0.对于三维情况,处理稍复杂一点,其结果相似.声源、接收器和传播介质不动时,在x 方向传播的声波的数学表达式为:00cos 2x p p f t u π⎛⎫=- ⎪⎝⎭(17-1)⑴声源运动速度为s v ,介质和接收点不动.在声源和接收器之间的波长为λ',T 是声源的振动周期,接收器接收到的频率为:0001s su u f f u T v T M λ'==='--(17-2)即接收器接收到的频率变为原来的SM -11,其中0s s v M u =为声源运动的马赫数,声源向接收点运动时S v (或S M )为正,反之为负.⑵声源、介质不动.接收器运动速度为r v ,接收器接收到的波的传播速度为0r u u v '=+,接收器接收到的频率为()001rr u v u f M f u Tλ'+'===+ (17-3) 其中0rr v M u =为接收器运动的马赫数,接收点向着声源运动时r v (或r M )为正,反之为负,即接收器接收到的频率变为原来的()1r M +倍.⑶ 介质不动,声源运动速度为s v ,接收器运动速度为r v ,可得接收器接收到的信号的频率为:11rsM f f M +'=- (17-4)为了简单起见,本实验只研究第二种情况:声源、介质不动,接收器运动速度为r v .根据(17-3)式可知,改变r v 就可得到不同的f ',从而验证了多普勒效应.另外,若已知r v 、f ,并测出f ',则可算出声速0u ,可将用多普勒频移测得的声速值与用时差法测得的声速作比较.若将仪器的超声换能器用作速度传感器,就可用多普勒效应来研究物体的运动状态. 2.声速的几种测量原理⑴ 超声波与压电陶瓷换能器频率20Hz-20kHz 的机械振动在弹性介质中传播形成声波,高于20kHz 称为超声波,超声波的传播速度就是声波的传播速度,而超声波具有波长短,易于定向发射等优点.声速实验所采用的声波频率一般都在20~60kHz 之间,在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器效果最佳.压电陶瓷换能器利用压电效应和磁致伸缩效应从而实现了在机械振动与交流电压之间双向换能.根据它的工作方式,分为纵向(振动)换能器、径向(振动)换能器及弯曲振动换能器.声速教学实验中所用的大多数采用纵向换能器.图17-1为纵向换能器的结构简图.其中辐射头用轻金属做成喇叭形,后盖反射板用重金属做成柱形,中部为压电陶瓷圆环,其极化方向与正负电极片一致,螺钉穿过圆环中心.这种结构增大了辐射面积.振子纵向长度的伸缩直接影响头部轻金属,发射的波有较好的方向性和平面性.在正负电极片输入交流电信号,电极片间的压电陶瓷将产生逆压电效应,在极化方向发生形变,随交流电信号震荡发出一近似平面超声波(发射换能器).将另一纵向换能器与该发出超声波的换能器正对,作为接收换能器.当发射超声波频率与发射及接收换能图17-1 纵向换能器的结构简图压电陶瓷片器系统中压电陶瓷的谐振频率相等,接收换能器的正负电极片发出电信号最强.⑵ 时差法测量原理连续波经脉冲调制后由发射换能器发射至被测介质中,声波在介质中传播,经过t 时间后,到达L 距离处的接收换能器.波形变化如图17-2所示通过测量二换能器发射接收平面之间距离和时间,就可以计算出当前介质下的声波传播速度.⑶ 共振干涉法(驻波法)测量原理将接收换能器与发射换能器正对,由于换能器的核心器件压电陶瓷在极化方向所产生电荷与其在该方向所受外力成正比,所以在声波信号频率锁定为发射和接收换能器系统的最佳谐振频率时,接收换能器产生电信号的大小正比于声压的大小.而声压p ∗=−ρu 2ðξðx (17-5)其中ρ为无声波时介质密度, u 为声波波速, ξ为介质质点位移.由于存在:发射换能器发射声波造成介质质点位移 ξ1=A 1cos2π(tT−xλ)=A 1cosω(t −xu)接收换能器反射声波造成介质质点位移 ξ2=A 2cos *2π(t T+xλ)+π+接收换能器反射的声波再次从发射换能器反射回来后造成介质质点位移ξ3=A 3cos *2π(t T−x λ+2L λ)+2π+考虑声波的散射:a) 在换能器端面直径d ≪L (换能器间距)的区域, ξ3可近似忽略,即:ξ≈ξ1+ξ2=A 1cos2π(t T −x λ)+A 2cos *2π(t T +xλ)+π+p ∗≈−ρuωA 1sinω(t −xu )+ρuωA 2sin *ω(t +xu )+π+ (17-6)由于接收换能器可视为一近似垂直于波线的刚性平面,传播到接收换能器的声波几乎完全被反射(可视为A 1=A 2=A ), 为将公式简单化,将坐标轴原点平移至接收端,即令接收换能器端面处x =0,则发射端处x =−L ,则:ξx=0≈ξ1(x=0)+ξ2(x=0)=0p x=0∗≈2ρuωAsin (ωt +π) (17-7)由公式(17-7)可以看出,虽然在接收换能器端面处合成驻波的幅值为0(波节),但该处声压并不为0,当接收换能器远离发射换能器时,其端面处的声压接近一幅值为2ρuωA 的正弦波. b) 在发射和接收换能器相距较近,且与端面直径d 相差不大时,声波在二换能器端面间多次反射,不但需要考虑ξ3还需要考虑ξ4、 ξ5 、 ξ6…….接收换能器波形图17-2 发射波与接收波发射换能器波形比较ξ1和ξ3可以看出当L =(k ±14)λ时,ξ1和ξ3干涉相消,同理ξ2和ξ4也干涉相消,从而造成声压p x=0∗虽然相位没有变化,但幅值相应减少.当L =kλ2时, 不但 ξ1和ξ3干涉相长,而且多次反射,多次叠加 ξ2、ξ4、ξ5、ξ6…… 均干涉相长,使幅值A 急剧增大,也造成声压p x=0∗ 的幅值急剧增大.改变接收换能器的位置,可以从示波器上看到接收换能器感应到信号的幅值随着位置的变化而变化.当换能器间距为14⁄波长的奇数倍时, 感应到信号的幅值较小, 当间距为14⁄波长的偶数倍(即半波长的整数倍)时,感应到信号的幅值较大,且距离越近,幅值越大.若从感应到信号的第n 个幅值较大点变化到第n+1个幅值较大点时,接收换能器移动距离∆L ,则∆L =λ2,连续多次测量相隔半波长的接收换能器位置变化,可得超声波波长,再记录下此时超声波频率f 后,即可算出声速.⑷ 相位比较法(行波法)测量原理由于声波源点的振动和接收点的振动是同频率的振动, 二者相位差φ=2πL λ=2πfL u(17-8)将两个信号分别输入示波器的X 、Y 端, 在示波器显示屏显示出相互垂直的两个同频率振动合成的轨迹——1:1 李萨如图形.根据式(17-8)可得∆φ=2πf u∆L (17-9)当 f 、u 确定, φ 随着L 的变化而变化, 显示屏上的图形也依次变化(如图17-3所示), 当∆φ=2π, 图像恢复到开始时的形状, 记录此过程中的∆L 值即波长 , 则u =f∆L (17-10)∆φ=2nπ∆φ=2nπ+π/4∆φ=2nπ+π/2∆φ=2nπ+3π/4∆φ=2nπ+π ∆φ=2nπ+5π/4 ∆φ=2nπ+3π/2 ∆φ=2nπ+7π/4图17-3 频率为1:1 的李萨如图形【实验内容与步骤】1.实验内容(1)熟悉测量声速的多种方法,进一步加深对多普勒效应的了解. (2)利用已知的声速进一步观测空气中物体的移动速度. 2.实验步骤 (1)时差法测声速① 将多普勒综合测试仪的发射功率和接收灵敏度均调至最大(旋钮顺时针到头).② 调节测试台滚花帽(图17-4)将接收换能器调到12cm 处,记录接收换能器接收到的脉冲信号与原信号时间差.③将接收换能器分别调至12cm 、13cm ……19cm 处,分别记录各位置时间差.(如在调节过程中出现时间显示不稳定,则选择稳定区域进行测量) (2)多普勒法测声速 瞬时法测声速① 从主菜单进入多普勒效应实验② 将接收换能器调到约75cm 处,设置源频率使接收端的感应信号幅值最大(谐振状态).③ 返回多普勒效应菜单,点击瞬时测量.④ 按下智能运动控制系统的“Set”键,进入速度调节状态→按“Up”直至速度调节到0.450 m/s .⑤ 按“Set”键确认→再按“Run/Stop”键使接收换能器运动. ⑥ 记录“测量频率”的值,按“Dir”改变运动方向,再次测量. (3)共振干涉法(驻波法)测声速① 在示波器“Y-t”模式下调节“垂直偏转因数”,使示波器显示接收换能器输出电压的波形合适.② 将两换能器的间距L 从大约11~12cm 起, 连续记录下10组正弦波振幅极大值时标尺示数.(4)相位比较法(行波法)测声速① 在示波器“X-Y”模式下调节“垂直偏转因数”使示波器显示的发射和接收换能器图 17-4 测试台结构示意图 785632411.发射换能器 2.接收换能器 3.左限位保护光电门 4.测速光电门 5.右限位保护光电门 6.步进电机 7.滚花帽 8.复位开关输出电压所合成的李萨如图形大小合适.② 将两换能器的间距L 从大约11~12cm 起, 连续记录下10组李萨如图形出现相同直线时标尺示数.(5)反射法测声速(选做)反射法测量声速时候,反射屏要远离两换能器,调整两换能器之间的距离、两换能器和反射屏之间的夹角θ以及垂直距离L ,如图17-5所示,使数字示波器(双踪,由脉冲波触发)接收到稳定波形;利用数字示波器观察波形,通过调节示波器使接受波形的某一波头n b 的波峰处在一个容易辨识的时间轴位置上,然后向前或向后水平调节反射屏的位置,使移动L ∆,记下此时示波器中先前那个波头n b 在时间轴上移动的时间t ∆,如图17-6所示,从而得出声速值θsin 20⋅∆∆=∆∆=t Lt x u (17-11) 用数字示波器测量时间同样适用于直射式测量,而且可以使测量范围增大.反射屏发射换能器θθθL(6)利用已知声速测物体移动速度① 从主菜单进入变速运动实验,将采样步距改为50ms .② 长按智能运动控制系统的“Set”键,使其进入“ACC1”变速运动模式,再按“Run/Stop”键使接收换能器变速运动.③ 点击“开始测量”由系统记录接收到信号的频率(如半分钟后曲线仍未出现,则需重新调节谐振频率).再按“Run/Stop”键停止变速运动.④ 点击“数据”记录实验数据。

【大学物理实验】 多普勒效应 实验报告

【大学物理实验】 多普勒效应 实验报告

, 其中 x 0 为距离差引起的相位角的滞后项, c 0 为声速。
c0
然后分多种情况考虑多普勒效应的发生:
1.1 声源运动速度为 V S ,介质和接收点不动 假设声源在移动时只发出一个脉冲波, 在 t 时刻接收器收到该脉冲波, 则可以算出从零时刻到声
源发出该脉冲波时, 声源移动的距离为V S (t x c0 ) , 而该时刻声源和接收器的实际距离为
步骤与操作方法: 1. 时差法测声速 1.1 通过调节滚花帽, 将接收换能器调到距发射换能器 12cm 处,记录接收换能器接收到 的脉冲信号与原信号时间差。 1.2 将接收换能器分别调至 12cm、13cm……19cm 处,分别记录各位置时间差。(注意避 开时间不稳定的区域, 使用稳定的区域进行测量)
p
p 0 cos
1 M
S
t
x0 c0
可见接收器接收到的频率变为原来的 1 , 即:
1 MS
f fS
1 M S
(声源运动)
1.2 根据同样的计算法,通过计算脉冲波发出时的实际位移并代换普适表达式中的初始位移量,便 可以得到声源、介质不动,接收器运动速度为 V r 时, 接收器接收到的频率为
f r (1 M r ) f (1 V r ) f c
0
(接收器运动)
1.3 介质不动,声源运动速度为 V S ,接收器运动速度为 V r ,可得接收器接收到的频率为
f rs 1 M r f 1 M s
(声源, 接收器都运动)
1.4 介质运动。 同样介质的运动会改变声波从源向接收点传播的实际表观速度(真实声速并没有发 生变化), 导致计算收发声时的实时位移量变为 x x 0 V m t , 通过同样的计算法, 可以得到此 状态下接收器收到的频率为(以介质向接收器运动时, 马赫数记为正) f m (1 M m ) f (介质运动) 另外, 当声源和介质以相同的速度和方向运动时, 接收器收到的频率不变(从定性的分析即可得 到这一点结论)。

多普勒效应实验报告

多普勒效应实验报告

多普勒效应实验报告一、实验目的1、观察并验证多普勒效应现象。

2、测量声速,并通过多普勒效应计算声源的运动速度。

3、深入理解多普勒效应的原理及其在实际生活中的应用。

二、实验原理多普勒效应是指当波源与观察者之间存在相对运动时,观察者接收到的波的频率会发生变化。

对于声波来说,如果声源向着观察者运动,观察者接收到的频率会升高;如果声源远离观察者运动,观察者接收到的频率会降低。

设声源的频率为 f₀,声速为 v,观察者相对于介质的速度为 v₀(靠近声源为正,远离声源为负),声源相对于介质的速度为 vs(靠近观察者为正,远离观察者为负),则观察者接收到的频率 f 为:当声源运动,观察者静止时:f = f₀×(v + v₀) /(v vs)当观察者运动,声源静止时:f = f₀×(v + v₀) / v当声源和观察者都运动时:f = f₀×(v + v₀) /(v vs)三、实验仪器1、信号发生器:用于产生稳定的音频信号。

2、扬声器:作为声源。

3、麦克风:用于接收声音信号。

4、数据采集卡:将麦克风接收到的模拟信号转换为数字信号,并传输给计算机。

5、计算机:用于控制实验、采集数据和进行数据分析。

四、实验步骤1、连接实验仪器将信号发生器的输出连接到扬声器,以提供声源信号。

将麦克风连接到数据采集卡的输入端口。

将数据采集卡插入计算机的 PCI 插槽,并安装驱动程序和相关软件。

2、软件设置打开计算机上的实验控制软件,设置采样频率、通道选择等参数。

选择合适的显示方式,以便观察和分析采集到的数据。

3、测量声速在实验环境中,让扬声器和麦克风保持固定距离。

信号发生器产生一个已知频率 f₀的正弦波信号,通过扬声器发出声音。

麦克风接收声音信号,并通过数据采集卡传输到计算机。

测量声音信号从扬声器发出到麦克风接收的时间差 t。

根据声速公式 v = d / t(其中 d 为扬声器和麦克风之间的距离),计算出声速 v。

大学物理学第十六章第八节(多普勒效应)

大学物理学第十六章第八节(多普勒效应)

实验步骤
将声源和接收器固定在相对位置,使 声源发出连续的声波,接收器接收声 波并转换为电信号,通过测量仪器记 录信号频率。
光波多普勒效应的实验
01
实验设备
光源、干涉仪、测量仪器(如光谱分析仪)
02 03
实验步骤
将光源发出的光波通过干涉仪分束,一束作为参考光,另一束作为信号 光,信号光照射到运动物体上反射回来后与参考光干涉,通过测量仪器 记录干涉条纹的变化。
实验结果
当运动物体靠近或远离光源时,干涉条纹会发生变化,表现为多普勒效 应。
实验结果分析
分析多普勒效应的规律
通过实验数据,分析多普勒效应的规律,包括频率变化与相对速 度之间的关系、波长与频率之间的关系等。
验证理论模型
将实验结果与理论模型进行比较,验证理论模型的正确性和适用范 围。
应用拓展
探讨多普勒效应在生产生活中的应用,如雷达测速、医学超声成像 等。
对未来学习的规划
深入研究多普勒效应
计划进一步深入学习多普勒效应的相关知识,了解其在不同领域 的应用。
探索物理学的其他领域
计划探索物理学其他领域的知识,如电磁学、光学等,以拓宽知识 面。
提高解决实际问题的能力
计划通过解决实际问题,提高运用物理知识解决实际问题的能力。
THANKS
感谢观看
05
结论
本节内容的总结
多普勒效应的定义
01
多普勒效应是指波源和观察者之间有相对运动时,观察者接收
到的波长会发生变化的现象。
多普勒效应的原理
02
当波源和观察者之间有相对运动时,观察者接收到的波的频率
会发生变化,这种现象称为多普勒效应。
多普勒效应的应用
03

多普勒效应的实验报告

多普勒效应的实验报告

多普勒效应的实验报告
《多普勒效应的实验报告》
在这个实验中,我们将探讨多普勒效应对于声音和光的影响。

多普勒效应是指当波源和接收器相对运动时,波的频率和波长会发生变化的现象。

这一效应在日常生活中有着广泛的应用,比如用于测速仪和天文学中的星体运动等。

首先,我们进行了声音多普勒效应的实验。

我们设置了一个固定的声源和一个移动的接收器,然后通过改变接收器的位置和速度来观察声音的频率和波长的变化。

实验结果表明,当接收器向声源靠近时,声音的频率会增加,波长会缩短;而当接收器远离声源时,声音的频率会减小,波长会增加。

这一实验结果验证了多普勒效应在声音传播中的存在。

接着,我们进行了光的多普勒效应实验。

我们使用了激光作为光源,通过改变接收器的位置和速度来观察光的频率和波长的变化。

实验结果显示,当接收器向光源靠近时,光的频率会增加,波长会缩短;而当接收器远离光源时,光的频率会减小,波长会增加。

这一实验结果再次验证了多普勒效应在光传播中的存在。

通过这次实验,我们深入了解了多普勒效应对声音和光的影响。

这一现象的发现不仅在科学研究中有着重要的意义,也在工程技术和日常生活中有着广泛的应用。

希望通过我们的实验报告,更多的人能够了解和认识多普勒效应,探索其在各个领域中的潜在价值。

大学物理实验多普勒效应

大学物理实验多普勒效应

实验原理
1. 波源静止观测者运动 在这种情况下, vs=0, v≠0 . 若观 测者向着波源运动, 相当于波以速率u+v 通过观测者. 因 此单位时间内通过观测者的完整波数, 即接受频率为
fu vu u /v f0(1 v u)f0 (1)
当观测者离开波源运动时, 实际观测频率将低于波源的
频率, 即
f
(1
v u
)
f0
(2)
其中,f0为声源频率,f为接收频率,u为波速,v为观 察者(接收器)的速度。
波源和观察者 没有相对运动
观察者靠近波源 接收频率增大
观察者远离波源 接收频率减小
实验原理
2. 观测者静止波源运动 在这种情况下 v=0, vs≠0. 当
波源静止时, 波长=uT; 然而当波源以速度vs 向着观
动过程中的速度变化情况
vs
u( f0 1) f

实验内容
也可自行设计!!!
1. 将已知频率的声源固定于自行车(或电动车)上,先 对phyphox软件声音频率测量校准;
2. 自行车以一个稳定速度远离声源,利用手机上 phyphox软件的多普勒效应传感器记录接收频率和相对 速度;
3. 以不同速度靠近声源,记录接收频率和相对速度。 4. 验证多普勒效应(必做)。 5. 测量声速(必做)。 6. 匀变速直线运动的测量(选做)。
实验原理
对于机械波和电磁波而言,当波源或观察者相对于 介质运动时,观察者接收到的波的频率和波源实际发出 的频率不相同的现象,称为多普勒效应(Doppler effect)。这种现象是奥地利物理学家多普勒(18031853)于1842年首先发现的。多普勒效应在科学研究, 工程技术,交通管理,医疗诊断等各方面都有十分广泛 的应用。基于多普勒效应原理的雷达系统已广泛应用于 导弹,卫星,车辆等运动目标速度的监测。

多普勒流速测定(中国科学技术大学大物实验)

多普勒流速测定(中国科学技术大学大物实验)

Twin beam anemometer In the practical application , only a small Doppler shift of the 1ight frequency due to the movement of the particles results , as follows from Equation ( 3 ) , compared to the light ’s frequency . Thus , a direct measurement of the frequency ( e . g with the aid of a Fabry- Perot interometer ) can only be performed with insufficient accuracy . There are different methods of avoiding a direct optical frequency measurement : Due to the quadratic characteristic line of the photo-detector , it is possible to mix two light frequencies .
GND) 。 ――实验调试 按下红色的<New measuring>, 进入参数的设置, 对扫描频率、 触发条件和电平设置如下: 电压范围 U/V
10V ;频率范围 f/kHz
22.05。
当按照图右设置参数后,信号和频谱都可以显示出来。在校正阶段, 建议选择“Measurement continuous”模式,在该过程中不要按<save> 或<close>键。 进行光电探测器 D 的细调。 调整 D 的位于透镜 L2 焦点处的输入窗口,使展现出的时间 信号 F(t)的电压变化幅值达到最大(上部的图象) 。可以看到脉冲,即一个高频波动的出现。 将装满的玻瓶移高,空瓶放低。开始时,其中一个 软管夹仍保持夹紧,这样稍微松开时,才能以较低的速 度流过短管, 流得慢时, 流速会较稳定, 图象容易捕捉, 建议流完一瓶的时间超过 20 分钟。短管中存在的对光 线的散射(流动的散射微粒通过容器时有闪烁现象) , 使得流动可以观察到。在这个过程中,液体的下降是非 常缓慢的,因此测量时间可以有几分钟。此时观察频谱 G(f) (图的下半部) ,在背景噪声中会出现一个待测的信号峰(参看图 7 ) 。现在建议关闭 “measurement continuously”模式。敲击 measure 键启动一个新的测量,直到得到一个如图 7 所使得“好的”测量信 一旦得到一个好的信号,立即按<save>键。使用测量(survey)功能,可直接得到信号峰 的平均(or 中间)频率(显示在信号的下方) 。计算流体速度。

大学物理之多普勒效应

大学物理之多普勒效应
实际应用
多普勒效应在天文观测、激光测距等领域有重要应用。
多普勒效应的数学描述
公式推导
多普勒效应的数学描述涉及波动方程和相对运动速度的计算。通过 建立波动方程并求解,可以得到多普勒效应的公式。
公式解释
多普勒效应的公式可以用来定量描述声波或光波的频率变化规律, 其中包含了声源或光源与观察者的相对速度、波速等因素。
电波传播等。
科学研究的基石
03
多普勒效应是科学家们研究物体运动和波传播规律的重要工具,
对于推动科学技术的发展具有重要意义。
对未来研究的展望
深入理解多普勒效应
尽管多普勒效应已经被研究了很长时间,但是还有很多未解之 谜和需要进一步研究的问题,例如量子力学中的多普勒效应等 。
探索新的应用领域
随着科技的不断发展,多普勒效应的应用领域也在不断扩大。 未来可以探索其在生物医学、环境监测、通讯等领域的应用。
据。
实验步骤
2. 调整声源和接收器的相 对位置,使接收器能够接
收到声波。
4. 分析实验数据,得出结 论。
光波多普勒效应的实验验证
实验设备:光源、干涉仪、 测量仪器、记录设备等。
1. 设置光源,使其发出一 定频率的光波。
3. 使用测量仪器测量干涉 条纹的移动距离,并记录 数据。
01
02
03
04
05
06
04 多普勒效应的应用
医学超声诊断
超声诊断
多普勒效应在医学领域中广泛应用于超声诊断,如心脏、血管、胎儿等方面的 检查。通过测量血流速度和方向,医生可以了解器官的功能和血流状态,为诊 断提供重要依据。
血流监测
多普勒效应还可以用于监测患者的血流情况,如监测动脉粥样硬化、血栓形成 等血管疾病的发展情况,以及评估治疗效果。

大学物理实验多普勒效应

大学物理实验多普勒效应

多普勒效应实验报告学院化学与生物工程学院班级化学1701 学号一、实验目的与实验仪器实验目的1、了解多普勒效应原理,并研究相对运动的速度与接收到的频率之间的关系。

2、利用多普勒效应,研究做变速运动的物体其运动速度随时间的变化关系,以及机械能转化的规律。

实验仪器ZKY-DPL-3多普勒效应综合实验仪、电子天平、钩码等。

二、实验原理(要求与提示:限400字以,实验原理图须用手绘后贴图的方式)1、声波的多普勒效应当声源相对介质静止不动时,声波的频率f0,波长λ0以及波速U0表示为f0=U0/λ0则观测频率f、观测波长λ和观测波速U的关系f=U/λ当接收器以一定的速率向声源移动时U=U0+V0,则f=(U0+V0)/λ0联立,得f=(U0+V0)/λ0=(f0λ0)/λ0=(1+V/U0)f0当声源以一定的速率向接收器移动时V =U0-V0,则f’=U’/λ’=U0/( U0-V0)/T= U0/( U0-V0) f当声源与接收器运动如图时f=(U0+V1COSθ1)/( U0-V2 COSθ2)2、马赫锥a=arcsin(U0/V0)=arcsin(1/M)U0为波速,V为飞行器速率,a为马赫角,M为V/U0马赫数3、天文学中的多普勒效应观察两波面的时间t=(λc/(C+Vc))/(1/(1-V2c/C2c)1/2)=(1-V2c/C2c)1/2/((1+Vc/Cc)fc)三、实验步骤(要求与提示:限400字以)1、超声波的多普勒效应(1)、组装仪器(2)、打开实验控制箱,调至室温,记录共振频率f0(3)、选择多普勒效应验证实验(4)、修改测试总数(5)、为仪器充电,确定失锁指示灯处于灯灭状态(6)、选定滑车速率,开始测试(7)、选择存入或者重测(8)、重新选择速度,重复(6)、(7)(9)、记录实验数据2、用多普勒效应研究恒力下物体的运动规律(1)、测量钩码质量和滑车质量(2)、连接仪器(3)、选中变速运动测量(4)、修改测量总次数(5)、选中开始测试,立即松开钩码(6)、记录测量数据(7)、改变砝码质量,重复(1)到(6)四、数据处理(要求与提示:对于必要的数据处理过程要贴手算照片)表4.12-1 多普勒效应的验证与声速的测量t c = 24 ℃f0 = 40001 Hz次数i 1 2 3 4 5v/(m/s) 0.41 0.59 0.75 0.87 0.98Fi/Hz 40049 40070 40089 40103 40116斜率k=f0/u0=117.6声速u0= 340.1m/s当t= 24℃时,u t = 345.7 m/s误差|σ|= 1.6 %表4.12-2 滑车在钩码驱动作用下的运动规律测量滑车质量m0= 595.2 g 采样步距t0= 0.05 s序号i 1 2 3 4 5 6 7 8 9 10 砝码质量m1/gt i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 56.4f i/Hz 40040 40042 40051 40048 40053 40057 40063 40065 40067 40075t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 92.6f i/Hz 40067 40075 40077 40083 40087 40095 40102 40112 40118 40124t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 104.5f i/Hz 40073 40077 40083 40087 40097 40100 40114 40118 40126 40132t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 116.4f i/Hz 40067 40069 40081 40087 40100 40100 40114 40120 40130 40136m1= 56.4 g v-t 关系表t i/(s) 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 v/(m/s)0.337 0.354 0.432 0.406 0.449 0.484 0.536 0.553 0.570 0.640理论值:a0= 0.848 m/s2实验值:a= 0.638 m/s2误差|σ|= 24.8%m1= 92.6 g v-t 关系表t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45v/(m/s)0.570 0.640 0.657 0.709 0.743 0.812 0.873 0.960 1.011 1.063理论值:a0= 1.319 m/s2实验值:a= 1.104 m/s2误差|σ|= 16.3%t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45v/(m/s)0.622 0.657 0.709 0.743 0.830 0.856 0.977 1.011 1.080 1.132理论值:a0= 1.464 m/s2实验值:a= 1.187 m/s2误差|σ|= 18.9 %t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 v/(m/s)0.570 0.588 0.691 0.743 0.856 0.856 0.977 1.028 1.115 1.167理论值:a0= 1.603 m/s2实验值:a= 1.387 m/s2误差|σ|= 13.5%五、分析讨论(提示:分析讨论不少于400字)研究相对运动的速度与接收到的频率之间的关系的实验时1、应该先调好皮带松紧度(1)皮带过松,带动皮带的转轮与皮带之间打滑,使小车速度发生变化,且容易导致小车自动返回后与控制器存在碰撞。

多普勒效应测声速实验报告

多普勒效应测声速实验报告

课程名称:大学物理实验(一)实验名称:多普勒效应测声速图1 用李萨如图观察相位变化位相比较法信号输出CH2分别接换能器发射端和接收端,示波器的“扫描信号周期”选择“器之间的距离时,示波器在一个周期内将有如下显示:φ1−φ2=0 π4π23π4π 5π43π27π42π(两个同斜率直线所对应的换能器间距为一个波长)(本实验在换能器谐振状态下进行声速的测量,振动频率f即为所用换能器的谐振频率f0)三、实验仪器1.超声声速测量仪由压电陶瓷换能器(声压与电压之间的转换)、带有标尺的底座和读数装置(波长的测量)组成图1 超声声速测量仪2.信号发生器:用来产生超声波图2 信号发生器3.示波器:用来观察超声波的振幅、相位和频率图3 示波器4.实验仪器使用时的注意事项a)使用超声声速测量仪进行测量时注意避免空程差以及发射头S1和接收头S2不能相碰,以免损坏。

b)使用时,应避免信号源的功率输出端短路。

c)注意仪器部件的正确安装、线路正确连接。

d)仪器的运动部分是由步进电机驱动的精密系统,严禁运行过程中人为阻碍小车的运动。

e)注意避免传动系统的同步带受外力拉伸或人为损坏。

f)小车不允许在导轨两侧的限位位置外侧运行,意外触发行程开关后要先切断测试架上的电机开关,接着把小车移动到导轨中央位置后再接通电机开关并且按一下复位键即可。

g)调节仪器旋钮要轻缓,以免损坏。

h)信号发射器的信号输出幅度不要过大,避免仪器过热而损坏。

i)螺旋来回转动会产生螺距间隙偏差,测量时应朝一个方向转动超声测量仪测微螺旋。

j)信号源电源开关打开后,S1与S2发射面和接收面要保持相互平行并S1与S2间距必须大于3cm,防止损坏压电换能器。

k)实验时要使函数信号发生器的输出频率等于换能器的谐振频率,并且在实验过程中保持不变。

四、实验内容与步骤<多普勒法>已知c0=347m/s换能器谐振频f=37730Hz,声源、介质不动,接收器运动速度为v r。

物理教学教案:多普勒效应实验

物理教学教案:多普勒效应实验
探究声波频率变化对多普勒效应的影响
02
实验原理
多普勒效应定义
多普勒效应是指波源和观察者之间相对运动时,观察者观察到的频率会发生变化的现象。
频率的变化与相对速度和波长有关,具体表现为蓝移和红移现象。
多普勒效应在物理学、天文学、医学等领域有广泛应用。
波源和观察者相对运动时,观察者接收到的波长会发生变化,导致频率的改变。
接收器
性能要求:高灵敏度、低噪声
实验中注意事项:确保接收器与发射器同步
作用:接收多普勒信号
类型:天线、微波接收器等
测量工具
计时器:用于测量实验过程中所需的时间间隔或持续时间。
声源:产生一定频率的声波,用于模拟多普勒效应中的信号源。
测量仪器:用于测量多普勒效应实验中的各种物理量,如声速、频率等。
示波器:用于观察信号波形,以便进行准确的测量和数据分析。
数据处理误差:在数据处理过程中,可能由于计算错误或数据处理方法不当而导致结果误差。
06
实验总结与展望
总结实验过程与结论
实验目的:验证多普勒效应
实验步骤:设置声源、测量声速、调整频率、记录数据
实验结果:观察到多普勒效应,验证了理论预测
实验原理:基于声波传播和接收的原理
多普勒效应在物理学中的重要性
描述物体运动速度变化引起的波长变化
应用于声学、光学和无线电波等领域
揭示了波与物质相互作用的本质
对物理学的发展产生了深远的影响
未来研究展望
深入研究多普勒效应在其他领域的应用
进一步研究多普勒效应的微观机制和理论模型
开发更多基于多普勒效应的实验装置和技术
探索多普勒效应与量子力学的关系
汇报人:XX
感谢观看
当观察者靠近波源时,接收到的波的频率会增加。

大物实验报告-多普勒效应

大物实验报告-多普勒效应

大物实验报告多普勒效应实验4.12 多普勒效应实验报告一、实验目的与实验仪器实验目的1、了解多普勒效应原理,并研究相对运动的速度与接收到频率之间的关系。

2、利用多普勒效应,研究做变速运动的物体其运动速度随时间的变化关系,以及其机械能转化的规律。

实验仪器ZKY-DPL-3 多普勒效应综合实验仪、电子天平、钩码等。

二、实验原理(要求与提示:限400字以内,实验原理图须用手绘后贴图的方式)声波的多普勒效应假设一个点声源的振动在各向同性且均匀的介质中传播,当声源相对于介质静止不动时,各个波面可以组成个同心圆,声波的频率f0、波长λ0以及波速u0表示为f0=u0/λ0现将接收器测得的声波频率、波长和波速分别称为观测频率、观测波长和观测波速,并分别记为f、λ、u,可表示为f=u/λ当接收器以一定的速度向声源运动时,接收器所测得的各个球面波的观测波长λ仍等于λ0,测得的观测波速u 变为u0+v0,因此有f=(u0+v0)/λ0f=(1+v/u0)*f0式中,v0表示声源相对介质静止时,接收器与声源的相对运动速率,接收器朝向声源运动为正值,反之为负值。

同样地,如果接收器相对于介质静止,而声源以速率v’朝向接收器运动,此时接收器所测得的观测波长为λ'可表示为(u0-v')*T,其中,T为声源的振动周期。

同时,由于接收器相对于介质处于静止状态,其测得的观测波速u'仍等于u0,则接收器测得的观测频率为f'=u’/λ’=u0*f0/(u0-v’)对于更为普遍的情况,当声源与接收器之间的相对运动如图所示时,可以得到接收器的观测频率f为f=f0*(u0+v1*cosθ1)/(u0-v2*cosθ2)此式是具有普适性的多普勒效应公式。

三、实验步骤(要求与提示:限400字以内)1、超声的多普勒效应1.1 连接好实验仪器,使滑车牵引绳绕过滑轮与滑车驱动电动机后两端与滑车的前后端相连,并调整好滑车牵引绳的松紧。

大物实验报告汇总

大物实验报告汇总

弹性模量实验原理1、对于长度为L的细长物体,其均匀截面积为A,沿长度方向受拉力F作用时伸长为ΔL,根据胡克定律有F/A=EΔL/L,若拉力为F=mg,对于直径为d的钢丝,弹性模量可写成E=4mgL/(πd^2ΔL);2、调整好光杠杆和望远镜后,可在望远镜中看到经平面镜反射的标尺刻度的像,光杠杆上钢丝长度发生变化时,会引起平面镜角度改变,同时即可在望远镜中观察到标尺刻度变化。

如下图所示由几何关系可看出钢丝长度变化量ΔL与标尺刻度变化量Δx关系为Δx=2HΔL/l,则可推导出E=8mgLH/(πd^2lΔx);3、米尺最小分度为1mm,仪器误差一般为0.5mm,适用于测量钢丝长度与高度H;游标卡尺有0.1mm、0.05mm、0.02mm等几种规格,仪器误差取最小分度值,适用于测量光杠杆常数;千分尺最小分度为0.01mm,示值误差为+-0.004mm,适用于测量钢丝直径。

实验步骤1、调节光杠杆装置:调节实验架;确保光杠杆动足可随下夹头上下移动而不触碰钢丝;确认LED灯箱工作正常;尽可能确保钢丝无弯折处;2、调节望远镜:使镜筒大致水平,且中心线与平面镜转轴等高,控制望远镜前沿与平台边缘水平距离约20~30cm;调节视度调节及调焦手轮,使视场中十字分划线和标尺像清晰可见;调节支架螺钉使分划横线与刻度线平行,水平移动使分划纵线对齐标尺中心线;3、数据测量:用钢卷尺测量钢丝原长L和平面镜转轴到标尺的垂直距离H,用游标卡尺测量光杠杆常数l,只测一次,记录数据并给出估计误差;用千分尺测量钢丝直径d,在不同位置测量并记录数据;记录初始状态与分划横线对齐刻度值x0及钢丝所受拉力m0,缓慢旋转施力螺母加力,使拉力在m0基础上等间距(约0.50kg)增加,记录每个拉力值mi及对应刻度xi,测十组数据,后反转螺母,逐渐减小钢丝受拉力,测出与加力过程对应拉力值下标尺刻度并记录;4、实验完成,旋松施力螺母,关闭数字拉力计。

分析讨论:1、中间计算值的有效值可以多取一位以减小误差;2、根据物理量及不确定度精度对弹性模量的影响大小确定使用何种精度工具测量;3、调整仪器时需尽量保证金属丝无弯折及仪器功能正常以减小误差。

多普勒效应的实验报告

多普勒效应的实验报告

多普勒效应的实验报告多普勒效应的实验报告引言多普勒效应是物理学中一个重要的现象,它描述了当光或声波源与观察者相对运动时,观察者所接收到的频率会发生变化的现象。

本实验旨在通过模拟多普勒效应的实验,深入了解该现象的原理和应用。

实验设备和方法实验中使用了一个音频发生器和一个音频接收器,它们分别被放置在实验室中的不同位置。

首先,我们将音频发生器固定在一个位置,设定一个固定频率的声音。

然后,我们移动音频接收器,记录接收到的声音频率的变化。

接着,我们将音频接收器固定在一个位置,移动音频发生器,再次记录频率的变化。

通过这样的实验设计,我们可以观察到多普勒效应在不同运动条件下的表现。

实验结果和讨论在实验过程中,我们发现当音频接收器靠近音频发生器时,接收到的声音频率会变高,而当音频接收器远离音频发生器时,接收到的声音频率会变低。

这与多普勒效应的预期结果一致。

多普勒效应的原理是基于波源和观察者之间的相对运动。

当波源和观察者相向而行时,波源发出的波长会变短,频率会增加,观察者接收到的声音频率也会增加。

当波源和观察者背离而行时,波长会变长,频率会减小,观察者接收到的声音频率也会减小。

这种现象可以通过多普勒效应的公式来计算,即:f' = f * (v + v0) / (v - vs)其中,f'为接收到的频率,f为发出的频率,v为波速,v0为观察者的速度,vs为波源的速度。

实验中,我们通过移动音频接收器和音频发生器,改变了观察者和波源的相对位置和速度,从而观察到了多普勒效应的变化。

这个实验结果验证了多普勒效应的存在,并与理论预测相符。

多普勒效应在现实生活中有着广泛的应用。

例如,它被用于测量星体的速度和距离,通过观察星体发出的光的频率变化来推断它们的运动状态。

此外,多普勒效应也被用于雷达和超声波成像等技术中,通过测量回波的频率变化来判断目标物体的运动状态和位置。

结论通过模拟多普勒效应的实验,我们深入了解了这一现象的原理和应用。

多普勒效应 实验报告

多普勒效应 实验报告

多普勒效应实验报告一、实验目的1.了解多普勒效应的基本原理以及相关概念;2.利用多普勒效应来测量声源的速度;3.学习利用频率变化原理判断物体运动方向的方法。

二、实验原理多普勒效应是指当声源或接收器相对于空气运动时,其工作频率会发生变化的现象。

这是由于声波在空气中以有限速度传播,如果有物体相对于媒质自身运动,则声波的传播速度相对于物体而言会有差异,从而改变了声波的频率。

例如,当一个声源自身静止时,其工作频率为f0,但是当其向接收器方向移动时,由于声波传播速度相对于声源自身而言变快,所以接收器接收到的频率f1会变大;反之,当声源向远离接收器方向移动时,接收到的频率f2会变小。

多普勒效应还可以用来测量物体的速度和运动方向,例如利用多普勒雷达来测量飞机的速度和方向。

三、实验器材1.震荡器、扬声器;2.频率计、示波器;3.电源、电缆。

四、实验步骤1.连接实验线路,将示波器接收端接在扬声器上,将震荡器与扬声器固定在相距一定的地方(约1m);2.将震荡器的频率调整为f0,扬声器发出的声音的频率与震荡器的频率相同;3.移动扬声器,使其相对于震荡器和示波器运动,记录频率计显示的频率;4.测量不同距离下的频率,记录数据。

根据多普勒效应的公式计算出声源运动的速度。

五、实验结果在进行实验过程中,我们记录了不同距离下频率计显示的频率值,根据多普勒效应公式计算出了在此距离下的速度,并绘制出速度与距离的关系曲线(图1)。

从图中可以看出,当声源与接收器间的距离越远,测量得到的速度值越接近真实值。

此外,我们还利用多普勒效应来判断物体的运动方向。

当声源向接收器方向运动时,我们发现接收到的声音的频率较大;当声源远离接收器方向运动时,接收到的频率较小。

因此,通过观察频率变化可以判断物体的运动方向。

图1:声源速度与距离关系曲线六、实验分析从实验结果可以看出,多普勒效应是一种非常重要的物理现象,在实际应用中有很大的作用。

例如,利用多普勒雷达可以测量飞机、汽车等运动物体的速度和方向;利用多普勒医学成像可以观察人体内部的血流情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档