流体力学

合集下载

流体力学基础知识

流体力学基础知识
流体力学基础知识 流体力学基础知识
目 录 Contents
一 绪论 二 流体静力学 三 流体运动学 四 流体动力学
第一章: 绪论
1.1 流体力学的研究对象
流体力学是研究流体平衡与运动的规律以及它与固 体之间相互作用规律的科学。
其中流体包括液体和气体,相对于固体,它在力学 上表现出以下特点: 流体不能承受拉力。 流体在宏观平衡状态下不能承受剪切力。 对于牛顿流体(如水、空气等)其切应力与应变的时间 变化率成比例,而对弹性体(固体)来说,其切应力则 与应变成比例。
• 数值方法 计算机数值方法是现代分析手段中发展最快的方法之一
1.4 流体力学的发展史
• 第一阶段(16世纪以前):流体力学形成的萌芽阶段 • 第二阶段(16世纪文艺复兴以后-18世纪中叶)流体力学
成为一门独立学科的基础阶段 • 第三阶段(18世纪中叶-19世纪末)流体力学沿着两个方
向发展——欧拉、伯努利 • 第四阶段(19世纪末以来)流体力学飞跃发展
体静力学的基础
第二阶段(16世纪文艺复兴以后-18世纪中叶) 流体力学成为一门独立学科的基础阶段
• 1586年 斯蒂芬——水静力学原理 • 1650年 帕斯卡——“帕斯卡原理” • 1612年 伽利略——物体沉浮的基本原理 • 1686年 牛顿——牛顿内摩擦定律 • 1738年 伯努利——理想流体的运动方程即伯努利方程 • 1775年 欧拉——理想流体的运动方程即欧拉运动微分方
1.2 连续介质模型
• 连续介质 流体微元——具有流体宏观特性的最小体积的流体团
• 理想流体 不考虑粘性的流体
• 不可压缩性 ρ=c
1.3 流体力学的研究方法
理论分析方法、实验方法、数值方法相互配合,互为补充

流体力学课件(全)

流体力学课件(全)
X 1 p 0 x
Y 1 p 0 y
欧拉平衡方程
Z 1 p 0 z
p p( , T )
t
1 V V T p
1 V V p T
p p(V , T )
1 t T p
p
p
1 p T
V
p y = pn pz = pn
px = p y = pz = pn = p
28/34
第二章
流体静力学
§1 静压强及其特性 §2 流体静力学平衡方程 §3 压力测量 §4 作用在平面上的静压力 §5 作用在曲面上的静压力 §6 物体在流体中的潜浮原理
29/34
§2流体静力学平衡方程
通过分析静止流体中流体微团的受力,可以建立 起平衡微分方程式,然后通过积分便可得到各种不同 情况下流体静压力的分布规律。 why 因此,首先要建立起流体平衡微分方程式。 现在讨论在平衡状态下作用在流体上的力应满足 的关系,建立平衡条件下的流体平衡微分方程式。
《流体力学》
汪志明教授
5/24
第一章 流体的流动性质
§1 流体力学的基本概念
§2 流体的连续介质假设 §3 状态方程 §4 传导系数 §5 表面张力与毛细现象
《流体力学》
汪志明教授
6/24
§2 流体的连续介质假设
虽然流体的真实结构是由分子构成,分子间有一定的孔隙,但流 体力学研究的并不是个别分子微观的运动,而是研究大量分子组成的 宏观流体在外力的作用下所引起的机械运动。 因此在流体力学中引入连续介质假设:即认为流体质点是微观上 充分大,宏观上充分小的流体微团,它完全充满所占空间,没有孔隙 存在。这就摆脱了复杂的分子运动,而着眼于宏观机械运动。

第六章流体力学10.8

第六章流体力学10.8

第六章流体力学基础基本概念一、流体的粘滞性流体流动时,由于流体与固体壁面的附着力及流体本身的分子运动和内聚力,使各流体层的速度不相等。

在两个相邻流体层之间的接触面上,将产生一对阻碍两层流体相对运动的等值反向的摩擦力,叫做内摩擦力。

流体的粘滞性:流体流动时产生内摩擦力的性质。

二、理想流体与实际流体粘性流体:具有粘性的流体(实际流体)。

理想流体:忽略了粘滞性的流体。

三、流体流动的基本概念1.稳定流动与非稳定流动(1)稳定流动运动流体内任意点的速度u和压力p仅仅是空间坐标()z,的函数,而不x,y随时间变化而变化。

()zu,=,uyx()z,p,=xyp(2)非稳定流动运动流体内任意点的速度u和压力p不仅是空间坐标()z,的函数,也随x,y时间而不同。

()t z,,=u,yxu()t z,,=pp,yx2.迹线与流线(1)迹线流体质点的运动轨迹。

(2)流线流场:流体流动的空间。

流线:是流场中某一瞬间绘出的一条曲线,在这条曲线上所有各流体质点的流速矢量与该曲线相切。

流线的性质:①稳定流动时,流线形状不随时间而变化;②稳定流动时,同一点的流线始终保持不变,且流线上质点的迹线与流线重合,即流线上的质点沿流线运动;③流线既不会相交,又不能转折,只能是光滑的曲线。

假定某一瞬间有两条流线相交于M点或转折。

M处就该有两个速度矢量,这是不符合流线的定义。

3.流管、微小流速及总流(1)流管在流场中取出一段微小的封闭曲线,过这条曲线上各点引出流线,这些流线族所围成的封闭管状曲面。

(2)微小流束及总流流束:在流管中运动的流体。

微小流束:断面无穷小的流束称为微小流束。

微小流束断面上各点的运动要素相等。

流管内的流体只能在流管内流动,流管外的流体也只能在流管外流动。

伯努利方程一、理想流体的伯努利方程仅在重力作用下作稳定流动的理想流体gu g p Z g u g p Z 2//2//22222111++=++ρρ=常数1Z 和2Z :过流断面1-1和2-2距基准面0-0的高度,1u 和2u :断面1-1和2-2的流速,1p 和2p :断面1-1和2-2的压力,ρ:为流体密度。

流体力学

流体力学
a´ 1
h1 流体运动示图
在这个过程中,机械能的增量为:
a´ 2 v2
h2
△2
l
△E = E 2 - E 1
状态2的(动能+势能)- 状态1的(动能+势能)
△E = E 2 - E 1
1 1 2 △ E = △m v2+△mgh 2 - △m v12 - △mgh 1 2 2
在这个过程中,流体两端 的压力对流体作的功为:
= 3.6×105 Pa
第四节 伯努利方程的应用
一.文特利管(串接在管道中测量流体流速)
s1 s2
已知条件:粗管和细管的横截面s1、 s2,水银柱的高度差h 原理:设,流体密度为ρ,大小管处的 压强分别为P1、P2,流速分别为v1、v2 由连续性方程和伯努利方程
h
曲管压强计
消去v2,可得
1ρ v 2 + = 1ρ v 2 +P P1 2 2 2 1 2
△F dF =lim △S =d P S 液体内部压强的特点:
△S 0
单位: Pa (帕斯卡)
1.静止液体内部同一点各个方向的压强相等。 2. 静止液体内部随深度的增加,压强也增加。
ρ P= g h
3. 密闭容器内的静止流体受到
也称重力压强
P
e
外界压强时,流体内任一点的 压强是:
ρ P= P + g h
设:入水端和出水端的截面分别为A1和A2
由:
入水端
v A = v A = 常数
1 1 2 2 1 2 1 2 2 2
2
1
(
v =v
π d) ( A 2 = ( 6.4 =v × 4.0 A 2.5 d) π ( 2 = 26 m/s
1
2

流体力学的基本概念

流体力学的基本概念

流体力学的基本概念流体力学是研究流体在运动和静止时的物理学科,广泛应用于工程、自然科学和医学领域。

流体力学的基本概念包括:流体、速度场、流线、通量、压力、连通性、黏度等。

下面将对这些基本概念进行介绍。

1. 流体流体是指能够流动的物质,包括气体和液体。

与固体不同的是,流体没有一定的形状,并且具有很强的流动性。

流体力学研究的是在流体中运动和转化的能量和物质。

2. 速度场在流体力学中,速度场指的是在空间中的任何一个点(x,y,z)处,流体在该点的速度向量V(x,y,z)。

速度场可以用向量场表示,它是一个三维矢量,表示流体在不同点的速度和方向。

3. 流线流线是指在流体中某个时刻从每个点出发的一条曲线,它的方向与该点的速度向量方向相同。

流线可用于描述流体在空间中的流动状态,它的密度越集中,表示流体流动越迅速。

4. 通量在流体力学中,通量是指通过一定面积的流体的质量或者体积。

它可以通过流体穿过该面积的速度与面积相乘来计算。

通量是流体力学中的重要概念,与流体的流动速度和流体的面积有关。

5. 压力压力是指单位面积受到的力的大小,以牛顿/平方米表示。

在流体力学中,压力是指垂直于流体流动方向的单位面积上的压力大小,它与流体的密度和流速有关。

6. 连通性流体力学中的连通性是指流体不可穿透的性质,即两个靠近的流体体积不能相互穿透。

在流体运动中,连通性是一条重要的限制条件。

连通性是流体力学中常常需要掌握的概念,尤其是在流体的运动与静止的过程中。

7. 黏度黏度是指流体阻力的大小,它是描述流体的粘性的物理量。

黏度可以用来描述流体在运动中的阻力大小,阻力越大,黏度也就越大。

黏度是流体力学中非常重要的物理量,它影响了流体的运动和可塑性。

流体力学

流体力学
第四章 流体流体运动学和流体动 力学基础
流体力学基本方程
连 续 性 方 程
动 量 方 程
动 量 矩 方 程
伯 努 利 方 程
能 量 方 程
第一节 描述流体运动的两种方法
流体的流动是由充满整个流动空间的无限多个流体 质点的运动构成的。充满运动流体的的空间称为流场。

欧拉法


着眼于整个流场的状态,即研究表征流场内流体流动 特性的各种物理量的矢量场与标量场
7.湿周 水力半径 当量直径
湿周——在总流的有效截面上,流体与固体壁面的接触长度。
水力半径——总流的有效截面积A和湿周之比。
圆形截面管道的几何直径
d 2 4A d 4R d x
D
R
A x
非圆形截面管道的当量直径
4A 4R x
关于湿周和水力半径的概念在非圆截面管道的水力计算中常常用到。
二、欧拉法
欧拉法(euler method)是以流体质点流经流场中 各空间点的运动来研究流动的方法。 ——流场法
研究对象:流场
它不直接追究质点的运动过程,而是以充满运动
流体质点的空间——流场为对象。研究各时刻质点在 流场中的变化规律。将个别流体质点运动过程置之不 理,而固守于流场各空间点。通过观察在流动空间中 的每一个空间点上运动要素随时间的变化,把足够多 的空间点综合起来而得出的整个流体的运动情况。
由欧拉法的特点可知,各物理量是空间点x,y,z和时 间t的函数。所以速度、密度、压强和温度可表示为:
v v x,y,z,t = x,y,z,t p p x,y,z,t T T x,y,z,t
1.速度
u ux, y, z, t

流体力学

流体力学

流体力学(简介)流体力学是在人类与自然界相处和生产实践中逐步发展起来的。

对流体力学学科的形成做出卓越贡献的是古希腊哲学家阿基米德(《论浮体》,公元前250年)建立了包括浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。

流体力学原理主要指计算流体动力学中的数值方法的现状;运用基本的数学分析,详尽阐述数值计算的基本原理;讨论流域和非一致结构化边界适应网格的几何复杂性带来的困难等。

一、发展简史各物理量关系构成牛顿内摩擦定律,τ=μ*du/dy动压和总压。

显然,流动中速度增大,压强就减小;速度减小,压强就增大;速度降为零,压强就达到最大(理论上应等于总压)。

飞机机翼产生举力,就在于下翼面速度低而压强大,上翼面速度高而压强小,因而合力向上。

据此方程,测量流体的总压、静压即可求得速度,成为皮托管测速的原理。

在无旋流动中,也可利用无旋条件积分欧拉方程而得到相同的结果但涵义不同,此时公式中的常量在全流场不变,表示各流线上流体有相同的总能量,方程适用于全流场任意两点之间。

在粘性流动中,粘性摩擦力消耗机械能而产生热,机械能不守恒,推广使用伯努利方程时,应加进机械能损失项[1]。

图为验证伯努利方程的空气动力实验。

补充:p1+1/2ρv1^2+ρgh1=p2+1/2ρv2^2+ρgh2(1)p+ρgh+(1/2)*ρv^2=常量(2)均为伯努利方程其中ρv^2/2项与流速有关,称为动压强,而p和ρgh称为静压强。

伯努利方程揭示流体在重力场中流动时的能量守恒。

由伯努利方程可以看出,流速高处压力低,流速低处压力高。

后人在此基础上又导出适用于可压缩流体的N-S方程。

N-S方程反映了粘性流体(又称真实流体)流动的基本力学规律,在流体力学中有十分重要的意义。

它是一个非线性偏微分方程,求解非常困难和复杂,目前只有在某些十分简单的流动问题上能求得精确解;但在有些情况下,可以简化方程而得到近似解。

例如当雷诺数Re1时,绕流物体边界层外,粘性力远小于惯性力,方程中粘性项可以忽略,N-S方程简化为理想流动中的欧拉方程(=-Ñp+ρF);而在边界层内,N-S方程又可简化为边界层方程,等等。

流体力学(共64张PPT)

流体力学(共64张PPT)

1) 柏努利方程式说明理想流体在管内做稳定流动,没有
外功参加时,任意截面上单位质量流体的总机械能即动能、
位能、静压能之和为一常数,用E表示。
即:1kg理想流体在各截面上的总机械能相等,但各种形式的机
械能却不一定相等,可以相互转换。
2) 对于实际流体,在管路内流动时,应满足:上游截面处的总机械能大于下游截面
p g 1z12 u 1 g 2W g ep g 2z22 u g 2 2g hf
JJ
kgm/s2
m N
流体输送机械对每牛顿流体所做的功

HeW ge,
Hf ghf
p g 1z12 u 1 g 2H ep g 2z22 ug 2 2 H f
静压头
位压头
动压头 泵的扬程( 有效压头) 总压头
处的总机械能。
22
3)g式中z各、项 的2u 2物、理 意p 义处于g 某Z 个1 截u 2 1 面2上的p 1流 W 体e本 身g Z 所2具u 有2 22 的 能p 量2 ; hf
We和Σhf: 流体流动过程中所获得或消耗的能量〔能量损失〕;
We:输送设备对单位质量流体所做的有效功;
Ne:单位时间输送设备对流体所做的有效功,即有效功率;
u2 2
u22 2
u12 2
p v p 2 v 2 p 1 v 1
Ug Z 2 u2 pQ eW e
——稳定流动过程的总能量衡算式 18
UgZ 2 u2pQ eW e
2、流动系统的机械能衡算式——柏努利方程
1) 流动系统的机械能衡算式〔消去△U和Qe 〕
UQ'e vv12pdv热力学第一定律
26
五、柏努利方程应用
三种衡算基准

(完整版)流体力学 第一章 流体力学绪论

(完整版)流体力学 第一章 流体力学绪论

第一章绪论§1—1流体力学及其任务1、流体力学的任务:研究流体的宏观平衡、宏观机械运动规律及其在工程实际中的应用的一门学科。

研究对象:流体,包括液体和气体。

2、流体力学定义:研究流体平衡和运动的力学规律、流体与固体之间的相互作用及其在工程技术中的应用.3、研究对象:流体(包括气体和液体)。

4、特性:•流动(flow)性,流体在一个微小的剪切力作用下能够连续不断地变形,只有在外力停止作用后,变形才能停止。

•液体具有自由(free surface)表面,不能承受拉力承受剪切力( shear stress)。

•气体不能承受拉力,静止时不能承受剪切力,具有明显的压缩性,不具有一定的体积,可充满整个容器。

流体作为物质的一种基本形态,必须遵循自然界一切物质运动的普遍,如牛顿的力学定律、质量守恒定律和能量守恒定律等。

5、易流动性:处于静止状态的流体不能承受剪切力,即使在很小的剪切力的作用下也将发生连续不断的变形,直到剪切力消失为止。

这也是它便于用管道进行输送,适宜于做供热、制冷等工作介质的主要原因.流体也不能承受拉力,它只能承受压力.利用蒸汽压力推动气轮机来发电,利用液压、气压传动各种机械等,都是流体抗压能力和易流动性的应用.没有固定的形状,取决于约束边界形状,不同的边界必将产生不同的流动。

6、流体的连续介质模型流体微团——是使流体具有宏观特性的允许的最小体积。

这样的微团,称为流体质点。

流体微团:宏观上足够大,微观上足够小。

流体的连续介质模型为:流体是由连续分布的流体质点所组成,每一空间点都被确定的流体质点所占据,其中没有间隙,流体的任一物理量可以表达成空间坐标及时间的连续函数,而且是单值连续可微函数。

7流体力学应用:航空、造船、机械、冶金、建筑、水利、化工、石油输送、环境保护、交通运输等等也都遇到不少流体力学问题。

例如,结构工程:钢结构,钢混结构等.船舶结构;梁结构等要考虑风致振动以及水动力问题;海洋工程如石油钻井平台防波堤受到的外力除了风的作用力还有波浪、潮夕的作用力等,高层建筑的设计要考虑抗风能力;船闸的设计直接与水动力有关等等。

流体力学流速计算公式

流体力学流速计算公式

流体力学流速计算公式一、伯努利方程推导流速公式(理想不可压缩流体定常流动)1. 伯努利方程。

- 对于理想不可压缩流体作定常流动时,在同一条流线上有p+(1)/(2)ρ v^2+ρ gh = C(p是流体压强,ρ是流体密度,v是流速,h是高度,C是常量)。

- 假设水平流动(h_1 = h_2),则方程变为p_1+(1)/(2)ρ v_1^2=p_2+(1)/(2)ρ v_2^2。

- 由此可推导出流速公式v_2=√(v_1^2)+(2(p_1 - p_2))/(ρ)。

2. 适用条件。

- 理想流体(无粘性),实际流体在粘性较小时可近似使用。

- 不可压缩流体,像水在大多数情况下可视为不可压缩流体,气体在低速流动时也可近似为不可压缩流体。

- 定常流动,即流场中各点的流速等物理量不随时间变化。

3. 示例。

- 已知水管中某点1处的压强p_1 = 2×10^5Pa,流速v_1 = 1m/s,另一点2处的压强p_2 = 1.5×10^5Pa,水的密度ρ = 1000kg/m^3。

- 根据v_2=√(v_1^2)+(2(p_1 - p_2))/(ρ),将数值代入可得:- v_2=√(1^2)+frac{2×(2×10^{5-1.5×10^5)}{1000}}- 先计算括号内的值:2×(2×10^5-1.5×10^5)=2×5×10^4=10^5。

- 则v_2=√(1 + 100)= √(101)≈10.05m/s。

二、连续性方程推导流速公式(不可压缩流体定常流动)1. 连续性方程。

- 对于不可压缩流体的定常流动,有S_1v_1 = S_2v_2(S_1、S_2分别是流管中两个截面的面积,v_1、v_2是相应截面处的流速)。

- 由此可推导出流速公式v_2=(S_1)/(S_2)v_1。

2. 适用条件。

- 不可压缩流体,如液体或低速流动的气体。

流体力学名词解释

流体力学名词解释

流体力学名词解释
以下是一些重要的流体力学名词的简要解释:
流体力学(Fluid Mechanics)
流体力学是研究流体静力学和流体动力学的学科。

流体静力学研究静止流体的力学性质,包括压强、密度等。

流体动力学研究流体的运动,涉及速度场、加速度场、粘性等。

压强(Pressure)
压强是单位面积上的力,是描述流体静力学性质的重要参数。

它的公式为压力除以受力面积。

密度(Density)
密度是单位体积上的质量,是描述流体静力学性质的参数。

它的公式为物体的质量除以物体的体积。

流速(Flow Velocity)
流速是流体单元通过给定横截面的速度,是描述流体动力学性质的参数。

它可以用流体质点的速度表示。

黏性(Viscosity)
黏性是流体流动时内部发生阻力的程度。

黏性可分为动力黏性和运动黏性,动力黏性指的是剪切力与剪切速度之间的比例关系,运动黏性是指流体发生剪切流动时的阻力。

流量(Flow Rate)
流量是单位时间内通过给定横截面的流体的数量。

它是描述流体动力学性质的重要参数,可以通过流速和横截面积计算得到。

流态(Flow Regime)
流态是流体在输送过程中的运动状态。

常见的流态包括层流、过渡流和湍流,它们具有不同的流动特征和性质。

跃度(Head)
跃度是描述流体在管道或流动装置中转换势能与动能的能力。

它是流体动力学和工程设计中的一个重要概念。

以上是流体力学中常用的一些名词解释。

希望对您有所帮助。

什么是流体力学

什么是流体力学

什么是流体力学
流体力学是力学的一个分支,主要研究在各种力的作用下,流体本身的静止状态和运动状态以及流体和固体界壁间有相对运动时的相互作用和流动规律。

流体力学可以按照研究对象的运动方式分为流体静力学和流体动力学,前者研究处于静止状态的流体,后者研究力对于流体运动的影响。

流体力学按照应用范围,分为:水力学及空气力学等等。

流体力学是连续介质力学的一们分支,是以宏观的角度来考虑系统特性,而不是微观的考虑系统中每一个粒子的特性。

流体主要计算公式

流体主要计算公式

流体主要计算公式流体是液体和气体的统称,具有流动性和变形性。

流体力学是研究流体静力学和动力学的学科,其中主要涉及到流体的力学性质、运动规律和力学方程等内容。

在流体力学的研究中,有一些重要的计算公式被广泛应用。

下面将介绍一些常见的流体力学计算公式。

1.流体静力学公式:(1)压力计算公式:P=F/A-P表示压力-F表示作用力-A表示受力面积(2)液体静力学公式:P=hρg-P表示液体压力-h表示液体高度-ρ表示液体密度-g表示重力加速度2.流体动力学公式:(1)流体流速公式:v=Q/A-v表示流速-Q表示流体流量-A表示流体截面积(2)流体流量公式:Q=Av-Q表示流体流量-A表示流体截面积-v表示流速(3)连续方程:A1v1=A2v2-A1和A2表示流体截面积-v1和v2表示流速(4) 流体动能公式:E = (1/2)mv^2-E表示流体动能-m表示流体质量-v表示流速(5)流体的浮力公式:Fb=ρVg-Fb表示浮力-ρ表示液体密度-V表示浸泡液体的体积-g表示重力加速度3.流体阻力公式:(1)层流阻力公式:F=μAv/L-F表示阻力-μ表示粘度系数-A表示流体截面积-v表示流速-L表示流动长度(2)湍流阻力公式:F=0.5ρACdV^2-F表示阻力-ρ表示流体密度-A表示物体的受力面积-Cd表示阻力系数-V表示物体相对于流体的速度4.比力计算公式:(1)应力计算公式:τ=F/A-τ表示应力-F表示力-A表示受力面积(2)压力梯度计算公式:ΔP/Δx=ρg-ΔP/Δx表示压力梯度-ρ表示流体密度-g表示重力加速度(3) 万斯压力计算公式:P = P0 + ρgh-P表示压力-P0表示参考压力-ρ表示流体密度-g表示重力加速度-h表示液体的高度以上是一些流体力学中常见的计算公式,涉及到压力、流速、阻力、浮力以及比力等方面的运算。

这些公式在解决流体力学问题时非常有用,可以帮助我们理解和分析流体的运动和力学性质。

(完整版)流体力学

(完整版)流体力学

第1章绪论一、概念在任何微小剪切力持续作用下连续变形的物质叫做流体(易流动性是命名的由来)宏观尺寸非常小,微观尺寸非常大的任意一个物理实体宏观体积极限为零,微观体积大于流体分子尺寸的数量级假设组成流体的最小物质是流体质点,流体是由无限多个流体质点连绵不断组成,质点之间不存在间隙。

分子平均自由程远远小于流动问题特征尺寸作用在一定量的流体上的压强增加时,体积减小Ev=-dp/(dV/V)压强的改变量和体积的相对改变量之比Ev=1/Kt体积弹性模量越大,流体可压缩性越小等温Ev=p等嫡Ev=kpk二Cp/Cv作用在一定量的流体上的压强增加时,体积不变Ev=dp/(dp/p)(低速流动气体不可压缩)流体抵抗剪切变形的一种属性动力粘度:|1,单位速度梯度下的切应力U=T/(dv/dy)运动粘度:V,动力粘度与密度之比,v=u/pV=|!=0的流体T=+-|idv/dy(T大于零)、T=^V/8切应力和速度梯度成正比粘性产生的机理,粘性、粘性系数同温度的关系;液体:液体分子间的距离和分子间的吸引力,温度升高粘性下降气体:气体分子热运动所产生的动量交换,温度升高粘性增大牛顿流体的定义;符合牛顿内摩擦定律的流体质量力:与流体微团质量大小有关的并且集中在微团质量中心上的力表面力:大小与表面面积有关而且分布在流体表面上的力二、计算1、牛顿内摩擦定律的应用-间隙很小的无限大平板或圆筒之间的流动.第2章流体静力学一、概念流体内任意点的压强大小都与都与其作用面的方位无关微元平衡流体的质量力和表面力无论在任何方向上都保持平衡欧拉方程=0流体平衡微分方程重力场下的简化:dp二一pdW二一pgdz不可压缩流体静压强基本公式z+p/pg二C不可压缩流体静压强分布规律p=p0+pgh平衡流体中各点的总势能是一定的静止流体中的某一面上的压强变化会瞬间传至静止流体内部各点4、绝对压强、计示压强(表压)、真空压强的定义及相互之间的关系;绝对压强:以绝对真空为起点计算压强大小记示压强:比当地大气压大多少的压强真空压强:比当地大气压小多少的压强绝对压强二当地大气压+表压表压二绝对压强一当地大气压真空压强=当地大气压-绝对压强单管式:简单准确;缺点:只能用来测量液体压强,且容器内压强必须大于大气压强,同时被测压强又要相对较小,保证玻璃管内液柱不会太高U:可测液体压强也可测气体压强;缺:复杂倾斜管:精度高;缺点:??F=pS+pgsinayS当p二大气压强,F=pgsinayS压力中心:二、计算1、U型管测压计的计算;2、绝对压强、计示压强及真空压强的换算3、平壁面上静压力大小的计算。

流体力学

流体力学

一.名词解释。

1.流体:在任何微小剪切力的持续作用下,能够产生连续变形的物质。

2.流体的密度:单位体积流体的质量。

3.流体的压缩性:在一定的温度下,流体的体积随压强的增大而减小的性质。

4.流体的粘性:粘性是当流体质点之间发生相对运动时,产生切向力的性质。

5.理想流体:没有粘性的流体。

6.不可压缩流体:不计流体的压缩性和膨胀性的而对流体物理性质的简化。

认为其密度是常数的流体。

7.流体静压强:流体静止时,不存在切应力,定义流体的法向应力为流体静压强。

8.等压面:等压面是流体中压强相等的点所组成的面。

9.系统:是由确定的流体质点所组成的流体团。

10.控制体:从流场中取出某一固定的空间体积,该体积成为控制体。

11.紊流:液体质点的运动是极不规则的,各部分流体相互剧烈掺混,这种流动状态称为紊流。

12.定常流动:定常流动是流场中各空间点流体的物理参数不随时间变化的流动流动。

13.水力光滑:层流底层的厚度随着Re的减小,将增加;当层流底层厚度>(管壁绝对粗糙度)时,管器内的流动称为水力光滑·14.边界层:紧贴固体壁面的流体速度由零迅速增大,形成很大的速度梯度,这个流体薄层即为边界层。

15.滞止状态:滞止状态即速度为零的状态;’16.极限状态:在绝热流动的过程中,气流的绝对压强和热力学温度为零,气流的总能量全部转化为宏观运动的动能的状态。

17.时均速度:定义用一定时间间隔内速度的统计平均值为时均速度。

二.判断题。

1.任何作用在流体上的质量力都能使流体达到平衡。

(×)2.在连续介质假设的条件下,流体中各种物理量的变化是连续的。

(√)3.由于流体质点很小,因此它实际上是指流体的分子。

,( x )4.流体在静止时无粘性;只有在流体微团发生相对运动时才有粘性。

( X )5.构成粘性主要因素是气体分子间的吸引力。

( x ) ·6.理想流体必须具备两个条件:一是不具有粘性,二是不可压性。

一、流体力学

一、流体力学

• 分类:按运动方式分为流体静力学和流体 分类:按运动方式分为流体静力学 流体静力学和 动力学。 动力学。
2
流体力学概论
• 应用:在水利工程学、空气动力学、气象学、气 应用:在水利工程学、空气动力学、气象学、 体和液体输运、 体和液体输运、动物血液循环和植物液汁输运等 领域有运用。 领域有运用。
高尔夫球表面为什么有很多小凹坑? 高尔夫球表面为什么有很多小凹坑?
v1
1 2
v2
3
v3
8
1.2
理想流体的定常流动 流管——流线围成的管子 流线围成的管子. 流管 流线围成的管子
一般流线分布随时间改变. 一般流线分布随时间改变
二、定常流动
空间各点流速不随时间变化称定常流动. 空间各点流速不随时间变化称定常流动
定常流动流体能 加速流动吗? 加速流动吗?
v = v ( x, y, z)
1 2 1 2 P + ρvA = P + ρvB A B 2 2 SAvA = SBvB
A B h1 h H1
∵P −P = (ρ银 −ρ流)gh B A
2(ρ银 −ρ流)gh ∴vA = ρ流[1−(SA / SB)2]
所以流量为
Q= SAvA = SBvB = SASB
2(ρ银 −ρ流)gh 2 2 ρ流(SB −SA)
阻力系数约为0.8 阻力系数约为
阻力系数仅为0.137 阻力系数仅为
3
流体力学概论
• 应用: 应用:
植物水分运输动力? 植物水分运输动力? 人体血液循环图 毛细作用 渗透压 水分中的负压强
4
1.1
流体静力学
1、静止流体内应力的特点 压强 、
静止流体内部应力的特点: 静止流体内部应力的特点: a、 ∆ ⊥∆ ,无切向应力。(表现为流动性) F S b、同一点不同方位的截面的应力大小相等。 由上述第二个特点可引入:压强P 由上述第二个特点可引入:压强

1流体力学基本知识

1流体力学基本知识
G Mg γ = = = ρ⋅g V V
(kg/m3)
密度: 单位体积的质量称为流体的密度
(N/m3)
容重: 单位体积的重量称为流体的密度
二、流体的流动性和粘滞性
流体在运动状态时,由于流体各层的流速不同,就会在流层 粘滞性: 间产生阻滞相对运动和剪切变形的内摩擦力,称为粘滞力也 称粘滞性。
u ν0 = y h
作业:
1、名词解释: 压缩性、膨胀性、密度、容重、黏滞性、流体静压力的基本特性、流量。 压缩性、膨胀性、密度、容重、黏滞性、流体静压力的基本特性、流量。 2、写出流体的柏努利方程,并解释各部分意义。 写出流体的柏努利方程,并解释各部分意义。 3、如图判断压力的大小 4、判断图 中,A—A(a、b、c 、d),B—B,E—E是否为等压面,并说 判断图2中 是否为等压面, 明理由。 明理由。 5、如图3,液体1和液体3的密度相等,ρ1g=ρ3g=8.14 kN/m3,液体2的 如图3 液体1和液体3的密度相等, 1g=ρ = =ρ3g kN/m3,液体2 2g=133.3kN/m3。已知:h1=16cm,h2=8cm,h3=12cm。( 。(1 ρ2g=133.3kN/m3。已知:h1=16cm,h2=8cm,h3=12cm。(1)当 pB=68950Pa时,pA等于多少?(2)当pA=137900Pa时,且大气压力计 pB=68950Pa时 pA等于多少 等于多少? pA=137900Pa时 的读数为95976Pa时 点的表压力为多少? 的读数为95976Pa时,求B点的表压力为多少?
qv = ∫∫ v cos(v , x)dA
A
有效截面: 有效截面:
qv = ∫∫ vdA
A
3.平均流速: 3.平均流速:流经有效截 平均流速 面的体积流量除以有效截 面积而得到的商

流体力学(流体运动学)

流体力学(流体运动学)

§3 -2
流场的基本概念
恒定流与非恒定流 迹线和流线 一维、二维、 一维、二维、三维流动 流管、 流管、流束及总流 过流断面、 过流断面、流量和平均流速 均匀流和非均匀流
§3-2
流场的基本概念
一、恒定流与非恒定流(定常流与非定常流) 恒定流与非恒定流(定常流与非定常流)
恒定流动是指流场中流动参数不随时间变化而改变的流动。 它满足下列条件:
(3) (4)
将(3)、(4)式代入(1)式得 A′( x)e t + A( x)e t = A( x)e t + t
A′( x)e t = t
A′( x) = te − t

dA( x) = te − t dt
(分部积分公式:∫ uv ′dx = uv − ∫ vu ′dx )
用分部积分得
A( x ) = −(te − t − ∫ e − t dt ) = −te − t − e − t + A
迹线是流体质点在一段时间过程中运动的轨迹线。 迹线的特点是:对于每一个质点都有一个运动轨迹,所以迹线 是一族曲线。 如图所示AB曲线是质点M的迹线,在这一迹线上取微元长度ds 表示该质点M在dt时间内的微小位移,则其速度为
ds u= dt
z u c ds
速度的分量为
dx ux = dt
dy uy = dt
第三章
流体运动学
流体运动的描述方法 流场的基本概念 流体微团的运动 连续性方程
引言
静止(包括相对静止) 静止(包括相对静止)是流体的一种特殊的 存在形态,运动(或流动) 存在形态,运动(或流动)才是流体更普遍的存 在形态,也更能反映流体的本质特征。 在形态,也更能反映流体的本质特征。因此相对 流体静力学而言, 流体静力学而言,研究流体的运动规律及其特征 具有更加深刻的意义。这也为流体动力学——研 具有更加深刻的意义。这也为流体动力学 研 究在外力作用下流体的运动规律, 究在外力作用下流体的运动规律,打下了理论的 基础。 基础。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福州大学土木工程学院本科实验教学示范中心学生实验报告流体力学实验题目:实验项目1:毕托管测速实验实验项目2:管路沿程阻力系数测定实验实验项目3:管路局部阻力系数测定实验实验项目4:流体静力学实验实验一毕托管测速实验一、实验目的要求:1.通过对管嘴淹没出流点流速及点流速系数的测量,掌握用测压管测量点流速的技术和使用方法。

2.通过对毕托管的构造和适用性的了解及其测量精度的检验,进一步明确水力学量测仪器的现实作用。

3.通过对管口的流速测量,从而分析管口淹没出流,流线的分布规律。

二、实验成果及要求实验装置台号 20040268表1 记录计算表 校正系数c= 1.002 ,k= 44.36 cm 0.5/s三、实验分析与讨论1.利用测压管测量点压强时,为什么要排气?怎样检验排净与否?答:若测压管内存有气体,在测量压强时,测压管及其连通管只有充满被测液体,即满足连续条件,才有可能测得真值, 否则如果其中夹有气柱, 就会使测压失真, 从而造成误差。

误差值与气柱高度和其位置有关。

对于非堵塞性气泡,虽不产生误差,但若不排除,实验过程中很可能变成堵塞性气柱而影响 量测精度。

检验的方法:是毕托管置于静水中,检查分别与毕托管全压孔及静压孔相连通的两根测压 管液面是否齐平。

如果气体已排净,不管怎样抖动塑料连通管,两测管液面恒齐平。

2.毕托管的压头差Δh 和管嘴上、下游水位差ΔH 之间的大小关系怎样?为什么?答:由于且即这两个差值分别和动能及势能有关。

在势能转换为动能的过程中,由于粘性力的存在而有能量损失,所以压头差较小。

ϕ'说明了什么?3.所测的流速系数答:若管嘴出流的作用水头为,流量为Q,管嘴的过水断面积为A,相对管嘴平均流速v,则有称作管嘴流速系数。

若相对点流速而言,由管嘴出流的某流线的能量方程,可得式中:为流管在某一流段上的损失系数;为点流速系数。

本实验在管嘴淹没出流的轴心处测得=0.990,表明管嘴轴心处的水流由势能转换为动能的过程中有能量损失,但甚微。

实验二 管路沿程阻力系数测定实验一、实验目的要求:1.加深了解园管层流和紊流的沿程损失随平均流速变化的规律;2. 掌握管道沿程阻力系数的量测技术和应用气—水压差及水—水银多管压差计 测量压差的方法;3.将测得的R e ~λ关系值与莫迪图对比,分析其合理性,进一步提高实验成果分析能力二、实验成果及要求1.有关常数。

实验装置台号 08010544圆管直径d= 1.4、1.9、2.6 cm , 量测段长度L=85cm 。

及计算(见表1)。

2.绘图分析* 绘制lg υ~lgh f 曲线,并确定指数关系值m 的大小。

在厘米纸上以lg υ为横坐标,以lgh f 为纵坐标,点绘所测的lg υ~lgh f 关系曲线,根据具体情况连成一段或几段直线。

求厘米纸上直线的斜率2212lg lg lg lg υυ--=f f h h m将从图上求得的m 值与已知各流区的m 值(即层流m=1,光滑管流区m=1.75,粗糙管紊流区m=2.0,紊流过渡区1.75<m<2.0)进行比较,确定流区。

*附录1 实验曲线绘法建议1.图纸 绘图纸可用普通厘米纸或对数纸,面积不小于12×12cm ;2.坐标确定 若采用厘米纸,取lgh f 为纵坐标(绘制实验曲线一般以因变量为纵坐标),lgv 为横坐标;采用对数纸,纵坐标写h f ,横坐标用v ,即不写成对数;3.标注 在坐标轴上,分别标明变量名称、符号、单位以及分度值; 4.绘点 据实验数据绘出实验点;5.绘曲线 据实验点分布绘制曲线,应使位于曲线两侧的实验点数大致相等,且各点相对曲线的垂直距离总和也不致相等。

5三、实验分析与讨论1. 为什么压差计的水柱差就是沿程水头损失?如实验管道安装成倾斜,是否影响 实验成果?答:在管道中的,水头损失直接反应于水头压力。

测力水头两端压差就等于水头损失。

如果管道倾斜安装,不影响实验结果。

但压差计应垂直,如果在特殊情况下无法垂直,可乘以倾斜角度转化值。

2.据实测m 值判别本实验的流动型态和流区。

答:f h lg ~v lg 曲线的斜率m=1.8,即f h 与v 1.8成正比,1.75<m<2.0表明流动状态处于紊流过渡区。

3.本次实验结果与莫迪图吻合与否?试分析其原因。

答:实验水管为氯乙烯管,其当量粗糙度取为0.002mm ,常温下,v=0.893×10-6实验管径为d=(14-26)mm ,相应的d=0.000038~0.000071,测得Re=2×103~3×103,由莫迪图可知,流动均处在紊流过渡区与本次实验相符。

实验三 管路局部阻力系数测定实验一、实验目的要求:1.掌握三点法、四点法量测局部阻力系数的技能;2.通过对圆管突扩局部阻力系数的表达公式和突缩局部阻力系数的经验公式的 实验验证与分析,熟悉用理论分析法和经验法建立函数式的途径;3.加深对局部阻力损失机理的理解。

二、实验成果及要求1.记录计算有关常数。

实验装置台号No 20085710 d 1=D 1= 0.96 cm , d 2=d 3= d 4= D 2= 1.98 cm , d 5=d 6=D 3= 1.01 cm , l 1—2=12cm , l 2—3=24cm , l 3—4=12cm , l 4—B =6cm , l B —5=6cm , l 5—6=6cm ,221)1(A A e -='ξ= 0.585 , )31(5.05A As -='ξ= 0.370 。

2.整理记录、计算表。

3.将实测ζ值与理论值(突扩)或公认值(突缩)比较。

表1 记录表表2计算表三、实验分析与讨论1.结合实验成果,分析比较突扩与突缩在相应条件下的局部损失大小关系: 1)不同R e 的突扩ξe 是否相同?2)在管径比变化相同的条件下,其突扩ξe 是否一定大于突缩ξs ? 答:由式g v h j 22ζ=及()21d d f =ζ表明影响局部阻力损失的因素是v 和21d d 。

由于有突扩:2211⎪⎪⎭⎫ ⎝⎛-=A A e ζ突缩:⎪⎪⎭⎫⎝⎛-=2115.0A A s ζ则有()212212115.0115.0A A A A A A K e s -=--==ζζ当 5.021〈A A 或707.021〈d d时,突然扩大的水头损失比相应的突然收缩的要大。

在本实验最大流量Q 下,突然扩大损失较突然缩小损失约大一倍,即h je /h js =4.61/2.37=1.945。

21d d 接近于1时,突然扩大的水流形态接近于逐渐扩大管的流动,因而阻力损失显著减小。

2.结合流动仪演示的水力现象,分析局部阻力损失机理何在?产生突扩与突缩局部阻力损失的主要部位在哪里?怎样减小局部阻力损失?答:从显示的图谱可见,凡流道边界突变处,形成大小不一的漩涡区。

漩涡是产生损失的主要根源。

由于水质点的无规则运动和激烈的紊动,相互摩擦,便消耗了部分水体的自储能量。

另外,当这部分低能流体被主流的高能流体带走时,还须克服剪切流的速度梯度,经质点间的动能交换,达到流速的重新组合,这也损耗了部分能量。

这样就造成了局部阻力损失。

从流动仪可见,突扩段的漩涡主要发生在突扩断面以后,而且与扩大系数有关,扩大系数越大,漩涡区也越大,损失也越大,所以产生突扩局部阻力损失的主要部位在突扩断面的后部。

而突缩段的漩涡在收缩断面前后均有。

突缩前仅在死角区有小漩涡,且强度较小,而突缩的后部产生了紊动度较大的漩涡环区。

可见产生突缩水头损失的主要部位是在突缩断面后。

从以上分析知,为了减小局部阻力损失,在设计变断面管道几何边界形状时应流线型化或尽量接近流线形,以避免漩涡的形成,或使漩涡区尽可能小。

如欲减小管道的局部阻力,就应减小管径比以降低突扩段的漩涡区域;或把突缩进口的直角改为园角,以消除突缩断面后的漩涡环带,可使突缩局部阻力系数减小到原来的1/2~1/10。

突然收缩实验管道,使用年份长后,实测阻力系数减小,主要原因也在这里实验四 流体静力学实验一、实验目的要求:1. 掌握用测压管测量流体静压强的技能; 2. 验证不可压缩流体静力学基本方程;3. 通过对诸多流体静力学现象的实验分析研讨,进一步提高解决静力学实际问题的能力。

二、实验成果及要求1.记录有关常数。

实验装置台号No 20085703各测点的标尺读数为:▽B = 2.1 cm ,▽C = -2.9 cm ,▽D = -5.9 cm ,ωγ = 0.0098 N/cm 3。

2.分别求出各次测量时,A 、B 、C 、D 点的压强,并选择一基准检验同一静止液体内的任意二点C 、D 的)pZ (γ+是否为常数。

3.求出油的容重。

三、实验分析与讨论1.同一静止液体内的测压管水头线是根什么线? 答:测压管水头指pz +,即静水力学实验仪显示的测压管液面至基准面的垂直高度。

测压管水头线指测压管液面的连线。

实验直接观察可知,同一静止液面内的测压管水头线是一根水平线。

2.当p B <0时,试根据记录数据确定水箱内的真空区域。

答:1.过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占区域,均为真空区域。

2.同理,过箱顶小不杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。

3.在测压管5中,自水面向下深度某一段水柱亦为真空区域。

这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。

3.若再箅一根直尺,试采用另外最简便的方法测定0γ。

答:最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h 和0h ,由式00h h w w γγ= ,从而求得0γ。

4.如测压管太细,对测压管液面的读数将有何影响?答:设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差。

如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。

因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。

5.过C 点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部液体是同一等压面?答:不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。

因为只有全部具有下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。

而管5与水箱之间不符合条件(4),相对管5和水箱中的液体而言,该水平面不是等压面。

6.用图1.1装置能演示变液位下的恒定流实验吗?答:关闭各通气阀门,开启底阀,放水片刻,可看到有空气由C 进入水箱。

相关文档
最新文档