八年级数学上册基训答案人教版

合集下载

八年级上册数学基础训练答案人教版

八年级上册数学基础训练答案人教版

三一文库()/初中二年级〔八年级上册数学基础训练答案人教版[1]〕§11.1全等三角形一、1. C 2. C二、1.(1)①AB DE ②AC DC ③BC EC(2)①∠A ∠D ②∠B ∠E ③∠ACB ∠DCE2. 120 4三、1.对应角分别是:∠AOC和∠DOB,∠ACO和∠DBO,∠A和∠D.对应边分别是:AO和DO,OB和OC,AC和DB.2.相等,理由如下:∵△ABC≌△DFE ∴BC=FE ∴BC-EC=FE-EC ∴BE=FC3.相等,理由如下:∵△ABC≌△AEF ∴∠CAB=∠FAE ∴∠CAB—∠BAF=∠FAE #—∠BAF 即∠CAF=∠EAB§11.2全等三角形的判定(一)一、1. 100 2. △BAD,三边对应相等的两个三角形全等(SSS)3. 2, △ADB≌△DAC,△ABC≌△DCB4. 24二、1. ∵BG=CE ∴BE=CG 在△ABE和△DCG中,∴△ABE≌△DCG(SSS),∴∠B=∠C2. ∵D是BC中点,∴BD=CD,在△ABD和△ACD中,∴△ABD≌△ACD(SSS),∴∠ADB=∠ADC又∵∠ADB+∠ADC=180°∴∠ADB=90°∴AD⊥BC3.提示:证△AEC≌△BFD,∠DAB=∠CBA, ∵∠1=∠2 ∴∠DAB-∠1=∠CBA-∠2可得∠ACE=∠FDB§11.2全等三角形的判定(二)一、1.D 2.C二、1.OB=OC 2. 95三、1. 提示:利用“SAS”证△DAB≌△CBA可得∠DAC=∠DBC.2. ∵∠1=∠2 ∴∠1+∠CAD=∠2+∠CAD即∠BAC=∠DAE,在△BAC和△DAE中,∴△BAC≌△DAE(SAS)∴BC=DE3.(1)可添加条件为:BC=EF或BE=CF(2)∵AB∥DE ∴∠B=∠DEF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS)§11.2全等三角形的判定(三)一、1. C 2. C二、1.AAS 2.(1)SAS (2)ASA 3.(答案不)∠B=∠B1,∠C=∠C1等三、1.在△ACE和△ABD中, ∴△ACE≌△ABD(AAS)2.(1)∵AB//DE ∴∠B=∠DEF ∵AC//DF ∴∠ACB=∠F 又∵BE=CF∴BE+EC=CF+EC ∴BC=EF ∴△ABC≌△DEF(ASA)3. 提示:用“AAS”和“ASA”均可证明.§11.2全等三角形的判定(四)一、1.D 2.C二、1.ADC,HL;CBE SAS 2. AB=A'B'(答案不)3.Rt△ABC,Rt△DCB,AAS,△DOC三、1.证明:∵AE⊥BC,DF⊥BC,∴∠CEA=∠DFB=90°∵BE=CF,∴BC-BE=BC-CF即CE=BF 在Rt△ACE和Rt△DBF中, ∴Rt△ACE≌ Rt△DBF(HL)∴∠ACB=∠DBC ∴AC//DB2.证明:∵AD⊥BC,CE⊥AB ∴∠ADB=∠CEB=90°.又∵∠B=∠B ,AD=CE∴△ADB≌△CEB(AAS)3.(1)提示利用“HL”证Rt△ADO≌Rt△AEO,进而得∠1=∠2;(2)提示利用“AAS”证△ADO≌△AEO,进而得OD=OE. 11.2三角形全等的判定(综合)一、1.C 2.B 3.D 4.B 5.B二、1. 80° 2. 2 3. 70° 4. (略)三、1.(1)∵AB⊥BE,DE⊥BE,∵∠B=∠E=90°又∵BF=CE,∴BC=EF,在Rt△ABC和Rt△DEF中, ∴△ABC≌△DEF(2)∵△ABC≌△DEF ∴∠GFC=∠GCF ∴GF=GC2.△ADC≌△AEB,△BDF≌△CEF 或△BDC≌△CEB ∵D、E分别是AB、AC的中点,AB=AC∴AD=AE.在△ADC和△AEB中, ∴△ADC≌△AEB(SAS)§11.3角的平分线的性质一、1.C 2.D 3.B 4.B 5.B 6.D二、1. 5 2. ∠BAC的角平分线 3.4cm三、1.在A内作公路与铁路所成角的平分线;并在角平分线上按比例尺截取BC=2cm,C点即为所求(图略).2. 证明:∵D是BC中点,∴BD=CD.∵ED⊥AB,DF⊥AC,∴∠BED=∠CFD=∠AED=∠AFD=90°.在△BED与△CFD中, ∴△BED≌△CFD((AAS)∴DE=DF,∴AD平分∠BAC3.(1)过点E作EF⊥DC,∵E是∠BCD,∠ADC的平分线的交点,又∵DA⊥AB,CB⊥AB,EF⊥DC,∴AE=EF,BE=EF,即AE=BE (2)∵∠A=∠B=90°,∴AD//BC,∴∠ADC+∠BCD=180°.又∵∠EDC= ∠ADC,∠ECD= ∠BCD ∴∠EDC+∠ECD=90°∴∠DEC=180°-(∠EDC+∠ECD)=90°4. 提示:先运用AO是∠BAC的平分线得DO=EO,再利用“ASA”证△DOB≌△EOC,进而得BO=CO.第十二章轴对称§12.1轴对称(一)一、1.A 2.D二、1. (注一个正“E”和一个反“E”合在一起) 2. 2 4 3.70° 6三、1.轴对称图形有:图(1)中国人民银行标志,图(2)中国铁路标徽,图(4)沈阳太空集团标志三个图案.其中图(1)有3条对称轴,图(2)与(4)均只有1条对称轴. 2. 图2:∠1与∠3,∠9与∠10,∠2与∠4,∠7与∠8,∠B与∠E等; AB与AE,BC与ED,AC与AD等. 图3:∠1与∠2,∠3与∠4,∠A与∠A′等;AD与A′D′,CD与C′D′, BC与B′C′等.§12.1轴对称(二)二、1.MB 直线CD 2. 10cm 3. 120°三、1.(1)作∠AOB的平分线OE;(2)作线段MN的垂直平分线CD,OE与CD交于点P,点P就是所求作的点.2.解:因为直线m是多边形ABCDE的对称轴,则沿m折叠左右两部分完全重合,所以∠A=∠E=130°,∠D=∠B=110°,由于五边形内角和为(5-2)×180°=540°,即∠A+∠B+∠BCD+∠D+∠E=540°,130°+110°+∠BCD+110°+130°=540°,所以∠BCD=60°3. 20提示:利用线段垂直平分线的性质得出BE=AE.§12.2.1作轴对称图形一、1.A 2.A 3.B二、1.全等 2.108三、1. 提示:作出圆心O′,再给合圆O的半径作出圆O′.2.图略3.作点A关于直线a的对称点A′,连接A′B交直线a于点C,则点C为所求.当该站建在河边C点时,可使修的渠道最短.如图§12.2.2用坐标表示轴对称二、1.A(0,2), B(2,2), C(2,0), O(0,0)2.(4,2)3. (-2,-3)三、1. A(-3,0),B(-1,-3),C(4,0),D(-1,3),点A、B、C、D关于y轴的对称点坐标分别为A′(3,0)、B′(1,-3)、C′(-4,0)、D′(1,3)顺次连接A′B′C′D′.如上图2.∵M,N关于x轴对称, ∴∴∴ba+1=(-1)3+1=03.A′(2,3),B′(3,1),C′(-1,-2)§12.3.1等腰三角形(一)一、1.D 2.C二、1. 40°,40° 2. 70°,55°,55°或40°,70°,70° 3.82.5°三、1.证明:∵∠EAC是△ABC的外角∴∠EAC=∠1+∠2=∠B+∠C ∵AB=AC∴∠B=∠C ∴∠1+∠2=2∠C ∵∠1=∠2 ∴2∠2=2∠C∴∠2=∠C ∴AD//BC2.解∵AB=AC,AD=BD,AC=CD ∴∠B=∠C=∠BAD,∠ADC=∠DAC.设∠B=x,则∠ADC=∠B+∠BAD=2x,∴∠DAC=∠ADC=2x,∴∠BAC=3x.于是在△ABC中,∠B+∠C+∠BAC=x+x+3x=180°,得x=36∴∠B=36°.§12.3.2等腰三角形(二)一、1.C 2.C 3.D二、1.等腰 2. 9 3.等边对等角,等角对等边三、1.由∠OBC=∠OCB得BO=CO,可证△ABO≌△ACO,得AB=AC ∴△ABC是等腰三角形.2.能.理由:由AB=DC,∠ABE=∠DCE,∠AEB=∠DEC,得△ABE≌△DCE,∴BE=CE,∴△BEC是等腰三角形.3.(1)利用“SAS”证△ABC≌△AED. (2)△ABC≌△AED 可得∠ABO=∠AEO,AB=AE得∠ABE=∠AEB.进而得∠OBE=∠OEB,最后可证OB=OE. §12.3.3等边三角形一、1.B 2.D 3.C二、1.3cm 2. 30°,4 3. 1 4. 2三、1.证明:∵在△ADC中,∠ADC=90°, ∠C=30°∴∠FAE=60°∵在△ABC中,∠BAC=90°,∠C=30°∴∠ABC=60°∵BE平分∠ABC,∴∠ABE= ×60°=30°∵在△ABE中,∠ABE=30°,∠BAE=90°∴∠AEF=60°∴在△AEF中∠FAE=∠AEF=60°∴FA=FE ∵∠FAE=60°∴△AFE为等边三角形.2.∵DA是∠CAB的平分线,DE⊥AB,DC⊥AC,∴DE=CD=3cm,在Rt△ABC中,由于∠CAB=60°,∴∠B=30°.在Rt△DEB中,∵∠B=30°,DE=3cm,∴DB=2DE=6cm∴BC=CD+DE=3+6=9(cm)3. 证明:∵△ABC为等边三角形,∴BA=CA , ∠BAD=60°. 在△ABD和△ACE中, ∴△ABD≌△ACE(SAS)∴AD=AE,∠BAD=∠CAE=60°∴△ADE是等边三角形.4. 提示:先证BD=AD,再利用直角三角形中,30°角所对的直角边是斜边的一半,得DC=2AD.第十三章实数§13.1平方根(一)一、1. D 2. C二、1. 6 2. 3. 1三、1. (1)16 (2)(3)0.42. (1)0, (2)3 , (3)(4)40 (5)0.5 (6) 43. =0.54. 倍;倍.§13.1平方根(二)一、1. C 2. D二、1. 2 2. 3. 7和8三、1.(1)(2)(3)2.(1)43 (2)11.3 (3)12.25 (4) (5)6.62 3.(1)0.5477 1.732 5.477 17.32(2)被开方数的小数点向右(左)移动两位,所得结果小数点向右(左)移动一位. (3)0.1732 54.77§13.1平方根(三)一、1. D 2. C二、1. ,2 2, 3.三、1.(1)(2)(3)(4)2.(1)(2)-13 (3)11 (4)7 (5) 1.2 (6)-3.(1)(2)(3)(4)4. ,这个数是4 5. 或§13.2立方根(一)一、1. A 2. C二、1. 125 2. ±1和0 3. 3三、1.(1)-0.1 (2)-7 (3)(4)100 (5)- (6)-22.(1)-3 (2)(3)3. (a≠1)§13.2立方根(二)一、1. B 2. D二、1. 1和0; 2. 3. 2三、1. (1)0.73 (2)±14 (3)2. (1)-2 (2)-11 (3)±1 (4)- (5)-2 (6)3.(1) (2) (3) (4)x=-4 (5)x= (6)x= +1§13.3实数(一)一、1. B 2. A二、1.2. ±33.三、1. (1)-1,0,1,2;(2)-4,-3,-2,-1,0,1,2,3,42. 略3.16cm、12cm4. a= ,b=-§13.3实数(二)一、1. D 2. D二、1. 2. 3 3. ①,③-π1111。

人教版初中数学八年级上册全册知识梳理及练习(基础版)(家教补习复习专用)

人教版初中数学八年级上册全册知识梳理及练习(基础版)(家教补习复习专用)

新人教版八年级上册数学全册知识点及巩固练习题与三角形有关的线段(基础)知识讲解【学习目标】1. 理解三角形及与三角形有关的概念,掌握它们的文字、符号语言及图形表述方法;2. 理解并会应用三角形三边间的关系;3. 理解三角形的高、中线、角平分线及重心的概念,学会它们的画法及简单应用;4. 对三角形的稳定性有所认识,知道这个性质有广泛的应用.【要点梳理】要点一、三角形的定义及分类1. 定义: 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点诠释:(1)三角形的基本元素:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角;③三角形的顶点:即相邻两边的公共端点.(2)三角形定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.(3) 三角形的表示:三角形用符号“△”表示,顶点为A 、B 、C 的三角形记作“△ABC ”,读作“三角形ABC ”,注意单独的△没有意义;△ABC 的三边可以用大写字母AB 、BC 、AC 来表示,也可以用小写字母a 、b 、c 来表示,边BC 用a 表示,边AC 、AB 分别用b 、c 表示.【与三角形有关的线段 2、三角形的分类 】2.三角形的分类(1)按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形 要点诠释:①锐角三角形:三个内角都是锐角的三角形;②钝角三角形:有一个内角为钝角的三角形.(2)按边分类:要点诠释:①等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;②等边三角形:三边都相等的三角形.要点二、三角形的三边关系定理:三角形任意两边的和大于第三边.推论:三角形任意两边的差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.(3)证明线段之间的不等关系.要点三、三角形的高、中线与角平分线1、三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.三角形的高的数学语言:如下图,AD是ΔABC的高,或AD是ΔABC的BC边上的高,或AD⊥BC于D,或∠A DB =∠ADC=∠90°.注意:AD是ΔABC的高 ∠ADB=∠ADC=90°(或AD⊥BC于D);要点诠释:(1)三角形的高是线段;(2)三角形有三条高,且相交于一点,这一点叫做三角形的垂心;(3)三角形的三条高:(ⅰ)锐角三角形的三条高在三角形内部,三条高的交点也在三角形内部;(ⅱ)钝角三角形有两条高在三角形的外部,且三条高的交点在三角形的外部;(ⅲ)直角三角形三条高的交点是直角的顶点.2、三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线.三角形的中线的数学语言:如下图,AD 是ΔABC 的中线或AD 是ΔABC 的BC 边上的中线或BD =CD =21BC.要点诠释:(1)三角形的中线是线段;(2)三角形三条中线全在三角形内部;(3)三角形三条中线交于三角形内部一点,这一点叫三角形的重心;(4)中线把三角形分成面积相等的两个三角形.3、三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.三角形的角平分线的数学语言:如下图,AD 是ΔABC 的角平分线,或∠BAD=∠CAD 且点D 在BC 上.注意:AD 是ΔABC 的角平分线 ∠BAD=∠DAC=21∠BAC (或∠BAC=2∠BAD=2∠DAC) . 要点诠释:(1)三角形的角平分线是线段;(2)一个三角形有三条角平分线,并且都在三角形的内部;(3)三角形三条角平分线交于三角形内部一点,这一点叫做三角形的内心;(4)可以用量角器或圆规画三角形的角平分线.要点四、三角形的稳定性三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在门框未安好之前,先在门框上斜着钉一根木板,使它不变形.【典型例题】类型一、三角形的定义及表示1.如图所示.(1)图中共有多少个三角形?并把它们写出来;(2)线段AE是哪些三角形的边?(3)∠B是哪些三角形的角?【思路点拨】在(1)问中数三角形的个数时,应按一定规律去找,这样才会不重、不漏地找出所有的三角形;在(2)问中,突破口在于由三角形定义知,除了A、E再找一个第三点,使这点不在AE上,便可得到以AE为边的三角形;(3)问的突破口是∠B一定是以B为一个顶点组成的三角形中.【答案与解析】解:(1)图中共有6个三角形,它们是△ABD,△ABE,△ABC,△ADE,△ADC,△AEC.(2)线段AE分别为△ABE,△ADE,△ACE的边.(3)∠B分别为△ABD,△ABE,△ABC的角.【总结升华】在数三角形的个数时一定要按照一定的顺序进行,做到不重不漏.举一反三:【变式】如图,,以A为顶点的三角形有几个?用符号表示这些三角形.【答案】3个,分别是△EAB, △BAC, △CAD.类型二、三角形的三边关系2. 三根木条的长度如图所示,能组成三角形的是( )【答案】D.【解析】要构成一个三角形.必须满足任意两边之和大于第三边.在运用时习惯于检查较短的两边之和是否大于第三边.A、B、C三个选项中,较短两边之和小于或等于第三边.故不能组成三角形.D 选项中,2cm+3cm >4cm .故能够组成三角形.【总结升华】判断以三条线段为边能否构成三角形的简易方法是:①判断出较长的一边;②看较短的两边之和是否大于较长的一边,大于则能够成三角形,不大于则不能够成三角形.【与三角形有关的线段 例1】举一反三:【变式】判断下列三条线段能否构成三角形.(1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8.【答案】(1)能; (2)不能; (3)能.3.若三角形的两边长分别是2和7,则第三边长c 的取值范围是_______.【答案】59c <<【解析】三角形的两边长分别是2和7, 则第三边长c 的取值范围是│2-7│<c<2+7, 即5<c<9.【总结升华】三角形的两边a 、b ,那么第三边c 的取值范围是│a -b│<c<a+b. 举一反三:【变式】(2015春•盱眙县期中)四边形ABCD 是任意四边形,AC 与BD 交点O .求证:AC+BD >(AB+BC+CD+DA ).【答案】证明:∵在△OAB 中OA+OB >AB在△OAD 中有OA+OD >AD ,在△ODC 中有OD+OC >CD ,在△OBC 中有OB+OC >BC ,∴OA+OB+OA+OD+OD+OC+OC+OB >AB+BC+CD+DA即2(AC+BD )>AB+BC+CD+DA ,即AC+BD >(AB+BC+CD+DA ).类型三、三角形中重要线段4. (2016春•江阴市月考)如图,AD ⊥BC 于点D ,GC ⊥BC 于点C ,CF ⊥AB 于点F ,下列关于高的说法中错误的是( )A .△ABC 中,AD 是BC 边上的高B .△GBC 中,CF 是BG 边上的高C.△ABC中,GC是BC边上的高D.△GBC中,GC是BC边上的高【思路点拨】根据三角形的一个顶点到对边的垂线段叫做三角形的高对各选项分析判断后利用排除法求解.【答案与解析】解:A、△ABC中,AD是BC边上的高正确,故本选项错误;B、△GBC中,CF是BG边上的高正确,故本选项错误;C、△ABC中,GC是BC边上的高错误,故本选项正确;D、△GBC中,GC是BC边上的高正确,故本选项错误.故选C.【总结升华】本题考查了三角形的高的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高,是基础题,熟记概念是解题的关键.举一反三:C D5.如图所示,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3cm,BC =8cm,求边AC的长.【思路点拨】根据题意,结合图形,有下列数量关系:①AD=BD,②△BCD的周长比△ACD 的周长大3.【答案与解析】解:依题意:△BCD的周长比△ACD的周长大3cm,故有:BC+CD+BD-(AC+CD+AD)=3.又∵ CD为△ABC的AB边上的中线,∴ AD=BD,即BC-AC=3.又∵ BC=8,∴ AC=5.答:AC的长为5cm.【总结升华】运用三角形的中线的定义得到线段AD=BD是解答本题的关键,另外对图形中线段所在位置的观察,找出它们之间的联系,这种数形结合的数学思想是解几何题常用的方法.举一反三:【变式】如图所示,在△ABC中,D、E分别为BC、AD的中点,且4ABCS△,则S阴影为________.【答案】1.类型四、三角形的稳定性6. 如图所示,木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即AB、CD),这样做的数学道理是什么?【答案与解析】解:三角形的稳定性.【总结升华】本题是三角形的稳定性在生活中的具体应用.实际生活中,将多边形转化为三角形都是为了利用三角形的稳定性.与三角形有关的线段(基础)巩固练习【巩固练习】一、选择题1.(2016•西宁)下列每组数分别是三根木棒的长度,能用他们摆成三角形的是( ).A.3cm ,4cm,8cm B.8cm,7cm,15cmC.5cm ,6cm,11cm D.13cm ,12cm,20cm2.如图所示的图形中,三角形的个数共有( ).A.1个 B.2个 C.3个 D.4个3.(2015春•常州期中)如果三角形的两边长分别为4和5,第三边的长是整数,而且是奇数,则第三边的长可以是()A. 6 B. 7 C. 8 D. 94.为估计池塘两岸A、B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是( ).A.5m B.15m C.20m D.28m5.三角形的角平分线、中线和高都是( ).A.直线 B.线段 C.射线 D.以上答案都不对6.下列说法不正确的是( ).A.三角形的中线在三角形的内部 B.三角形的角平分线在三角形的内部C.三角形的高在三角形的内部 D.三角形必有一高线在三角形的内部7.如图,AM是△ABC的中线,那么若用S1表示△ABM的面积,用S2表示△ACM的面积,则S1和S2的大小关系是( ).A.S1>S2 B.S1<S2 C.S1=S2 D.以上三种情况都有可能8.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( ).A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短二、填空题9.(2016•金平区一模)如图,自行车的三角形支架,这是利用三角形具有________性.10.如果三角形的两边长分别是3 cm和6 cm,第三边长是奇数,那么这个三角形的第三边长为________.11. 已知等腰三角形的两边分别为4cm和7cm,则这个三角形的周长为________.12. 如图,AD是△ABC的角平分线,则∠______=∠______=12∠_______;BE是△ABC的中线,则_____=_____=12____ ;CF是△ABC的高,则∠________=∠________=90°,CF________AB.13. 如图,AD、AE分别是△ABC的高和中线,已知AD=5cm,CE=6cm,则△ABE和△ABC的面积分别为________________.14.(2015春•焦作校级期中)AD是△ABC的边BC上的中线,AB=3,AC=4,则中线AD的取值范围是_____________.三、解答题15.判断下列所给的三条线段是否能围成三角形?(1)5cm,5cm,a cm(0<a<10);(2)a+1,a+2,a+3;(3)三条线段之比为2:3:5.16.如图,在△ABC中,∠BAD=∠CAD,AE=CE,AG⊥BC,AD与BE相交于点F,试指出AD、AF分别是哪两个三角形的角平分线,BE、DE分别是哪两个三角形的中线?AG是哪些三角形的高?17.(2014春•苏州期末)如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD周长为15cm,求AC长.18.利用三角形的中线,你能否将图中的三角形的面积分成相等的四部分(给出3种方法)?【答案与解析】一、选择题1. 【答案】D.2. 【答案】C;【解析】三个三角形:△ABC, △ACD, △ABD.3. 【答案】B;【解析】解:由题意,令第三边为x,则5﹣4<x<5+4,即1<x<9,∵第三边长为奇数,∴第三边长是3或5或7.∴三角形的第三边长可以为7.故选B.4. 【答案】D;【解析】因为第三边满足:|另两边之差|<第三边<另两边之和,故|6-12<AB<16+12 即4<AB<28故选D.5. 【答案】B.6. 【答案】C;【解析】三角形的三条高线不一定都在三角形内部.7. 【答案】C;【解析】中线把三角形分成面积相等的两个三角形.8. 【答案】A.二、填空题9. 【答案】稳定.10.【答案】5 cm或7 cm;【解析】三角形三边关系的应用.11.【答案】15cm或18cm;【解析】按腰为4 cm或7 cm分类讨论.12.【答案】BAD CAD BAC;AE CE AC;AFC BFC ⊥.13.【答案】15cm2,30cm2;【解析】S△ABE=S△A CE=15 cm2,S△AB C=2 S△ABE=30 cm2.14.【答案】解:延长AD至E,使DE=AD,连接CE.∵BD=CD,∠ADB=∠EDC,AD=DE,∴△ABD≌△ECD,∴CE=AB.在△ACE中,CE﹣AC<AE<CE+AC,即1<2AD<7,<AD<.故答案为:<AD<.三、解答题15.【解析】解:(1)5+5=10>a(0<a<10),且5+a>5,所以能围成三角形;(2)当-1<a<0时,因为a+1+a+2=2a+3<a+3,所以此时不能围成三角形,当a=0时,因为a+1+a+2=2a+3=3,而a+3=3,所以a+1+a+2=a+3,所以此时不能围成三角形.当a >0时,因为a+1+a+2=2a+3>a+3.所以此时能围成三角形.(3)因为三条线段之比为2:3:5,则可设三条线段的长分别是2k,3k,5k,则2k+3k=5k不满足三角形三边关系.所以不能围成三角形.16.【解析】解:AD、AF分别是△ABC,△ABE的角平分线.BE、DE分别是△ABC,△ADC的中线,AG是△ABC,△ABD,△ACD,△ABG,△ACG,△ADG的高.17.【解析】解:∵AB=6cm,AD=5cm,△ABD周长为15cm,∴BD=15﹣6﹣5=4cm,∵AD是BC边上的中线,∴BC=8cm,∵△ABC的周长为21cm,∴AC=21﹣6﹣8=7cm.故AC长为7cm.18.【解析】解:如图与三角形有关的角(基础)知识讲解【学习目标】1.理解三角形内角和定理的证明方法;2.掌握三角形内角和定理及三角形的外角性质;3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.【要点梳理】要点一、三角形的内角1. 三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.2. 直角三角形:如果一个三角形是直角三角形,那么这个三角形有两个角互余.反过来,有两个角互余的三角形是直角三角形.要点诠释:如果直角三角形中有一个锐角为45°,那么这个直角三角形的另一个锐角也是45°,且此直角三角形是等腰直角三角形.要点二、三角形的外角1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD是△ABC的一个外角.要点诠释:(1)外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.(2)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.要点诠释:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理论证明经常使用的理论依据.另外,在证角的不等关系时也常想到外角的性质.3.三角形的外角和:三角形的外角和等于360°.要点诠释:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°.【典型例题】类型一、三角形的内角和1.证明:三角形的内角和为180°.【答案与解析】解:已知:如图,已知△ABC ,求证:∠A+∠B+∠C =180°.证法1:如图1所示,延长BC 到E ,作CD ∥AB .因为AB ∥CD (已作),所以∠1=∠A (两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).又∠ACB+∠1+∠2=180°(平角定义),所以∠ACB+∠A+∠B=180°(等量代换).证法2:如图2所示,在BC 边上任取一点D ,作DE ∥AB ,交AC 于E ,DF ∥AC ,交AB 于点F . 因为DF ∥AC (已作),所以∠1=∠C (两直线平行,同位角相等),∠2=∠DEC (两直线平行,内错角相等).因为DE ∥AB (已作).所以∠3=∠B ,∠DEC=∠A (两直线平行,同位角相等).所以∠A=∠2(等量代换).又∠1+∠2+∠3=180°(平角定义),所以∠A+∠B+∠C=180°(等量代换).证法3:如图3所示,过A 点任作直线1l ,过B 点作2l ∥1l ,过C 点作3l ∥1l , 因为1l ∥3l (已作).所以∠l=∠2(两直线平行,内错角相等).同理∠3=∠4.又1l ∥2l (已作),所以∠5+∠1+∠6+∠4=180°(两直线平行,同旁内角互补).所以∠5+∠2+∠6+∠3=180°(等量代换).又∠2+∠3=∠ACB ,所以∠BAC+∠ABC+∠ACB=180°(等量代换).证法4:如图4,将ΔABC 的三个内角剪下,拼成以C 为顶点的平角.证法5:如图5-1和图5-2,在图5-1中作∠1=∠A ,得CD ∥AB ,有∠2=∠B ;在图5-2中过A 作MN ∥BC 有∠1=∠B ,∠2=∠C ,进而将三个内角拼成平角.【总结升华】三角形内角和定理的证明方法有很多种,无论哪种证明方法,都是应用的平行线的性质.2.在△ABC 中,已知∠A+∠B =80°,∠C =2∠B ,试求∠A ,∠B 和∠C 的度数.【思路点拨】题中给出两个条件:∠A+∠B =80°,∠C =2∠B ,再根据三角形的内角和等于180°,即∠A+∠B+∠C=180°就可以求出∠A,∠B和∠C的度数.【答案与解析】解:由∠A+∠B=80°及∠A+∠B+∠C=180°,知∠C=100°.又∵∠C=2∠B,∴∠B=50°.∴∠A=80°-∠B=80°-50°=30°.【总结升华】解答本题的关键是利用隐含条件∠A+∠B+∠C=180°.本题可以设∠B=x,则∠A=80°-x,∠C=2x建立方程求解.举一反三:【变式】(2015春•安岳县期末)如图,在△ABC中,∠A=50°,E是△ABC内一点,∠BEC=150°,∠ABE的平分线与∠ACE的平分线相交于点D,则∠BDC的度数为多少?【答案】100°.解:∵△ABC中∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵△BCE中∠E=150°,∴∠EBC+∠ECB=180°﹣150°=30°,∴∠ABE+∠ACE=130°﹣30°=100°,∵∠ABE的平分线与∠ACE的平分线相交于点D,∴∠DBE+∠DCE=(∠ABE+∠ACE)=×100°=50°,∴∠DBE+∠DCE=(∠DBE+∠DCE)+(∠EBC+∠EC B)=50°+30°=80°,∴∠BDC=180°﹣80°=100°.类型二、三角形的外角【与三角形有关的角例2、】3.(1)如图,AB和CD交于点O,求证:∠A+∠C=∠B+∠D .(2)如图,求证:∠D=∠A+∠B +∠C.【答案与解析】解:(1)如图,在△AOC中,∠COB是一个外角,由外角的性质可得:∠COB=∠A+∠C,同理,在△BOD中,∠COB=∠B+∠D,所以∠A+∠C=∠B+∠D.(2)如图,延长线段BD交线段于点E,在△ABE中,∠BEC=∠A+∠B ①;在△DCE中,∠BDC=∠BEC+∠C ②,将①代入②得,∠BDC=∠A+∠B+∠C,即得证.【总结升华】重要结论:(1)“8”字形图:∠A+∠C=∠B+∠D;(2)“燕尾形图”:∠D=∠A+∠B +∠C.举一反三:【变式1】(新疆建设兵团)如图,AB∥CD,AD和BC相交于点O,∠A=40°,∠AOB=75°,则∠C等于().A、40°B、65°C、75°D、115°【答案】B.【变式2】如图,在△ABC中,∠A=70°,BO,CO分别平分∠ABC和∠ACB,则∠BOC的度数为 .【答案】125°.类型三、三角形的内角外角综合4.(2015春•江阴市校级月考)已知如图∠xOy=90°,BE 是∠ABy 的平分线,BE 的反向延长线与∠OAB 的平分线相交于点C ,当点A ,B 分别在射线Ox ,Oy 上移动时,试问∠ACB 的大小是否发生变化?如果保持不变,请说明理由;如果随点A ,B 的移动而变化,请求出变化范围.【思路点拨】根据角平分线的定义、三角形的内角和、外角性质求解.【答案与解析】解:∠C 的大小保持不变.理由:∵∠ABY=90°+∠OAB ,AC 平分∠OAB ,BE 平分∠ABY ,∴∠ABE=∠ABY=(90°+∠OAB )=45°+∠OAB ,即∠ABE=45°+∠CAB ,又∵∠ABE=∠C+∠CAB ,∴∠C=45°,故∠ACB 的大小不发生变化,且始终保持45°.【总结升华】本题考查的是三角形内角与外角的关系,掌握“三角形的内角和是180°”是解决问题的关键.举一反三:【变式】如图所示,已知△ABC 中,P 为内角平分线AD 、BE 、CF 的交点,过点P 作PG ⊥BC 于G ,试说明∠BPD 与∠CPG 的大小关系并说明理由.【答案】解:∠BPD =∠CPG .理由如下:∵ AD 、BE 、CF 分别是∠BAC 、∠ABC 、∠ACB 的角平分线,∴ ∠1=12∠ABC ,∠2=12∠BAC ,∠3=12∠ACB . ∴ ∠1+∠2+∠3=12(∠ABC+∠BAC+∠ACB)=90°. 又∵ ∠4=∠1+∠2,∴∠4+∠3=90°.又∵ PG⊥BC,∴∠3+∠5=90°.∴∠4=∠5,即∠BPD=∠CPG.与三角形有关的角(基础)巩固练习【巩固练习】一、选择题1.已知在△ABC中有两个角的大小分别为40°和70°,则这个三角形是( ).A.直角三角形 B.等边三角形C.钝角三角形 D.等腰三角形2.若△ABC的∠A=60°,且∠B:∠C=2:1,那么∠B的度数为( ).A.40° B.80° C.60° D.120°3.(云南昆明)如图所示,在△ABC中,CD是∠ACB的平分线,∠A=80°,∠ACB=60°,那么∠BDC=( ).A.80° B.90° C.100° D.110°4.(2015•绵阳)如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118°B.119°C.120°D.121°5.(山东济宁)若一个三角形三个内角度数的比为2:3:4,那么这个三角形是( ).A.直角三角形 B.锐角三角形 C.钝角三角形 D.等边三角形6.(山东菏泽)一次数学活动课上,小聪将一幅三角板按图中方式叠放.则∠α等于( ).A.30° B.45° C.60° D.75°二、填空题7.如图,AD⊥BC,垂足是点D,若∠A=32°,∠B=40°,则∠C=_______,∠BFD=_______,∠AEF=________.8.在△ABC中,∠A+∠B=∠C,则∠C=_______.9.根据如图所示角的度数,求出其中∠α的度数.10.如图所示,飞机要从A地飞往B地,因受大风影响,一开始就偏离航线(AB)38°(即∠A =38°),飞到了C地.已知∠ABC=20°,现在飞机要到达B地,则飞机需以_______的角飞行(即∠BCD的度数).11.如图,有_______个三角形,∠1是________的外角,∠ADB是________的外角.12.(2014春•通川区校级期末)如图中,∠B=36°,∠C=76°,AD、AF分别是△ABC的角平分线和高,则∠DAF=度.三、解答题13.如图,求∠1+∠2+∠3+∠4的度数.14.已知:如图所示,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.15.(2015春•石家庄期末)已知△ABC中,AE平分∠BAC,(1)如图1,若AD⊥BC于点D,∠B=72°,∠C=36°,求∠DAE的度数;(2)如图2,P为AE上一个动点(P不与A、E重合,PF⊥BC于点F,若∠B>∠C,则∠EPF=是否成立,并说明理由.16.如图是李师傅设计的一块模板,设计要求BA与CD相交成20°角,DA与CB相交成40°角,现测得∠B=75°,∠C=85°,∠D=55°.能否判定模板是否合格,为什么?【答案与解析】一、选择题1. 【答案】D.2. 【答案】B;【解析】设∠B=2x°,则∠C=x°,由三角形的内角和定理可得,2x°+x°+60°=180°,解得x°=40°,∠B=2x°=80°.3. 【答案】D.4. 【答案】C;【解析】解:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE,CD是∠B、∠C的平分线,∴∠CBE=∠ABC,∠BCD=,∴∠CBE+∠BCD=(∠ABC+∠BCA)=60°,∴∠BFC=180°﹣60°=120°,故选:C.5. 【答案】B;【解析】先求出三角形的三个内角度数,再判断三角形的形状.6. 【答案】D;【解析】利用平行线的性质及三角形的外角性质进行解答.二、填空题7. 【答案】58°,50°,98°;【解析】在Rt△ADC中,∠A=32°,∠C=58°;在Rt△BDF中,∠B=40°,∠BFD=50°;在△BEC,∠AEF=∠B+∠C=98°.8. 【答案】90°.9. 【答案】 (1)48°; (2)27°; (3)85°;【解析】充分利用:(1)“8”字形图:∠A+∠C=∠B+∠D;(2)“燕尾形图”:∠D=∠A+∠B +∠C.10.【答案】58°.11.【答案】8,△DBC,△ADE;【解析】考查三角形外角的定义.12.【答案】20;【解析】解:∵∠B=36°,∠C=76°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣36°﹣76°=68°,∵AD是∠BAC的平分线,∴∠BAD=×68°=34°,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=36°+34°=70°,∵AF⊥BC,∴∠AFD=90°,∴∠DAF=180°﹣∠ADC﹣∠AFD=180°﹣70°﹣90°=20°.三、解答题13.【解析】解:连接AD,在△ADC中,∠1+∠CAD+∠CDA=180°,在△ABD中,∠3+∠BAD+∠BDA=180°.∴∠1+∠2+∠3+∠4=∠1+∠CAD+∠BAD+∠3+∠CDA+∠BDA.=(∠1+∠CAD+∠CDA)+(∠3+∠BAD+∠BDA)=180°+180°=360°.14.【解析】解:设∠A=x°,则∠ABC=∠C=2x°.在△ABC中,由内角和定理有x+2x+2x=180°,∴ x=36°.∴∠C=72°,在△BDC中,∵ BD是AC边上的高,∴∠BDC=90°,∴∠DBC=90°,∴∠DBC=90°-∠C=18°.15.【解析】证明:(1)如图1,∵∠B=72°,∠C=36°,∴∠A=180°﹣∠B﹣∠C=72°;又∵AE平分∠BAC,∴∠1==72°,∴∠3=∠1+∠C=72°,又∵AD⊥BC于D,∴∠2=90°,∴∠DAE=180°﹣∠2﹣∠3=18°.(2)成立.如图2,∵AE平分∠BAC,∴∠1===90°﹣,∴∠3=∠1+∠C=90°﹣+,又∵PF⊥BC于F,∴∠2=90°,∴∠EPF=180°﹣∠2﹣∠3=.16.【解析】解:分别延长CB、DA交于点P.因为∠C=85°,∠D=55°,由三角形内角和可知∠P=180°-∠C-∠D=40°,即DA与CB相交成40°角.同理可得BA与CD相交成20°角.所以这个模板是合格的.多边形(基础)知识讲解【学习目标】1.理解多边形的概念;2.掌握多边形内角和与外角和公式;3.灵活运用多边形内角和与外角和公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【要点梳理】知识点一、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形.2.相关概念:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角.外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角.对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形.如图:要点诠释: (1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可;(2)过n 边形的一个顶点可以引(n-3)条对角线,n 边形对角线的条数为(3)2n n -; (3)过n 边形的一个顶点的对角线可以把n 边形分成(n-2)个三角形.知识点二、多边形内角和n 边形的内角和为(n-2)·180°(n ≥3).要点诠释:(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于(2)180n n-°; 知识点三、多边形的外角和多边形的外角和为360°.要点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n 边形的外角和恒等于360°,它与边数的多少无关;(2)正n 边形的每个内角都相等,所以它的每个外角都相等,都等于360n°; (3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.【典型例题】类型一、多边形的概念1.如图,在六边形ABCDEF 中,从顶点A 出发,可以画几条对角线?它们将六边形ABCDEF 分成哪几个三角形?凸多边形 凹多边形【答案与解析】解:如图,P从顶点A出发,可以画三条对角线,它们将六边形ABCDEF分成的三角形分别是:△ABC、△ACD、△ADE、△AEF.【总结升华】从一个多边形一个顶点出发,可以连的对角线的条数(n-3)条,分成的三角形数是个数(n-2)个.举一反三:【变式】过正十二边形的一个顶点有条对角线,一个正十二边形共有条对角线【答案】9,54。

人教版数学八年级上册 第12章 基础检测含答案

人教版数学八年级上册 第12章 基础检测含答案

人教版数学八年级上册第12章基础检测含答案12.1全等三角形一.选择题1.已知△ABC的三边的长分别为3,5,7,△DEF的三边的长分别为3,7,2x﹣1,若这两个三角形全等,则x的值是()A.3 B.5 C.﹣3 D.﹣52.如图,△ABD≌△CDB,下面四个结论中,不正确的是()A.∠ABD=∠CBD B.△ABD和△CDB的周长相等C.AD=BC D.△ABD和△CDB的面积相等3.如图两个直角三角形,若△ABC≌△CDE,则线段AC和线段CE的关系是()A.既不相等也不互相垂直B.相等但不互相垂直C.互相垂直但不相等D.相等且互相垂直4.如图,△ABC与△DEF是全等三角形,则图中相等的线段有()A.1对B.2对C.3对D.4对5.△ABC≌△DEF,AB=2,BC=4,若△DEF的周长为偶数,则DF的取值为()A.3 B.4 C.5 D.3或4或5 6.下列说法正确的是()A.面积相等的两个图形全等B.周长相等的两个图形全等C.形状相同的两个图形全等D.全等图形的形状和大小相同7.已知△ABC≌△FED,若∠E=37°,∠C=100°,则∠A的度数是()A.100°B.80°C.43°D.37°8.如图,△ABC≌△DEF,∠A=50°,∠C=30°,则∠E的度数为()A.30°B.50°C.60°D.100°9.下列各组图形中,是全等形的是()A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形10.已知,如图,△ABC≌△DEF,AC∥DF,BC∥EF.则不正确的等式是()A.AC=DF B.AD=BE C.DF=EF D.BC=EF二.填空题11.已知△ABC≌△DEF,BC=EF=6厘米,△ABC的面积为9平方厘米,则EF边上的高是厘米.12.在平面直角坐标系中,已知点A(1,2),B(5,5),C(5,2),存在点E,使△ACE 和△ACB全等,写出所有满足条件的E点的坐标.13.如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC=.14.△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=5,则AC=.15.如图,四边形ABCD与四边形A′B′C′D′全等,则∠A′=°,∠A =°,B′C′=,AD=.三.解答题16.已知:如图,△ABC≌△DEF,AM、DN分别是△ABC、△DEF的对应边上的高.求证:AM=DN.17.如图,△ABC≌△DBE,点D在边AC上,BC与DE交于点P,已知∠ABE=162°,∠DBC=30°,求∠CDE的度数.18.如图,△ABC≌△DBC,∠A=40°,∠ACD=88°,求∠ABC的度数.19.如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC 的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.参考答案与试题解析一.选择题1.【解答】解:∵这两个三角形全等,∴2x﹣1=5,解得,x=3,故选:A.2.【解答】解:A、∵△ABD≌△CDB,∴∠ABD=∠CBD,选项说法错误;B、∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,选项说法正确;C、∵△ABD≌△CDB,∴AD=BC,选项说法正确;D、∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,选项说法正确;故选:A.3.【解答】解:∵Rt△ABC≌Rt△CDE,∴AC=CE,∠A=∠ECD,∠B=∠D,∠ACB=∠E.∵△ABC是直角三角形,∠A+∠ACB=90°,∴∠ACB+∠ECD=∠ACB+∠A=90°,∴∠ACE=180°﹣90°=90°,∴AC⊥CE,∴AC和CE相等且互相垂直,故选:D.4.【解答】解:∵△ABC与△DEF是全等三角形,∴AB=DE,AC=DF,BC=EF,∴BC﹣EC=EF﹣EC,∴BE=CF,即相等的线段有4对,故选:D.5.【解答】解:∵△ABC≌△DEF,AB=2,BC=4,∴DE=AB=2,EF=BC=4,∴4﹣2<DF<4+2,∴2<DF<6,∵DE=2,EF=4,△DEF的周长为偶数,∴DF=4,故选:B.6.【解答】解:A、面积相等的两个图形全等,说法错误;B、周长相等的两个图形全等,说法错误;C、形状相同的两个图形全等,说法错误;D、全等图形的形状和大小相同,说法正确;故选:D.7.【解答】解:∵△ABC≌△FED,∠E=37°,∴∠B=∠E=37°,∵∠C=100°,∴∠A=180°﹣∠B﹣∠C=180°﹣37°﹣100°=43°,故选:C.8.【解答】解:∵△ABC≌△DEF,∠A=50°,∠C=30°,∴∠F=∠C=30°,∠D=∠A=50°,∴∠E=180°﹣∠D﹣∠F=180°﹣50°﹣30°=100°,故选:D.9.【解答】解:A、两个含60°角的直角三角形,缺少对应边相等,所以不是全等形;B、腰对应相等的两个等腰直角三角形,符合AAS或ASA,或SAS,是全等形;C、边长为3和4的两个等腰三角形有可能是3,3,4或4,4,3不一定全等对应关系不明确不一定全等;D、一个钝角相等的两个等腰三角形.缺少对应边相等,不是全等形.故选:B.10.【解答】解:A、∵△ABC≌△DEF,∴AC=DF,故此结论正确;B、∵△ABC≌△DEF,∴AB=DE;∵DB是公共边,∴AB﹣BD=DE﹣BD,即AD=BE;故此结论正确;C、∵△ABC≌△DEF,∴AC=DF,故此结论DF=EF错误;D、∵△ABC≌△DEF,∴BC=EF,故此结论正确;故选:C.二.填空题(共5小题)11.【解答】解:设△ABC边BC上的高为h,则△ABC的面积=BCh=×6h=9,解得h=3,∵△ABC≌△DEF,BC=EF,∴EF边上的高是3cm.故答案为:3.12.【解答】解:如图所示:有3个点,当E在E、F、N处时,△ACE和△ACB全等,点E的坐标是:(1,5),(1,﹣1),(5,﹣1),故答案为:(1,5)或(1,﹣1)或(5,﹣1).13.【解答】解:∵∠BAE=120°,∠BAD=40°,∴∠DAE=∠BAE﹣∠BAD=120°﹣40°=80°,∵△ABC≌△ADE,∴∠BAC=∠DAE=80°.故答案为:80°.14.【解答】解:∵△ABC≌△DEF,EF=5,∴BC=EF=5,∵△ABC的周长为12,AB=3,∴AC=12﹣5﹣3=4.故答案为:4.15.【解答】解:由题意得:∠A′=70°,∠A=∠A′=70°,B′C′=BC=12,AD=A′D′=6.故答案为:70°,70°,12,6.三.解答题(共4小题)16.【解答】方法一:证明:∵△ABC≌△DEF,∴AB=DE,∠B=∠E,∵AM,DN分别是△ABC,△DEF的对应边上的高,即AM⊥BC,DN⊥EF,∴∠AMB=∠DNE=90°,在△ABM和△DEN中,∴△ABM≌△DEN(AAS),∴AM=DN.方法二:∵△ABC≌△DEF,∴BC=EF,∵AM、DN分别是△ABC、△DEF的对应边上的高,∴BCAM=EFDN,∴AM=DN.17.【解答】解:∵∠ABE=162°,∠DBC=30°,∴∠ABD+∠CBE=132°,∵△ABC≌△DBE,∴∠ABC=∠DBE,∠C=∠E,∴∠ABD=∠CBE=132°÷2=66°,∵∠CPD=∠BPE,∴∠CDE=∠CBE=66°.18.【解答】解:∵△ABC≌△DBC,∴∠ACB=∠DCB,∵∠ACD=88°,∴∠ACB=44°,∵∠A=40°,∴∠ABC=180°﹣40°﹣44°=96°.19.【解答】解:(1)①当点P在BC上时,如图①﹣1,若△APC的面积等于△ABC面积的一半;则CP=BC=cm,此时,点P移动的距离为AC+CP=12+=,移动的时间为:÷3=秒,②当点P在BA上时,如图①﹣2若△APC的面积等于△ABC面积的一半;则PD=BC,即点P为BA中点,此时,点P移动的距离为AC+CB+BP=12+9+=cm,移动的时间为:÷3=秒,故答案为:或;(2)△APQ≌△DEF,即,对应顶点为A与D,P与E,Q与F;①当点P在AC上,如图②﹣1所示:此时,AP=4,AQ=5,∴点Q移动的速度为5÷(4÷3)=cm/s,②当点P在AB上,如图②﹣2所示:此时,AP=4,AQ=5,即,点P移动的距离为9+12+15﹣4=32cm,点Q移动的距离为9+12+15﹣5=31cm,∴点Q移动的速度为31÷(32÷3)=cm/s,综上所述,两点运动过程中的某一时刻,恰好△APQ≌△DEF,点Q的运动速为cm/s或cm/s12.2三角形全等的判定一.选择题1.如图,在△ABC中,AB=AC,E、D分别为AB、AC边上的中点,连接BD、CE交于O,此图中全等三角形的对数为()对.A.4 B.3 C.2 D.12.如图,AB=AD,∠1=∠2,则不一定使△ABC≌△ADE的条件是()A.∠B=∠D B.∠C=∠E C.BC=DE D.AC=AE3.如图,A、B、C、D在一条直线上,MB=ND,∠MBA=∠D,添加下列某一条件后不能判定△ABM≌△CDN的是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN4.根据下列已知条件,能够画出唯一△ABC的是()A.AB=6,BC=5,∠A=50°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8 D.∠A=40°,∠B=50°,∠C=90°5.如图,AD为∠BAC的平分线,添加下列条件后,不能证明△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.BD=CD D.AB=AC6.如图,给出的四组条件中,不能证明△ABC≌△DEF的是()A.AB=DE,BC=EF,AC=DF B.AB=DE,∠B=∠E,BC=EFC.AB=DE,AC=DF,∠B=∠E D.∠B=∠E,BC=EF,∠C=∠F.7.如图所示,为了测量出A,B两点之间的距离,在地面上找到一点C,连接BC,AC,使∠ACB=90°,然后在BC的延长线上确定D,使CD=BC,那么只要测量出AD的长度也就得到了A,B两点之间的距离,这样测量的依据是()A.AAS B.SAS C.ASA D.SSS8.如图,要测量河两岸相对两点A、B间的距离,先在过点B的AB的垂线上取两点C、D,使得CD=BC,再在过点D的垂线上取点E,使A、C、E三点在一条直线上,可以证明△EDC≌△ABC,所以测得ED的长就是A、B两点间的距离,这里判定△EDC≌△ABC 的理由是()A.SAS B.SSS C.ASA D.AAS9.如图所示为打碎的一块三角形玻璃,现在要去玻璃店配一块完全一样的玻璃,最省事的方法是()A.带①去B.带②去C.带③去D.带①和②去10.在△ABC和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC≌△A'B'C'的是()A.①②③B.①②⑤C.①②④D.②⑤⑥二.填空题11.△ABC中,AB=5,AC=a,BC边上的中线AD=4,则a的取值范围是.12.如图,已知CA=DB,要使△ABC和△ABD全等,请补充条件(填上一种即可).13.如图,点B、E、C、F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.若AC =5,则DF=.14.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AF2=EC2﹣EF2;④BA+BC=2BF.其中正确的是.15.如图,在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,设PB =m,PC=n,AB=c,AC=b,则m+n b+c.三.解答题16.如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB∥CD,AE=DF,∠A =∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.17.已知:如图,E在△ABC的边AC上,且∠AEB=∠ABC.(1)求证:∠ABE=∠C;(2)若∠BAE的平分线AF交BE于点F,FD∥BC交AC于点D,设AB=8,AC=10,求DC的长.18.如图,在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=60°,BE=2,求△ABC的周长.19.已知△ABC,点D、F分别为线段AC、AB上两点,连接BD、CF交于点E.(1)若BD⊥AC,CF⊥AB,如图1所示,试说明∠BAC+∠BEC=180°;(2)若BD平分∠ABC,CF平分∠ACB,如图2所示,试说明此时∠BAC与∠BEC的数量关系;(3)在(2)的条件下,若∠BAC=60°,试说明:EF=ED.参考答案与试题解析一.选择题1.【解答】解:∵AB=AC,∴∠EBC=∠DCB,∵AE=BE,AD=DC,∴BE=DC,∵BC=CB,∴△EBC≌△DCB,∴∠ECB=∠DBC,∴∠EBO=∠DCO,∵BE=CD,∴∠BOE=∠COD,∴△BOE≌△COD,∵∠A=∠A,AB=AC,∠ABD=∠ACE,∴△ABD≌△ACE,共有3对全等三角形,故选:B.2.【解答】解:∵∠1=∠2,∵∠1+∠DAC=∠2+∠DAC,∴∠BAC=∠DAE,A、符合ASA定理,即能推出△ABC≌△ADE,故本选项错误;B、符合AAS定理,即能推出△ABC≌△ADE,故本选项错误;C、不符合全等三角形的判定定理,即不能推出△ABC≌△ADE,故本选项正确;D、符合SAS定理,即能推出△ABC≌△ADE,故本选项错误;故选:C.3.【解答】解:A、根据ASA可以判定△ABM≌△CDN;B、根据SAS可以判定△ABM≌△CDN;C、SSA无法判定三角形全等;D、根据AAS即可判定△ABM≌△CDN;故选:C.4.【解答】解:A、已知AB、BC和BC的对角,不能画出唯一三角形,故本选项错误;B、∵AB+BC=5+6=11<AC,∴不能画出△ABC;故本选项错误;C、已知两角和夹边,能画出唯一△ABC,故本选项正确;D、根据∠A=40°,∠B=50°,∠C=90°不能画出唯一三角形,故本选项错误;故选:C.5.【解答】解:A、由,可得到△ABD≌△ACD,所以A选项不正确;B、由,可得到△ABD≌△ACD,所以B选项不正确;C、由BD=CD,AD=AD,∠BAD=∠CAD,不能得到△ABD≌△ACD,所以C选项正确.D、由,可得到△ABD≌△ACD,所以D选项不正确;故选:C.6.【解答】解:A、由全等三角形的判定定理SSS能证明△ABC≌DEF,故此选项错误;B、由全等三角形的判定定理SAS能证明△ABC≌DEF,故此选项错误;C、由SSA不能证明△ABC≌DEF,故此选项正确;D、由全等三角形的判定定理ASA能证明△ABC≌DEF,故此选项错误;故选:C.7.【解答】解:∵AC⊥BD,∴∠ACB=∠ACD=90°,在△ACB和△ACD中,,∴△ACB≌△ACD(SAS),∴AB=AD(全等三角形的对应边相等).故选:B.8.【解答】解:∵AB⊥BD,ED⊥BD,∴∠ABD=∠EDC=90°,在△EDC和△ABC中,,∴△EDC≌△ABC(ASA)故选:C.9.【解答】解:第一块,仅保留了原三角形的一个角和部分边,不符合任何判定方法;第二块,仅保留了原三角形的一部分边,所以该块不行;第三块,不但保留了原三角形的两个角还保留了其中一个边,所以符合ASA判定,所以应该拿这块去.故选:C.10.【解答】解:∵在△ABC和△A′B′C′中,有边边角、角角角不能判定三角形全等,∴①②④是边边角,∴不能保证△ABC≌△A′B′C′.故选:C.二.填空题(共5小题)11.【解答】解:延长AD到E,使AD=DE,连接BE,∵AD=DE,∠ADC=∠BDE,BD=DC,∴△ADC≌△EDB(SAS)∴BE=AC=a,在△AEB中,AB﹣BE<AE<AB+BE,即5﹣a<2AD<5+a,∴<AD<.,∵AD=4,∴a的取值范围是3<a<13,故答案为:3<a<1312.【解答】解:当CB=DA时,△ABC≌△ABD,在△ABC和△ABD中,,∴△ABC≌△ABD(SSS),故答案为:CB=DA.13.【解答】解:∵BE=CF,∴BE+EC=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),∴AC=DF=5(全等三角形对应边相等).故答案为:5.14.【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),∴①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,∴②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC,∵EF⊥AB,∴AF2=EC2﹣EF2;∴③正确;④如图,过E作EG⊥BC于G点,∵E是BD上的点,∴EF=EG,在Rt△BEG和Rt△BEF中,,∴Rt△BEG≌Rt△BEF(HL),∴BG=BF,在Rt△CEG和Rt△AFE中,,∴Rt△CEG≌Rt△AFE(HL),∴AF=CG,∴BA+BC=BF+F A+BG﹣CG=BF+BG=2BF,∴④正确.故答案为:①②③④.15.【解答】解:如图,在BA的延长线上取点E,使AE=AC,连接EP,∵AD是∠A的外角平分线,∴∠CAD=∠EAD,在△ACP和△AEP中,,∴△ACP≌△AEP(SAS),∴PE=PC,在△PBE中,PB+PE>AB+AE,∵PB=m,PC=n,AB=c,AC=b,∴m+n>b+c.故答案为:>.三.解答题(共4小题)16.【解答】(1)证明:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF(AAS),∴AB=CD;(2)解:∵△ABE≌△DCF,∴AB=CD,BE=CF,∠B=∠C,∵∠B=40°,∴∠C=40°∵AB=CF,∴CF=CD,∴∠D=∠CFD=(180°﹣40°)=70°.17.【解答】(1)证明:在△ABE中,∠ABE=180°﹣∠BAE﹣∠AEB,在△ABC中,∠C=180°﹣∠BAC﹣∠ABC,∵∠AEB=∠ABC,∠BAE=∠BAC,∴∠ABE=∠C;(2)解:∵FD∥BC,∴∠ADF=∠C,又∠ABE=∠C,∴∠ABE=∠ADF,∵AF平分∠BAE,∴∠BAF=∠DAF,在△ABF和△ADF中,,∴△ABF≌△ADF(AAS),∴AB=AD,∵AB=8,AC=10,∴DC=AC﹣AD=AC﹣AB=10﹣8=2.18.【解答】(1)证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵AB=AC,∴∠B=∠C(等边对等角).∵D是BC的中点,∴BD=CD.在△BED和△CFD中,,∴△BED≌△CFD(AAS).∴DE=DF(2)解:∵AB=AC,∠A=60°,∴△ABC为等边三角形.∴∠B=60°,∵∠BED=90°,∴∠BDE=30°,∴BE=BD,∵BE=2,∴BD=4,∴BC=2BD=8,∴△ABC的周长为24.19.【解答】解:(1)∵BD⊥AC,CF⊥AB,∴∠DCE+∠DEC=∠DCE+∠F AC=90°,∴∠DEC=∠BAC,∠DEC+∠BEC=180°,∴∠BAC+∠BEC=180°;(2)∵BD平分∠ABC,CF平分∠ACB,∴∠EBC=ABC,∠ECB=ACB,∠BEC=180°﹣(∠EBC+∠ECB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠BAC)=90°∠BAC;(3)作∠BEC的平分线EM交BC于M,∵∠BAC=60°,∴∠BEC=90°+BAC=120°,∴∠FEB=∠DEC=60°,∵EM平分∠BEC,∴∠BEM=60°,在△FBE与△EBM中,12.3《角平分线性质》一、选择题1.如图,在△ACB中,∠ACB=100°,∠A=20°,D是AB上一点.将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.25° B.30° C.35° D.40°2.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是( )A.∠CEO=∠DEO B.CM=MD C.∠OCD=∠ECD D.S四边形OCED=CD•OE3.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1B.1:2:3C.2:3:4D.3:4:54.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB于点E,若BC=7,则AE的长为()A.4B.5C.6D.75.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AB=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个6.如图,已知∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=6,AC=3,则BE=()A. 6B. 3C. 2D. 1.57.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则△DEB的周长是()A.6cmB.4cmC.10cmD.以上都不对8.如图,已知OQ平分∠AOB,点P为OQ上任意一点,点N为OA上一点,点M为OB上一点,若∠PNO+∠PMO=180°,则PM和PN的大小关系是()A.PM>PNB.PM<PNC.PM=PND.不能确定9.如图,点P是△ABC外的一点,PD⊥AB于点D,PE⊥AC于点E,PF⊥BC于点F,连接PB,PC.若PD=PE=PF,∠BAC=70°,则∠BPC的度数为()A.25°B.30° C.35° D.40°10.如图,在△ABC中,∠A=52°,∠ABC与∠ACB的角平分线交于D,∠ABD1与∠ACD1的角1平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A.56° B.60° C.68° D.94°11.如图所示,在Rt△ABC中,AD是斜边上的高,∠ABC的平分线分别交AD、AC于点F、E,EG⊥BC于G,下列结论正确的是()A.∠C=∠ABC B.BA=BG C.AE=CE D.AF=FD12.如图,BD为∠ABC的角平分线,且BD=BC,E为BD的延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①∠ABE=∠ACE;②∠BCE+∠BCD=180°;③AE=EC;④BE+BD=2BF,其中正确的是()A.①②③B.①③④C.①②④D.①②③④二、填空题13.如图,在△ABC中,∠C=90°,BD是∠ABC的平分线,DE⊥AB,AC=8cm,AE=4cm,则DE的长是.14.如图,AD是△ABC的角平分线,DE⊥AB于E,若AB=18,AC=12,△ABC的面积等于36,则DE= .15.若△ABC的周长为41 cm,边BC=17 cm,AB<AC,角平分线AD将△ABC的面积分成3:5的两部分,则AB= cm.16..如图,O是△ABC内一点,且O到三边AB、BC、CA的距离OF=OD=OE,若∠BAC=70°,∠BOC= .17.如图所示,已知△ABC的周长是18,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是.18.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为.三、解答题19.如图所示,已知AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F.求证:DE=DF.20.如图,四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,且OA平分∠BAC.(1)求证:CO平分∠ACD;(2)求证:AB+CD=AC.21.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.22.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B.23.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC.求证:∠A+∠C=180°.24.(1)如图1,△ABC中,作∠ABC、∠ACB的平分线相交于点O,过点O作EF∥BC分别交AB、AC于E、F.①求证:OE=BE;②若△ABC 的周长是25,BC=9,试求出△AEF的周长;(2)如图2,若∠ABC的平分线与∠ACB外角∠ACD的平分线相交于点P,连接AP,试探求∠BAC 与∠PAC的数量关系式.参考答案1.D2.答案为:C.3.C4.D5. 答案为:A;6. 答案为:D;7.A.8.C9.C10.A11.B12.答案为:D.13.答案为:3cm.14.答案为:2.4.15.答案为:9;16.答案为:125°.17.答案为:36.18.答案为:6;19.证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.20.证明:(1)过O点作OE⊥AC于点E.∵∠ABD=90°且OA平分∠BAC∴OB=OE,又∵O是BD中点∴OB=OD,∴OE=OD,∵OE⊥AC,∠D=90°∴点O在∠ACD 的角平分线上∴OC平分∠ACD.(2)在Rt△ABO和Rt△AEO中∵∴Rt△ABO≌Rt△AEO(HL),∴AB=AE,在Rt△CDO和Rt△CEO中∵∴Rt△CDO≌Rt△CEO(HL),∴CD=CE,∴AB+CD=AE+CE=AC.21.(1)证明:∵AC是角平分线,CE⊥AB于E,CF⊥AD于F,∴CE=CF,∠F=∠CEB=90°,在Rt△BCE和Rt△DCF中,∴△BCE≌△DCF;(2)解:∵CE⊥AB于E,CF⊥AD于F,∴∠F=∠CEA=90°,在Rt△FAC和Rt△EAC中,,∴Rt△FAC≌Rt△EAC,∴AF=AE,∵△BCE≌△DCF,∴BE=DF,∴AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE.22.证明:延长AC至E,使CE=CD,连接ED∵AB=AC+CD∴AE=AB∵AD平分∠CAB∴∠EAD=∠BAD∴AE=AB,∠EAD=∠BAD,AD=AD∴△ADE≌△ADB∴∠E=∠B且∠ACD=∠E+∠CDE,CE=CD∴∠ACD=∠E+∠CDE=2∠E=2∠B即∠C=2∠B23.证明:过点D作DE⊥BC于E,过点D作DF⊥AB交BA的延长线于F,∵BD平分∠ABC,∴DE=DF,∠DEC=∠F=90°,在RtCDE和Rt△ADF中,,∴Rt△CDE≌Rt△ADF(HL),∴∠FAD=∠C,∴∠BAD+∠C=∠BAD+∠FAD=180°.24.(1)∵BO平分∠ABC,∴∠EBO=∠OBC,∵EF∥BC,∴∠EDB=∠OBC,∴∠EOB=∠EBO,∴OE=BE(2)△AEF的周长=AE+AF+EF=AE+AF+EB+FC=AB+AC=25-9=16(3)延长BA,证明P点在∠BAC外角的角平分线上,从而得到2∠PAC+∠BAC=180°。

数学八年级上册练习册答案人教版

数学八年级上册练习册答案人教版

数学八年级上册练习册答案人教版仔细做八年级数学练习册习题,学会洒脱;应当随时学习,学习一切;应该集中全力,以求知道得更多,知道一切。

小编整理了关于数学八年级上册练习册答案人教版,希望对大家有帮助!数学八年级上册练习册答案人教版(一)菱形的判定一、选择题. 1.A 2.A二、填空题. 1. AB=AD (答案不唯一) 2. 3. 菱形三、解答题. 1.证明:(1)∵AB∥CD,CE∥AD ∴四边形AECD是平行四边形又∵AC平分∠BAD∴∠BAC=∠DAC ∵CE∥AD∴∠ECA=∠CAD ∴∠EAC=∠ECA ∴AE=EC ∴四边形AECD是菱形(2)⊿ABC是直角三角形,理由是:∵AE=EC,E是AB的中点∴AE=BE=EC∴∠ACB=90°∴⊿ABC是直角三角形2.证明:∵DF⊥BC,∠B =90°,∴AB∥DF ,∵∠B =90°,∠A =60°,∴∠C =30°,∵∠EDF =∠A =60°,DF⊥BC,∴∠EDB =30°,∴AF∥DE ,∴四边形AEDF是平行四边形,由折叠可得AE=ED,∴四边形AEDF是菱形.3.证明:(1)在矩形ABCD中,BO=DO,AB∥CD ∴AE∥CF ∴∠E=∠F又∵∠BOE=∠DOF,∴⊿BOE≌⊿DOF.(2)当EF⊥AC时,以A、E、C、F为顶点的四边形是菱形∵⊿BOE≌⊿DOF.∴EO=FO 在矩形ABCD中, AO=CO ∴四边形AECF是平行四边形又∵EF⊥AC,∴四边形AECF是菱形数学八年级上册练习册答案人教版(二)等腰梯形的判定一、选择题. 1.B 2.D二、填空题. 1.等腰梯形2. 4 3. ③,④三、解答题. 1.证明:(1)∵AB=AC ∴∠ABC=∠ACB 又∵BD⊥AC,CE⊥AB,BC=BC ∴⊿BCE≌⊿CBD ∴EB=CD ∴AE=AD ∴∠AED=∠ADB∵∠A+∠AED+∠ADE=∠A+∠ABC+∠ACB ∴∠AED=∠ABC ∴DE∥BC∴四边形BCDE是等腰梯形.2.证明:(1)在菱形ABCD中,∠CAB= ∠DAB=30°,AD=BC , ∵CE⊥AC,∴∠E=60°, 又∵DA∥BC, ∴∠CBE=∠DAB=60°∴CB=CE ,∴AD=CE,∴四边形AECD是等腰梯形.3.在等腰梯形ABCD中,AD∥BC, ∴∠B=∠BCD, ∵GE∥DC ,∴∠GEB=∠BCD,∴∠B=∠GEB, ∴BG=EG, 又∵GE∥DC, ∴∠EGF=∠H, ∵EF=FC, ∠EFG=∠CFH, ∴⊿GEF≌⊿HCF, ∴EG=CH , ∴BG=CH.数学八年级上册练习册答案人教版(三)矩形的判定一、选择题. 1.B 2.D二、填空题. 1. AC=BD (答案不唯一) 2. ③,④三、解答题. 1.证明:(1)在□AB CD中,AB=CD ∵BE=CF ∴BE+EF=CF+EF即BF=CE 又∵AF=DE∴⊿ABF≌⊿DCE.(2)∵⊿ABF≌⊿DCE.∴∠B=∠C在□ABCD中,∠B+∠C=180°∴∠B=∠C=90° ∴□ABCD是矩形2.证明:∵AE∥BD, BE∥AC ∴四边形OAEB是平行四边形又∵AB=AD,O是BD的中点∴∠AOB=90° ∴四边形OAEB是矩形3.证明:(1)∵AF∥BC ∴∠AFB=∠FBD 又∵E是AD的中点, ∠AEF=∠BED∴⊿AEF≌⊿DEB ∴AF=BD 又∵AF=DC ∴BD=DC ∴D是BC的中点(2)四边形ADCF是矩形,理由是:∵AF=DC,AF∥DC ∴四边形ADCF是平行四边形又∵AB=AC,D是BC的中点∴∠ADC=90° ∴四边形ADCF是矩形。

2021最新人教版 八年级 上册 数学11.1 --11.3基础练习题含答案

2021最新人教版 八年级 上册 数学11.1 --11.3基础练习题含答案

人教版八年级上册数学11.1 --11.3基础练习题11.1与三角形有关的线段一、选择题1.下面几个图形不具有稳定性的是()A. B.C. D.2.已知a,b,c是△ABC的三条边长,化简|a+b−c|−|c−a−b|的结果为()A. 2a+2b−2cB. 2a+2bC. 2cD. 03.长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是()A. 4B. 5C. 6D. 94.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A. 1种B. 2种C. 3种D. 4种5.下列各组数中,不可能成为一个三角形三边长的是()A. 2,3,4B. 5,7,7C. 5,6,12D. 6,8,106.如图,在△ABC中,∠1=∠2,G为AD的中点,延长BG交AC于E,F为AB上一点,CF⊥AD于H,下面判断正确的有()①AD是△ABE的角平分线;②BE是△ABD边AD上的中线;③CH是△ACD边AD上的高;④AH是△ACF的角平分线和高.A. 1个B. 2个C. 3个D. 4个7.如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A. 5米B. 10米C. 15米D. 20米8.若a、b、c为△ABC的三边长,且满足|a−4|+√b−2=0,则c的值可以为()A. 5B. 6C. 7D. 89.下列说法错误的是()A. 一般锐角三角形的三条高、三条中线、三条角平分线分别交于一点B. 钝角三角形有两条高在三角形外部C. 直角三角形只有一条高D. 任意三角形都有三条高、三条中线、三条角平分线10.三角形的高、中线和角平分线都是()A. 直线B. 射线C. 线段D. 以上答案都不对11.如图,在△ABC中,AE是和AF分别是BC边上的中线和高线,AD是∠BAC的平分线.则下列线段中最短的是()A. AEB. ADC. AFD. AC12.如图,图中直角三角形共有()A. 1个B. 2个C. 3个D. 4个二、填空题13.有四条线段,长分别为3cm、5cm、7cm、9cm,如果用这些线段组成三角形,可以组成______ 个三角形.14.如图,在△ABC中,D,E,F分别是BC,AD,CE的中点,且S△ABC=4cm2,则S阴影=________.15.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1−S2的值为__.16.如图,在△ACB中,∠ACB=90°,CD⊥AB,则以∠A为内角的三角形是__________,以BC为边的三角形是___________,∠B所对的边为___________.三、解答题17.如图,回答下列问题:(1)图中有________个三角形,它们分别是______________________;(2)以线段AD为边的三角形是__________________;(3)线段CE所在的三角形是________,CE边所对的角是________.18.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,且AB=13cm,BC=12cm,AC=5cm.求:(1)△ABC的面积;(2)CD的长.19.已知三角形的三条边为互不相等的整数,且有两边长分别为7和9,另一条边长为偶数.(1)请写出一个三角形,符合上述条件的第三边长.(2)若符合上述条件的三角形共有a个,求a的值.20.如图,在△ABC中,D、E分别是BC,AD的中点,S△ABC=4cm2,求S△ABE.答案和解析1.【答案】A【解答】解:根据三角形的稳定性可得,B、C、D都具有稳定性.不具有稳定性的是A选项.故选A.2.【答案】D【解答】解:∵a、b、c为△ABC的三条边长,∴a+b−c>0,c−a−b<0,∴原式=a+b−c+(c−a−b)=a+b−c+c−a−b=0.故选D.3.【答案】C【解答】解:由三角形三边关系定理得7−2<x<7+2,即5<x<9.因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x<9,只有6符合不等式,故选C.4.【答案】C【解答】解:四根木条的所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形的三边关系,得能组成三角形的有9,6,5和9,6,4和6,5,4.故选C.5.【答案】C【解析】解:∵5+6<12,∴三角形三边长为5,6,12不可能成为一个三角形,故选:C.6.【答案】B【解答】解:①根据三角形的角平分线的概念,知AG是△ABE的角平分线,故此说法错误;②根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法错误;③根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法正确;④根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.故选B.7.【答案】A【解答】解:连接AB,根据三角形的三边关系定理得:15−10<AB<15+10,即:5<AB<25,∴A、B间的距离在5和25之间,∴A、B间的距离不可能是5米;故选:A.8.【答案】A【解答】解:∵|a−4|+√b−2=0,∴a−4=0,a=4;b−2=0,b=2;则4−2<c<4+2,即2<c<6,∴5符合条件;故选A.9.【答案】C【解答】解:A.锐角三角形的三条高线、三条角平分线分别交于一点,故本选项说法正确;B.钝角三角形有两条高线在三角形的外部,故本选项说法正确;C.直角三角形也有三条高线,故本选项说法错误;D.任意三角形都有三条高线、中线、角平分线,故本选项说法正确;故选C.10.【答案】C【解答】解:三角形的高、中线和角平分线都是线段.故选C.11.【答案】C【解答】解:∵在△ABC中,AF是高,∴AF⊥BC,又∵在△ABC中,AD是∠BAC的平分线,AE是BC边上的中线,∴AF<AD,AF<AE,AF<AC,故最短线段为AF.故选C.12.【答案】C【解析】【分析】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,,图中直角三角形有Rt△ADB、Rt△BDC、Rt△ABC,共有3个.故选C.13.【答案】3【解析】解:其中的任意三条组合有3、5、7;3、5、9;3、7、9;5、7、9四种情况.根据三角形的三边关系,则其中的3+5<9,不能组成三角形,应舍去,故可以组成3个三角形.故答案为:3.根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.14.【答案】1cm2【解答】解:∵点D,E,F,分别为BC、AD、CE的中点,且S△ABC=4,∴S△ABD=S△ADC=2,S△BDE=S△DEC=1,∴S△BEC=2,∴S阴=12⋅S△BEC=1,故答案为1cm2.15.【答案】1【解答】解:∵BE=CE,∴S△ACE=12S△ABC=12×6=3,∵AD=2BD,∴S△ACD=21+2S△ABC=23×6=4,∴S1−S2=S△ACD−S△ACE=4−3=1.故答案为1.16.【答案】△ABC和△ACD;△BCD和△ABC;CD和AC.【解答】解:以∠A为内角的三角形是△ABC和△ACD,以BC为边的三角形是△BCD和△ABC,∠B所对的边为CD和AC,故答案为△ABC和△ACD;△BCD和△ABC;CD和AC.17.【答案】(1)6;△ABD,△ACE,△ABE,△ABC,△ACD,△ADE;(2)△ACD,△ADE,△ABD;(3)△ACE,∠CAE.【解答】解:(1)图中有6个三角形,它们分别是△ABD,△ACE,△ABE,△ABC,△ACD,△ADE.故答案为6;△ABD,△ACE,△ABE,△ABC,△ACD,△ADE;(2)以线段AD为边的三角形是△ACD,△ADE,△ABD.故答案为△ACD,△ADE,△ABD;(3)线段CE所在的三角形是△ACE,CE边所对的角是∠CAE.故答案为△ACE,∠CAE.18.【答案】解:(1)△ABC的面积=12BC×AC=30cm2;(2)∵△ABC的面积=12AB×CD=30,∴CD=30÷12AB=6013cm.19.【答案】解:两边长分别为9和7,设第三边是a,则9−7<a<7+9,即2<a<16.(1)第三边长是4.(答案不唯一);(2)∵2<a<16,∴a的值为4,6,8,10,12,14共六个,∴a=6;20.【答案】解:∵D、E分别是BC,AD的中点,S△ABC=4cm2,∴S△ABE=12S△ABD=14S△ABC=1cm2.11.2 与三角形有关的角1. 已知在△ABC中,∠A=70°,∠B=60°,则∠C的度数为( ) A.50°B.60°C.70°D.80°2. 在△ABC中,∠A,∠C与∠B处的外角的度数如图所示,则x的值是( )A.80 B.70 C.65D.603. 在Rt△ABC中,∠C=90°,∠A-∠B=50°,则∠A的度数为( ) A.80°B.70°C.60°D.50°4. 如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A=35°,∠D=15°,则∠ACB的度数为( )A.65°B.70°C.75°D.85°5. 一个三角形三个内角的度数之比为2∶3∶4,这个三角形是( )A. 直角三角形B. 等腰三角形C. 锐角三角形D. 钝角三角形6. 若三角形的三个内角的度数之比为2∶3∶7,则这个三角形的最大内角是( )A.75°B.90°C.105°D.120°7. 如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为()A.118°B.119°C.120°D.121°8. 如图,在△ABC中,D是∠ABC和∠ACB的平分线的交点,∠A=80°,∠ABD=30°,则∠BDC的度数为( )A.100°B.110°C.120°D.130°9. 如图,把△ABC沿DE折叠,当点A落在四边形BCED内部时,∠A与∠1+∠2之间有一种数量关系始终保持不变,这个关系是( )A.∠A=∠1+∠2 B.2∠A=∠1+∠2 C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)10. 如图,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大.若∠A减小x°,∠B增加y°,∠C增加z°,则x,y,z之间的关系是()A.x=y+zB.x=y-zC.x=z-yD.x+y+z=180二、填空题11. 如图所示,在△ABC中,∠A=45°,∠B=60°,则外角∠ACD= .12. 有一张直角三角形纸片,记作△ABC,其中∠B=90°.按如图所示的方式剪去它的一个角,在剩下的四边形ADEC中,若∠1=165°,则∠2的度数为.13. 如图,折叠一张三角形纸片,把三角形的三个角拼在一起,就可以说明一个几何定理.请你写出这个定理的内容:______________________.14. 如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,垂足分别为D,E.若∠AFD=158°,则∠EDF= °.15. 定义:当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的一个内角为48°,那么“特征角”α的度数为____________.16. 如图,在△ABC中,点E在BC的延长线上,∠ABC的平分线与∠ACE 的平分线相交于点D.(2)若∠A=α,则∠ACE-∠ABC=________,∠D=________.三、解答题17. 如图,用钢筋做支架,要求BA,DC相交所成的锐角为32°,现测得∠BAC=∠DCA=115°,则这个支架符合设计要求吗?为什么?18. 如图,在△ABC中,AD是BC边上的高,E是AB上一点,CE交AD于点M,且∠DCM=∠MAE.求证:△ACE是直角三角形.19. 在△ABC中,∠B=55°,且3∠A=∠B+∠C,求∠A和∠C的度数.20. 如图,在△ABC中,CD,BE分别是AB,AC边上的高,BE,CD相交于点O.(1)若∠ABC=50°,∠ACB=60°,求∠BOC的度数;(2)求证:∠BOC+∠A=180°.人教版八年级数学上册11.2 与三角形有关的角同步培优训练-答案一、选择题1. 【答案】A2. 【答案】B3. 【答案】B又∵∠A -∠B =50°,∴2∠A =140°.∴∠A =70°.4. 【答案】B∴∠CFD =∠AFE =55°.∴∠ACB =∠D +∠CFD =15°+55°=70°.5. 【答案】 C6. 【答案】C由题意,得2x +3x +7x =180°,解得x =15°.∴7x =105°.7. 【答案】C ∴∠ACB=180°-∠A-∠ABC=78°.∵∠ABC ,∠ACB 的平分线分别为BE ,CD , ∴∠FBC=12∠ABC=21°,∠FCB=12∠ACB=39°, ∴∠BFC=180°-∠FBC-∠FCB=120°.故选C .8. 【答案】D∴∠DBC =∠ABD =30°,∠ABC =2∠ABD =2×30°=60°.∴∠ACB =180°-∠A -∠ABC =40°.∵CD 平分∠ACB ,∴∠DCB =12∠ACB =12×40°=20°.∴∠BDC =180°-∠DCB -∠DBC =130°.9. 【答案】B 10. 【答案】A二、填空题11. 【答案】 105°12. 【答案】105° 所以∠1+∠2=360°-90°=270°.因为∠1=165°, 所以∠2的度数为105°.13. 【答案】三角形三个内角的和等于180°14. 【答案】68 ∴∠CFD=180°-∠AFD=180°-158°=22°.∵FD ⊥BC , ∴∠FDC=90°.∴∠C=180°-∠FDC-∠CFD=180°-90°-22°=68°. ∵∠B=∠C ,DE ⊥AB ,∴∠EDB=180°-∠B-∠DEB=180°-68°-90°=22°. ∴∠EDF=180°-90°-22°=68°.15. 【答案】48°或96°或88°当β=48°时,则“特征角”α=2×48°=96°;当第三个角为48°时,α+12α+48°=180°,解得α=88°.综上所述,“特征角”α的度数为48°或96°或88°.16. 【答案】(1)70 35 (2)α1 2α三、解答题17. 【答案】解:这个支架不符合设计要求.理由:如图,延长BA,DC交于点E.∵∠BAC=∠DCA=115°,∴∠EAC=∠ECA=65°.∴∠E=180°-∠EAC-∠ECA=50°. ∵要求BA,DC相交所成的锐角为32°,∴这个支架不符合设计要求.证明:∵AD是BC边上的高,∴∠ADC=90°.∵∠DCM=∠MAE,∠CMD=∠AME,∴∠AEC=∠ADC=90°.∴△ACE是直角三角形.19. 【答案】解:∵在△ABC中,∠A+∠B+∠C=180°,3∠A=∠B+∠C,∴4∠A=180°,解得∠A=45°.∵∠B=55°,∴∠C=180°-45°-55°=80°.20. 【答案】解:(1)∵CD⊥AB,BE⊥AC,∴∠BDC=∠BEC=90°.∵∠ABC=50°,∠ACB=60°.∴∠BCO=40°,∠CBO=30°.∴∠BOC=180°-40°-30°=110°.(2)证明:∵CD⊥AB,BE⊥AC,∴∠BDC=∠BEC=90°.∴∠ABE=90°-∠A.∴∠BOC=∠ABE+∠BDC=90°-∠A+90°=180°-∠A.∴∠BOC+∠A=180°.11.3多边形及其内角和一.选择题1.正多边形的每个内角为135度,则多边形为()A.4 B.6 C.8D.102.若一个多边形减去一个角后,内角和为720°,则原多边形不可能是几边形()A.四边形B.五边形C.六边形D.七边形3.一个四边形的四个内角度数之比为1:2:4:5,则这个四边形中,最小的内角为()A.30°B.40°C.50°D.60°4.一个正多边形的每个内角的度数都等于相邻外角的2倍,则该正多边形的边数是()A.3 B.4 C.6D.125.如图,已知一个五边形ABCDE纸片,一条直线将该纸片分割成两个多边形.若这两个多边形内角和分别为m和n,则m+n不可能是()A.540°B.720°C.900°D.1080°6.如图,在五边形ABCDE中,AE∥BC,延长DE至点F,连接BE,若∠A=∠C,∠1=∠3,∠AEF=2∠2,则下列结论正确的是()①∠1=∠2 ②AB∥CD ③∠AED=∠A ④CD⊥DEA.1个B.2个C.3个D.4个7.如图,正五边形ABCDE绕点A顺时针旋转后得到正五边形AB′C′D′E′,旋转角为α(0°<α<90°),若DE⊥B′C′,则∠α为()A.36°B.54°C.60°D.72°8.如图,在四边形ABCD中,∠DAB的角平分线与∠ABC的外角平分线相交于点P,且∠D+∠C=210°,则∠P=()A.10°B.15°C.30°D.40°9.设BF交AC于点P,AE交DF于点Q.若∠APB=126°,∠AQF=100°,则∠A-∠F=()A.60°B.46°C.26°D.45°10.如图,已知四边形ABCD中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90°B.135°C.270°D.315°11.如图,在六边形ABCDEF中,若∠A+∠B+∠C+∠D=500°,∠DEF与∠AFE的平分线交于点G,则∠G等于()A.55°B.65°C.70°D.80°12.如图,A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F 的度数是()A.180°B.360°C.540°D.720°二.填空题13.八边形的内角和为;一个多边形的每个内角都是120°,则它是边形.14.一个多边形,除了一个内角外,其余各角的和为2750°,则内角和是.15.如图,已知在四边形ABCD中,∠A+∠C=135°,∠ADE=125°,则∠B= .16.如图所示,若∠DBE=78°,则∠A+∠C+∠D+∠E= °.17.如图所示,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H= °.三.解答题18.(1)已知一个正多边形的每个内角比它的每个外角的4倍多30°,求这个多边形的边数;(2)一个多边形的外角和是内角和的七分之二,求这个多边形的边数.19.如图,在四边形ABCD中,BD⊥CD,EF⊥CD,且∠1=∠2.(1)求证:AD∥BC;(2)若BD平分∠ABC,∠A=130°,求∠C的度数.20.如图,四边形ABCD中,∠BAD=106°,∠BCD=64°,点M,N分别在AB,BC 上,将△BMN沿MN翻折得△FMN,若MF∥AD,FN∥DC.求(1)∠F的度数;(2)∠D的度数.21.将纸片△ABC沿DE折叠使点A落在点A'处【感知】如图①,点A落在四边形BCDE的边BE上,则∠A与∠1之间的数量关系是;【探究】如图②,若点A落在四边形BCDE的内部,则∠A与∠1+∠2之间存在怎样的数量关系?并说明理由.【拓展】如图③,点A落在四边形BCDE的外部,若∠1=80°,∠2=24°,则∠A的大小为.22.已知,在四边形ABCD中,∠A+∠C=160°,BE,DF分别为四边形ABCD的外角∠CBN,∠MDC的平分线.(1)如图1,若BE∥DF,求∠C的度数;(2)如图2,若BE,DF交于点G,且BE∥AD,DF∥AB,求∠C的度数.参考答案1-5:CAACD 6-10:CBBBC 11-12:CB13、1080°;六14、2880°15、170°16、10217、72018、:(1)设这个多边形的每个内角是x°,每个外角是y°,则得到一个方程组得而任何多边形的外角和是360°,则多边形内角和中的外角的个数是360÷30=12,则这个多边形的边数是12边形;(2)设这个多边形的边数为n,依题意得:(n-2)180°=360°,解得n=9,答:这个多边形的边数为9.19、:(1)证明:∵BD⊥CD,EF⊥CD(已知),∴BD∥EF(垂直于同一直线的两条直线平行),∴∠2=∠3(两直线平行,同位角相等).∵∠1=∠2,∴∠1=∠3(等量代换).∴AD∥BC(内错角相等,两直线平行).(2)∵AD∥BC(已知),∴∠ABC+∠A=180°(两直线平行,同旁内角互补).∵∠A=130°(已知),∴∠ABC=50°.∵DB平分∠ABC(已知),∴∠3=25°.∴∠C=90°-∠3=65°.20、:(1)∵MF∥AD,FN∥DC,∠BAD=106°,∠BCD=64°,∴∠BMF=106°,∠FNB=64°,∵将△BMN沿MN翻折,得△FMN,∴∠FMN=∠BMN=53°,∠FNM=∠MNB=32°,∴∠F=∠B=180°-53°-32°=95°;(2)∠F=∠B=95°,∠D=360°-106°-64°-95°=95°.21、:(1)如图,∠1=2∠A.理由如下:由折叠知识可得:∠EA′D=∠A;∵∠1=∠A+∠EA′D,∴∠1=2∠A.(2)如图②,2∠A=∠1+∠2.理由如下:∵∠1+∠A′DA+∠2+∠A′EA=360°,∠A+∠A′+∠A′DA+∠A′EA=360°,∴∠A′+∠A=∠1+∠2,由折叠知识可得:∠A=∠A′,∴2∠A=∠1+∠2.(3)如图③,∵∠1=∠DFA+∠A,∠DFA=∠A′+∠2,∴∠1=∠A+∠A′+∠2=2∠A+∠2,∴2∠A=∠1-∠2=56°,解得∠A=28°.故答案为:∠1=2∠A;28°.22、:(1)过点C作CH∥DF,∵BE∥DF,∴BE∥DF∥CH,∴∠FDC=∠DCH,∠BCH=∠EBC,∴∠DCB=∠DCH+∠BCH=∠FDC+∠EBC,∵BE,DF分别为四边形ABCD的外角∠CBN,∠MDC的平分线,∴∠FDC=∠CDM,∠EBC=∠CBN,∵∠A+∠BCD=160°,∴∠ADC+∠ABC=360°160°=200°,∴∠MDC+∠CBN=160°,∴∠FDC+∠CBE=80°,∴∠DCB=80°;31(2)连接GC并延长,同理得∠MDC+∠CBN=160°,∠MDF+∠NBG=80°,∵BE∥AD,DF∥AB,∴∠A=∠MDF=∠DGB=∠NBG=40°,∵∠A+∠BCD=160°,∴∠BCD=160°-40°=120°.第!异常的公式结尾页,共32页32。

人教版数学八年级上册课后习题参考答案

人教版数学八年级上册课后习题参考答案

人教版数学八年级上册课后习题参考答案(总41页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第3页习题答案1. 2010年为+108.7mm; 2009年为-81.5 mm; 2008年为+53.5 mm.2.这个物体又移动了-1 m表示物体向左移动了1m这时物体又回到了原来的位置第4页习题答案1.解:有5个三角形,分别是△ABE,△ABC,△BEC,△BDC,△EDC.2.解:(1)不能;(2)不能;(3)能.理由略第5页习题答案:1.解:图(1)中∠B为锐角,图(2)中∠B为直角,图(3)中∠B为钝角,图(1)中AD在三角形内部,图(2)中AD 为三角形的一条直角边,图(3)中AD在三角形的外部.锐角三角形的高在三角形内部,直角三角形的直角边上的高与另一条直角边重合,钝角三角形有两条高在三角形外部.2.(1)AF(或BF) CD AC (2)∠2 ∠ABC ∠4或∠ACF第7页习题答案:解:(1)(4)(6)具有稳定性第8页习题11.1答案1.解:图中共6个三角形,分别是△ABD,△ADE,△AEC,△ABE,AADC,△ABC.2.解:2种.四根木条每三条组成一组可组成四组,分别为10,7,5;10,7,3;10,5,3;7,5,3.其中7+5>10,7+3=10,5+3<10,5+3>7,所以第二组、第三组不能构成三角形,只有第一组、第四组能构成三角形,3.解:如图11-1-27所示,中线AD、高AE、角平分线AF.4.(1) EC BC (2) ∠DAC ∠BAC (3)∠AFC (4)1/2BC.AF5.C6.解:(1)当长为6 cm的边为腰时,则另一腰长为6 cm,底边长为20-12=8(cm),因为6+6>8,所以此时另两边的长为6 cm,8 cm.(2)当长为6 cm的边为底边时,等腰三角形的腰长为(20-6)/2=7(cm),因为6+7>7,所以北时另两边的长分别为7 cm,7cm.7.(1) 解:当等腰三角形的腰长为5时,三角形的三边为5,5,6,因为5+5>6,所以三角形周长为5+5+6=16:当等腰三角形的腰长为6时,三角形的三边为6,6,5,因为6+5>6,所以三角形周长为6+6+5=17.所以这个等腰三角形的周长为16或17;(2)22.8.1:2 提示:用41/2BC.AD—丢AB.CE可得.9.解:∠1=∠2.理由如下:因为AD平分∠BAC,所以∠BAD=∠DAC.又DE//AC,所以∠DAC=∠1. 又DF//AB,所以∠DAB=∠2. 所以∠1=∠2.10.解:四边形木架钉1根木条;五边形木架钉2根木条;六边形木架钉3根木条人教版八年级上册数学第13页练习答案1.解:因为∠CBD=∠CAD+∠ACB,所以∠ACB=∠CBD-∠CAD=45°-30°=15°.2.解:在△ACD中,∠D+∠DAC+∠DCA=180°,在△ABC中,∠B+∠BAC+∠BCA=180°,所以∠D+∠DAC+∠DCA+∠B+∠BAC+∠BCA=∠D+∠B+ ∠BAD+∠BCD=180°+180°=360°.所以40°+40°+150°+∠BCD= 360°. 所以∠BCD=130°人教版八年级上册数学第14页练习答案1.解:∠ACD=∠B.理由:因为CD⊥AB,所以△BCD是直角三角形,∠BDC=90°,所以∠B+∠BCD=90°,又因为∠ACB= 90°,所以∠ACD+∠BCD=∠ACB=90°,所以∠ACD=∠B(同角的余角相等).2.解:△ADE是直角三角形,理由:因为∠C=90。

八年级上册数学练习册答案人教版

八年级上册数学练习册答案人教版

八年级上册数学练习册答案(人教版)通过这篇文档,你将能够查找八年级上册数学练习册的答案,这本练习册属于人教版数学课本。

第一单元:有理数第一节:有理数的概念1.整数的概念:整数包括正整数、零和负整数。

2.有理数的概念:有理数包括整数和分数。

3.有理数的表示:有理数可以表示为分数的形式。

第二节:有理数的比较与大小通过比较大小来对有理数进行排序和比较。

1.不同符号的有理数之间的大小比较:正数大于零,零大于负数。

2.同符号的有理数之间的大小比较:绝对值大的有理数大。

第三节:有理数的加法与减法1.有理数的加法:符号相同,绝对值相加,取相同的符号作为结果;符号不同,绝对值相减,取绝对值较大的符号作为结果。

2.有理数的减法:转化为加法进行计算。

第四节:有理数的乘法与除法1.有理数的乘法:符号相同,绝对值相乘;符号不同,绝对值相乘后取负数。

2.有理数的除法:分子分母同号,绝对值相除;分子分母异号,绝对值相除后取负数。

第二单元:代数初步第一节:代数初步1.代数常识:代数是数学的一个分支,利用字母表示数或者未知数。

2.代数式:由数或代数式通过四则运算得到的表达式。

3.项与系数:代数式中的基本单位为项,项由系数与字母幂的乘积组成。

4.方程:等式左右两边互相等于的式子。

5.等式的性质:等式两边同时加或减一个数,等式仍然成立。

第二节:用字母代表数1.代数式的计算:根据运算法则对代数式进行计算。

2.用字母表示数:利用字母代表具体的数。

第三节:一元一次方程1.一元一次方程:形如ax + b = 0的方程,其中a和b 为常数,a≠0。

2.解一元一次方程的方法:通过逆运算将未知数的系数和常数项相消。

第三单元:平面图形的认识第一节:平面图形的认识与初步判断1.点、线、面的概念:点是没有长度、宽度和厚度的;线是由无数个点连在一起形成的;面是由无数条线组成的。

2.按图形的性质初步判断:根据形状、边数、角数等特征对图形进行初步判断。

第二节:尺规作图1.用已知的图形和尺规实现其他图形的构造:通过尺规作图的步骤将已知图形转化为所需图形。

八年级上册数学练习册答案人教版(共9篇)

八年级上册数学练习册答案人教版(共9篇)

八年级上册数学练习册答案人教版(共9篇)八年级上册数学练习册答案人教版〔一〕: 数学八年级上册配套练习册参考答案(人民教育出版社社)第一课时根底知识;1 C2 D3 B4 B5 ∠F.DF.△EDF.6 DC.CF.7 55°8 △COD.△COD.CO.OD.PC.9 ∠DBE.AC.平行.八年级上册数学练习册答案人教版〔二〕: 八年级上册数学练习册积的乘方答案人教版豆丁网是芝麻开花29页的吗如果是,下面是答案等于把积的每个因式分别相乘;〔ab〕^n=a^n ·b^n ;a^n·b^n·c^n 〔1〕4a 〔2〕-27x〔1〕4*10^6 〔2〕1CDBDBB2.4*10 *1.5*10 *1.2*10原式 =2.4*1.5*1.2*10 *10 *10=4.32*10^7cm【^的意思就是xx的x次方,*是乘号如果显示乱码的话后面数是178的世平方,179是立方】八年级上册数学练习册答案人教版〔三〕: 数学八年级上册配套练习册参考答案(人民教育出版社社)第一课时根底知识;1 C2 D3 B4 B5 ∠F.DF.△EDF.6 DC.CF.7 55°8 △COD.△COD.CO.OD.PC.9 ∠DBE.AC.平行.八年级上册数学练习册答案人教版〔四〕: 请问八年级数学人教版上册配套练习册33页第13题怎么做如图〔略):四个点A(0,1)B(-3,4)C(-5,4)D(-5,1).〔1〕画出四边形ABCD关于x=-1的对称图形A"B"C"D";〔2〕你知道四边形ABCD与A"B"C"D"重叠局部是什么图形吗求出重叠局部的面积.关于x=-1对称,既对称点y轴坐标不变,x轴点为-1*2减去对应点的x轴的点,例如A(0,1)关于x=-1对称点A"为〔-1*2-0,1〕即A"为〔-2,1〕,对应的手下的就是B"〔1,4〕C"(3,4)D"(3,1)画出坐标图就可以看出来重叠的是等腰三角形,面积就很好算的了,求出AB与A"B"相交的点,h就出来的了,h-1就是高,底是2,面积不是很好求的吗···八年级上册数学练习册答案人教版〔五〕: 人教版八年级上册数学书复习题14的答案复习题14 【复习稳固】 1.小亮为赞助“希望工程〞现已存款100元他方案今后三年每月存款10元存款总数y 单位元将随时间x 单位月的变化而改变.指出其中的常量与变量自变量与函数试写出函数解析式.2.判断以下各点是否在直线y=2x+6上这条直线与坐标轴交于何处—5 — 4 — 7 ,20 27 1 32 317 3.填空〔1〕直线xy3221 经过第象限 y随x的增大而〔2〕直线y=3x — 2经过第象限 y随x的增大而 .4.根据以下条件分别确定函数y=kx+b的解析式 1 y与x成正比例 x=5时y=6 2 直线y=kx+b经过点 3,6 与点 21 21 .5.试根据函数y=3x — 15 的图象或性质确定x取何值时 1 y 0 2 y 0.【综合运用】 6.在某火车站托运物品时不超过1千克的物品需付2元以后每增加1千克缺乏1千克按1千克计需增加托运费5角设托运p千克 p为整数物品的费用为c元写出c的计算公式.7.某水果批发市场规定批发苹果不少于100千克时批发价为每千克2.5元.小王携带现金3000元到这市场采购苹果并以批发价买进.如果购置的苹果为x千克小王付款后还剩余现金y元试写出y关于x的函数解析式并指出自变量x的取值范围.8.均匀地向一个容器注水最后把容器注满.在注水过程中水面高度h随时间t的变化规律如下图图中OABC为一折线这个容器的形状是图中哪一个你能画出向另两个容器注水时水面高度h随时间t变化的图象草图吗9.等腰三角形周长为20. 1 写出底边长y关于腰长x的函数解析式 x为自变量 2 写出自变量取值范围 3 在直角坐标系中画出函数图象.10.A 8,0 及在第一象限的动点P x y 且x+y=10 设△OPA的面积为S 1 求S 关于x的函数解析式 2 求x的取值范围 3 求S=12时P点坐标 4 画出函数S 的图象.11. 1 画出函数y=|x—1|的图象不要告诉我买什么教材,我的教材丢了,现在买也来不及了、、1.常量已存款100元,三年,每月存款10元;变量总数y ,时间x;自变量x;函数y;函数解析式:y=10x+1002. —5 — 4在交于0,6;32 317 在交于付三,03.1 2 4,减小;〔2〕1 3 4 增大4.〔1〕y=五分之六x 〔2)y=五分之十三x+五分之九5.(1) x大于5 〔2〕x小于五6.分两种情况第一种:p 小于1 c=2第二种:p大于1 c=(p-1)0.5+27.y=3000-2.5x x大于等于100小于等于12008.图三9.1 y=-2x+20 2 x大于5小于10 3.略 10.s=-4x+40 x大于0小于10 p(7,3) 略 11.用列表法和图象法八年级上册数学练习册答案人教版〔六〕: 义务教育教科书配套练习册数学八年级下册人民教育出版社 101-104个人认为人民教育出版社出版的义务教育课程标准实验教科书数学八年级下册第83页例2解答不完整,应该有两个答案,一个是西北方向,一个是东南方向.附上原题——例2 “远航〞号、“海天〞号轮船同时离开港口,各自沿一固定...八年级上册数学练习册答案人教版〔七〕: 求人教版数学八年级上册数学书上P137和138页的答案大神们帮帮助求人教版数学八年级上册数学书上复习题14P137和138页的答案【八年级上册数学练习册答案人教版】1.常数100,10;自变量x,函数y.y=10x+100(0≤x≤36,x为整数〕2.(-5,-4),(2/3,22/3)在直线y=2x+6上;〔-7,20〕,(-7/2,1)不在直线y=2x+6上.直线y=2x+6与x轴交与〔0,6〕3.(1)一、二、四,减小;〔2〕一、三、四,增...八年级上册数学练习册答案人教版〔八〕: 求八年级上册的数学练习题给我八年级上册的数学题要完整的无论什么题都行只要是八年级上册的数学题选一选(每题3分,共30分) 如果一个正方形的面积是,那么它的对角线长为( ) A. B. C. D. 2.算术平方根比原数大的数是( ) A.正实数 B.负实数 C.大于0而小于1的数 D.不存在 3.以下图形中,绕某个占旋转1800后能与自身重合的有( ) ①..推荐程度:授权方式:免费软件软件大小:未知下载:4442023-10-22 八年级数学期中试卷一,选择题:(此题有8小题,每题3分,共24分.) 如图,:AB‖CD,假设∠1=50°,那么∠2的度数是( )A,50° B,60° C,130 D,120° 如图,在以下条件中,能够直接判断‖的是( )A.∠1=∠4 B.∠3=∠4 C.∠2+∠3=180°D.∠1=∠2 等腰三角形一边是3,一边是6,那么它的周长等于( )A.12 B.12 或15 C.15 D.18或15 以下各组数据能作为..推荐程度:授权方式:免费软件软件大小:未知下载:2362023-01-31 八年级函数及其图象测试题八年级数学《函数及其图象》测试题姓名:___班级:___考号:___分数:___一、精心选一选!(每题2分,共30分) 1、函数的自变量x 的取值范围是__. A、 B、且 C、 D、且 2、在直角坐标系中,点P(1,-1) 一定在___上. A.、抛物线y=x2上 B、双曲线y= 上 C、直线y=x上 D、直线y=-..推荐程度:授权方式:免费软件软件大小:未知下载:442023-01-31 八年级数学(上)函数同步练习题及答案八年级数学上学期函数同步练习题附答案☆我能选 1.假设y与x的关系式为y=30x-6,当x= 时,y的值为〔〕 A.5 B.10 C.4 D.-4 2.以下函数中,自变量的取值范围选取错误的选项是〔〕 A.y=2x2中,x取全体实数B.y= 中,x取x≠-1的实数 C.y= 中,x取x≥2的实数 D.y= 中..推荐程度:授权方式:免费软件软件大小:未知下载:412023-01-31 八年级上学期数学一次函数测试题八年级数学(上)一次函数试题姓名一. 填空〔每题4分,共32分〕 1.一个正比例函数的图象经过点〔-2,4〕,那么这个正比例函数的表达式是 . 2.一次函数y=kx+5的图象经过点〔-1,2〕,那么k= . 3.一次函数y= -2x+4的图象与x轴交点坐标是 ,与y轴交点坐标是图象与坐..推荐程度:授权方式:免费软件软件大小:未知下载:302023-01-31 北师大版八年级数学单元测试题第六章一次函数测试北师大彼八年级(上)第六章一次函数测试题一填空题: 1、某晚报的售价是每份0.50元,y表示销售x份报纸的总价,那么y与x的函数关系式是〔〕.假设直线y=kx经过点〔1,2〕,那么k的值是〔〕 2、假设函数y=〔m—2〕x+5—m是一次函数,那么m满足的条件是〔〕假设此函数是正比例函数,那么m 的值是〔〕,..推荐程度:授权方式:免费软件软件大小:未知下载:202023-01-31 八年级上一次函数图象训练题北师大版八年级上一次函数图象习题一.选择题: 1.点A( , )关于轴的对称点的坐标是〔〕 (A) ( , ) (B) ( , ) (C) ( , ) (D) ( , ) 2.以下函数中,自变量的取值范围不正确的选项是〔 ..推荐程度:授权方式:免费软件软件大小:未知下载:232023-01-31 八年级数学反比例函数测试题人教版八年级(下)数学反比例函数测试题一选择题:〔每题5分,共25分〕1、以下函数中,y是x的反比例函数的是〔〕 A B C D 2、y与x成正比例,z 与y成反比例,那么z与x之间的关系是〔〕 A 成正比例 B 成反比例 C 有可能成正比例也有可能是反比例 D 无法确..推荐程度:授权方式:免费软件软件大小:未知下载:172023-01-31 八年级分式函数测试题八年级分式函数测试题〔考试时间:100分钟:总分值:100分〕一.细心填一填,〔每题2分,共30分〕 1.假设分式的值为零,那么; 2.分式 , , 的最简公分母为; 3.计算:; 4.假设 ,那么必须满足的条件是; 5. 点A〔-3,2〕关于y轴对称的点的坐标是 ..推荐程度:授权方式:免费软件软件大小:未知下载:102023-01-31 北师大版八年级数学(上)一次函数测试题八年级上学期数学(北师大版)一次函数试题推荐程度:授权方式:免费软件软件大小:未知下载:182023-01-31 八年级数学应用题 31道八年级数学分式方程应用题班级姓名 1、块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000Kg和15000Kg,第一块试验田的每公顷的产量比第二块少3000Kg,分别求这块试验田每公顷的产量. 2、从甲地到乙地有两条公路:一条是全长600Km的普通公路,另一条是..推荐程度:授权方式:免费软件软件大小:未知下载:202023-11-21 八年级数学(上)期末检测题班级姓名评分 (卷面总分:120分;测试时间:120分钟) 一,填空题:(每题3分,共30分) 1,的绝对值是 ,= ,= ; 2,两个无理数的乘积是有理数,试写出这样的两个无理数 ; 3,一个多边形的内角和……推荐程度:授权方式:免费软件软件大小:未知下载:7412023-11-21 8年级数学上学期期末试卷2023-2023学年上学期期末水平测试8年级数学试卷 (考试时间120分钟,总分值100分) 一,填空题:(简洁的结果,表达的是你敏锐的思维,需要的是细心!每题3分,共30分) 1,8的立方根是……推荐程度:授权方式:免费软件软件大小:未知下载:3432023-11-21 八年级数学上学期期末检测试卷惠安县2023—2023学年度上学期八年级数学期末检测试卷一,填空题.(每题2分,共24分) 1,计算:= . 2,不等式>5的解...ABCD中,E,F分别是对角线AC,CA延长线上的点,且CE=AF,试说明四边形BEDF是平行四边形. 23,(5分)如图,在梯形...推荐程度:授权方式:免费软件软件大小:未知下载:2502023-11-21 八年级上学期期末考试数学试卷澧县2023年上学期八年级期末考试数学试卷班次_______ 姓名_______ 计分______ 一,填空题:每空2分,共30分 1,计算:① =_____.② =______. 2,当x______时, 有意义. 3,图1……推荐程度:授权方式:免费软件软件大小:未知下载:2592023-11-21 八年级上学期期末数学试题05—06学年度上学期八年级数学期末试题数学说明:本试卷分第一卷和第二卷两局部,第一卷36分,第二卷84分,共120分;答题时间120分钟. 第I卷(共45分) 一,请你选一选.(每题3分,共45分) 1.假设,一次函数的图象大致形状是 ( ) 2.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC与∠ACB的角平分线,且相交于点F,那么图中的等..推荐程度:授权方式:免费软件软件大小:未知下载:2262023-11-19 华师大版八年级数学(上)期末复习试题一华师大数学八年级上学期期末复习试题一班级:____________姓名:____________评价:____________ 一. 选择题:在下面四个选项中只有一个是正确的.(此题共18分,每题3分) 1. 以下计算正确的选项是( ) ……推荐程度:授权方式:免费软件软件大小:未知下载:2572023-11-19 八年级(上)数学期末试题八年级数学(上)期末试题(10) 本卷总分值100分,考试时间100分钟姓名: . 班别: .座号: .评分: . 选择题:(此题共8小题,每题2分,共16分,每题给出的4个答案中,只有一个是正确的,请你把所选的答案的编号填入该题后面的括号内.) 1.16的平方根是 [ ] A. 4 B. ±4 C.……八年级上册数学练习册答案人教版〔九〕: 八年级上册数学126页的练习答案1.自变量X的取值满足什么条件时,函数Y=3X+8的值满足以下条件(1)Y=0(2)Y=-7 (3)Y>0 (4)Y〔1〕x=-8/3〔2〕x=-5〔3〕3x+8>0 3x>-8 x>-8/3〔4〕3x+8。

八年级上册数学基础训练答案人教版

八年级上册数学基础训练答案人教版

八年级上册数学基础训练答案人教版§11.1全等三角形一、1. C 2. C二、1.(1)①AB DE ②AC DC ③BC EC(2)①∠A ∠D ②∠B ∠E ③∠ACB ∠DCE2. 120 4三、1.对应角分别是:∠AOC和∠DOB,∠ACO和∠DBO,∠A和∠D.对应边分别是:AO和DO,OB和OC,AC和DB.2.相等,理由如下:∵△ABC≌△DFE ∴BC=FE ∴BC-EC=FE-EC ∴BE=FC3.相等,理由如下:∵△ABC≌△AEF ∴∠CAB=∠FAE ∴∠CAB—∠BAF=∠FAE &not;—∠BAF 即∠CAF=∠EAB§11.2全等三角形的判定(一)一、1. 100 2. △BAD,三边对应相等的两个三角形全等(SSS)3. 2, △ADB≌△DAC,△ABC≌△DCB4. 24二、1. ∵BG=CE ∴BE=CG 在△ABE和△DCG中,∴△ABE≌△DCG(SSS),∴∠B=∠C2. ∵D是BC中点,∴BD=CD,在△ABD和△ACD中,∴△ABD≌△ACD(SSS),∴∠ADB=∠ADC又∵∠ADB+∠ADC=180°∴∠ADB=90° ∴AD⊥BC3.提示:证△AEC≌△BFD,∠DAB=∠CBA, ∵∠1=∠2 ∴∠DAB-∠1=∠CBA-∠2可得∠ACE=∠FDB§11.2全等三角形的判定(二)一、1.D 2.C二、1.OB=OC 2. 95三、1. 提示:利用“SAS”证△DAB≌△CBA可得∠DAC=∠DBC.2. ∵∠1=∠2 ∴∠1+∠CAD=∠2+∠CAD即∠BAC=∠DAE,在△BAC和△DAE中,∴△BAC≌△DAE(SAS)∴BC=DE3.(1)可添加条件为:BC=EF或BE=CF(2)∵AB∥DE ∴∠B=∠DEF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS)§11.2全等三角形的判定(三)一、1. C 2. C二、1.AAS 2.(1)SAS (2)ASA 3.(答案不)∠B=∠B1,∠C=∠C1等三、1.在△ACE和△ABD中, ∴△ACE≌△ABD(AAS)2.(1)∵AB//DE ∴∠B=∠DEF ∵AC//DF ∴∠ACB=∠F 又∵BE=CF∴BE+EC=CF+EC ∴BC=EF ∴△ABC≌△DEF(ASA)3. 提示:用“AAS”和“ASA”均可证明.§11.2全等三角形的判定(四)一、1.D 2.C二、1.ADC,HL;CBE SAS 2. AB=A'B'(答案不)3.Rt△ABC,Rt△DCB,AAS,△DOC三、1.证明:∵AE⊥BC,DF⊥BC,∴∠CEA=∠DFB=90°∵BE=CF,∴BC-BE=BC-CF即CE=BF 在Rt△ACE和Rt△DBF中, ∴Rt△ACE≌ Rt△DBF (HL)∴∠ACB=∠DBC ∴AC//DB2.证明:∵AD⊥BC,CE⊥AB ∴∠ADB=∠CEB=90°.又∵∠B=∠B ,A D=CE∴△ADB≌△CEB(AAS)3.(1)提示利用“HL”证Rt△ADO≌Rt△AEO,进而得∠1=∠2;(2)提示利用“AAS”证△ADO≌△AEO,进而得OD=OE.11.2三角形全等的判定(综合)一、1.C 2.B 3.D 4.B 5.B二、1. 80° 2. 2 3. 70° 4. (略)三、1.(1)∵AB⊥BE,DE⊥BE,∵∠B=∠E=90° 又∵BF=CE,∴BC=EF,在Rt△ABC和Rt△DEF中, ∴△ABC≌△DEF(2)∵△ABC≌△DEF ∴∠GFC=∠GCF ∴GF=GC2.△ADC≌△AEB,△BDF≌△CEF 或△BDC≌△CEB ∵D、E分别是AB、AC的中点,AB=AC∴AD=AE.在△ADC和△AEB中, ∴△ADC≌△AEB(SAS)§11.3角的平分线的性质一、1.C 2.D 3.B 4.B 5.B 6.D二、1. 5 2. ∠BAC的角平分线 3.4cm三、1.在A内作公路与铁路所成角的平分线;并在角平分线上按比例尺截取BC=2cm,C点即为所求(图略).2. 证明:∵D是BC中点,∴BD=CD.∵ED⊥AB,DF⊥AC,∴∠BED=∠CFD=∠AED=∠AFD=90°.在△BED与△CFD中, ∴△BED≌△CFD(AAS)∴DE=DF,∴AD平分∠BAC3.(1)过点E作EF⊥DC,∵E是∠BCD,∠ADC的平分线的交点,又∵DA⊥AB,CB⊥AB,EF⊥DC,∴AE=EF,BE=EF,即AE=BE(2)∵∠A=∠B=90°,∴AD//BC,∴∠ADC+∠BCD=180°.又∵∠EDC= ∠ADC,∠ECD= ∠BCD ∴∠EDC+∠ECD=90°∴∠DEC=180°-(∠EDC+∠E CD)=90°4. 提示:先使用AO是∠BAC的平分线得DO=EO,再利用“ASA”证△DOB≌△EOC,进而得BO=CO.第十二章轴对称§12.1轴对称(一)一、1.A 2.D二、1. (注一个正“E”和一个反“E”合在一起) 2. 2 4 3.70° 6三、1.轴对称图形有:图(1)中国人民银行标志,图(2)中国铁路标徽,图(4)沈阳太空集团标志三个图案.其中图(1)有3条对称轴,图(2)与(4)均只有1条对称轴.2. 图2:∠1与∠3,∠9与∠10,∠2与∠4,∠7与∠8,∠B与∠E等;AB与AE,BC与ED,AC与AD等. 图3:∠1与∠2,∠3与∠4,∠A与∠A′等;AD与A′D′,CD与C′D′, BC与B′C′等.§12.1轴对称(二)一、1.B 2.B 3.C 4.B 5.D二、1.MB 直线CD 2. 10cm 3. 120°三、1.(1)作∠AOB的平分线OE;(2)作线段MN的垂直平分线CD,OE与CD交于点P,点P就是所求作的点.2.解:因为直线m是多边形ABCDE的对称轴,则沿m折叠左右两部分完全重合,所以∠A=∠E=130°,∠D=∠B=110°,因为五边形内角和为(5-2)×180°=540°,即∠A+∠B+∠BCD+∠D+∠E=540°,130°+110°+∠BCD+110°+130°=540°,所以∠BCD=60°3. 20提示:利用线段垂直平分线的性质得出BE=AE.§12.2.1作轴对称图形一、1.A 2.A 3.B二、1.全等 2.108三、1. 提示:作出圆心O′,再给合圆O的半径作出圆O′. 2.图略3.作点A关于直线a的对称点A′,连接A′B交直线a于点C,则点C 为所求.当该站建在河边C点时,可使修的渠道最短.如图§12.2.2用坐标表示轴对称一、1.B 2.B 3.A 4.B 5.C二、1.A(0,2), B(2,2), C(2,0), O(0,0)2.(4,2)3. (-2,-3)三、1. A(-3,0),B(-1,-3),C(4,0),D(-1,3),点A、B、C、D关于y轴的对称点坐标分别为A′(3,0)、B′(1,-3)、C′(-4,0)、D′(1,3)顺次连接A′B′C′D′.如上图2.∵M,N关于x轴对称, ∴∴ ∴ba+1=(-1)3+1=03.A′(2,3),B′(3,1),C′(-1,-2)§12.3.1等腰三角形(一)一、1.D 2.C二、1. 40°,40° 2. 70°,55°,55°或40°,70°,70° 3. 82.5°三、1.证明:∵∠EAC是△ABC的外角∴∠EAC=∠1+∠2=∠B+∠C∵AB=AC∴∠B=∠C ∴∠1+∠2=2∠C ∵∠1=∠2 ∴2∠2=2∠C∴∠2=∠C ∴AD//BC2.解∵AB=AC,AD=BD,AC=CD ∴∠B=∠C=∠BAD,∠ADC=∠DAC.设∠B=x,则∠ADC=∠B+∠BAD=2x,∴∠DAC=∠ADC=2x,∴∠BAC=3x.于是在△ABC 中,∠B+∠C+∠BAC=x+x+3x=180°,得x=36∴∠B=36°.§12.3.2等腰三角形(二)一、1.C 2.C 3.D二、1.等腰 2. 9 3.等边对等角,等角对等边三、1.由∠OBC=∠OCB得BO=CO,可证△ABO≌△ACO,得AB=AC ∴△ABC 是等腰三角形.2.能.理由:由AB=DC,∠ABE=∠DCE,∠AEB=∠DEC,得△ABE≌△DCE,∴BE=CE,∴△BEC是等腰三角形.3.(1)利用“SAS”证△ABC≌△AED. (2)△ABC≌△AED可得∠ABO=∠AEO,AB=AE得∠ABE=∠AEB.进而得∠OBE=∠OEB,最后可证OB=OE.§12.3.3等边三角形一、1.B 2.D 3.C二、1.3cm 2. 30°,4 3. 1 4. 2三、1.证明:∵在△ADC中,∠ADC=90°, ∠C=30° ∴∠FAE=60° ∵在△ABC中,∠BAC=90°,∠C=30°∴∠ABC=60°∵BE平分∠ABC,∴∠ABE=×60°=30°∵在△ABE中,∠ABE=30°,∠BAE=90° ∴∠AEF=60°∴在△AEF中∠FAE=∠AEF=60° ∴FA=FE ∵∠FAE=60°∴△AFE为等边三角形.2.∵DA是∠CAB的平分线,DE⊥AB,DC⊥AC,∴DE=CD=3cm,在Rt△ABC中,因为∠CAB=60°,∴∠B=30°.在Rt△DEB中,∵∠B=30°,DE=3cm,∴DB=2DE=6c m∴BC=CD+DE=3+6=9(cm)3. 证明:∵△ABC为等边三角形,∴BA=CA , ∠BAD=60°.在△ABD和△ACE中, ∴△ABD≌△ACE(SAS)∴AD=AE,∠BAD=∠CAE=60°∴△ADE是等边三角形.4. 提示:先证BD=AD,再利用直角三角形中,30°角所对的直角边是斜边的一半,得DC=2AD.第十三章实数§13.1平方根(一)一、1. D 2. C二、1. 6 2. 3. 1三、1. (1)16 (2)(3)0.42. (1)0, (2)3 , (3)(4)40 (5)0.5 (6) 43. =0.54. 倍;倍.§13.1平方根(二)一、1. C 2. D二、1. 2 2. 3. 7和8三、1.(1)(2)(3)2.(1)43 (2)11.3 (3)12.25 (4) (5)6.623.(1)0.5477 1.732 5.477 17.32(2)被开方数的小数点向右(左)移动两位,所得结果小数点向右(左)移动一位. (3)0.1732 54.77§13.1平方根(三)一、1. D 2. C二、1. ,2 2, 3.三、1.(1)(2)(3)(4)2.(1)(2)-13 (3)11 (4)7 (5) 1.2 (6)-3.(1)(2)(3)(4)4. ,这个数是4 5. 或§13.2立方根(一)一、1. A 2. C二、1. 125 2. ±1和0 3. 3三、1.(1)-0.1 (2)-7 (3)(4)100 (5)- (6)-22.(1)-3 (2)(3)3. (a≠1)§13.2立方根(二)一、1. B 2. D二、1. 1和0; 2. 3. 2三、1. (1)0.73 (2)±14 (3)2. (1)-2 (2)-11 (3)±1 (4)- (5)-2 (6)3.(1) (2) (3) (4)x=-4 (5)x= (6)x= +1§13.3实数(一)一、1. B 2. A二、1.2. ±33.三、1. (1)-1,0,1,2;(2)-4,-3,-2,-1,0,1,2,3,42. 略3.16cm、12cm4. a= ,b=-§13.3实数(二)一、1. D 2. D二、1. 2. 3 3. ①,③-π。

人教版八年级数学上册知识整理与基础训练(全)

人教版八年级数学上册知识整理与基础训练(全)

第十一章全等三角形一、全等形能够完全重合的两个图形叫做全等形。

二、全等三角形1、概念:能够完全重合的两个三角形叫做全等三角形。

注意:(1)两个三角形全等,互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角。

(2)“能够完全重合”是指在一定的叠放下,能够完全重合。

2、全等三角形的符号表示、读法△ABC与△A′B′C′全等记作△ABC≌△A′B′C′,“≌”读作“全等于”。

注意:(1)两个三角形全等时,通常把对应顶点的字母写在对应的位置上,这样对应的两个字母为端点的线段是对应边;对应的三个字母表示的角是对应角(若用一个字母表示一个角亦是如此)。

(2)对应角夹的边是对应边,对应边的夹角是对应角。

(3)对应边、对应角是对两个三角形而言的,指两条边、两个角的关系,而对边、对角是指同一个三角形的边和角的位置关系,对边是与角相对的边,对角是与边相对的角。

3、全等三角形的性质全等三角形的对应边相等,对应角相等。

4、三角形全等的识别方法(1)三边对应相等的两个三角形全等,简写成“边边边”和“SSS”。

(2)两边和他们的夹角对应相等的两个三角形全等,简写成“边角边”和“SAS”。

(3)两角和他们的夹边对应相等的两个三角形全等,简写成“角边角”和“ASA”。

(4)两个角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”和“AAS”。

(5)斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”和“HL”。

注意:SSA、AAA不能识别两个三角形全等,识别两个三角形全等时,必须有边的参与,如果有两边和一角对应相等时,角必须是两边的夹角。

5、三角形全等的证明思路找夹角——SAS(1)已知两边都是直角三角形——HL找另一边——SSS找边的对角——AAS(2)已知一边一角找夹角的另一边——SAS找夹边的另一角——ASA(3)已知两角找夹边——ASA找其他任意一边——AAS6、全等变换一个图形与另一个图形的形状一样,大小相等,只是位置不同,我们称这个图形是另一个图形的全等变换,三种基本全等变换:(1)旋转;(2)翻折;(3)平移。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档