(完整版)极坐标与参数方程知识点、题型总结(可编辑修改word版)
极坐标与参数方程考点汇总
专题一极坐标与参数方程考点整合一、极坐标知识点一极坐标系1.极坐标系:如图所示,在平面内取一个定点O,叫作;自极点O引一条射线Ox,叫作;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.2.极坐标:设M是平面内一点,极点O与点M的距离|OM|叫作点M的,记为ρ;以极轴Ox 为始边,射线OM为终边的角xOM叫作点M的,记为θ.有序数对(ρ,θ)叫作点M的极坐标,记为M(ρ,θ).一般地,不做特殊说明时,我们认为ρ≥0,θ可取任意实数.3.点与极坐标的关系:一般地,极坐标(ρ,θ)与(ρ,θ+2kπ)(k∈Z)表示同一个点.特别地,极点O的坐标为(0,θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标(ρ,θ)表示;同时,极坐标(ρ,θ)表示的点也是唯一确定的.4.极坐标与直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位.(2)互化公式:如图所示,设M是坐标系平面内任意一点,它的直角坐标系是(x,y),极坐标是(ρ,θ)(ρ≥0),于是极坐标与直角坐标的互化公式如下表:温馨提示;(1)在由点的直角坐标化为极坐标时,一定要注意点所在的象限和极角的范围,否则点的极坐标将不唯一.(2)在与曲线的方程进行互化时,一定要注意变量的范围,要注意转化的等价性知识点二 常见曲线的极坐标方程.二、参数方程知识点一 参数方程 1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t ),①,并且对于t 的每一个允许值,由方程组①所确定的点M (x ,y )都在这条曲线上,那么方程①就叫作这条曲线的参数方程,联系变数x ,y 的变数t 叫作参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫作普通方程. 2.参数方程和普通方程的变化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地,可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程.(3)在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.易误提醒 在将曲线的参数方程化为普通方程时,还要注意其中的x ,y 的取值范围,即在消去参数的过程中一定要注意普通方程与参数方程的等价性. 知识点二 常见曲线的参数方程 1.直线的参数方程经过点M 0(x 0,y 0),倾斜角为α(α≠π2)的直线l 的普通方程是y -y 0=tan_α(x -x 0),而过M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为 (t 为参数),若点P 对于的参数为t ,则有||PM = . 2.圆的参数方程如图所示,设圆O 的半径为r ,点M 从初始位置M 0(t =0时的位置)出发,按逆时针方向在圆O 上作匀速圆周运动,设M (x ,y ),则⎩⎪⎨⎪⎧x =r cos θy =r sin θ(θ为参数).这就是圆心在原点O ,半径为r 的圆的参数方程.其中参数θ的几何意义是OM 0绕点O 逆时针旋转到OM 的位置时,OM 0转过的角度.圆心为(a ,b ),半径为r 的圆的普通方程是(x -a )2+(y -b )2=r 2,它的参数方程为: . 3.椭圆的参数方程中心在原点O ,焦点在x 轴上的椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),其参数方程为 (φ为参数).其中参数φ称为离心角;中心在原点O ,焦点在y 轴上的椭圆的标准方程是y 2a 2+x 2b2=1(a >b >0),其参数方程为⎩⎪⎨⎪⎧x =b cos φ,y =a sin φ(φ为参数),其中参数φ仍为离心角,通常规定参数φ的范围为φ∈[0,2π). 温馨提示 (1)将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有代入消参法,加减消参法,平方消参法等.(2)将参数方程化为普通方程时,要注意两种方程的等价性,不要增解、漏解,若x 、y 有范围限制,要标出x 、y 的取值范围.典例分析一、t 的几何意义【例1】.在极坐标系中,曲线C 的方程为2cos29ρθ=,点6P π⎛⎫⎪⎝⎭.以极点O 为原点,极轴为x 轴的正半轴建立直角坐标系.(1)求直线OP 的参数方程的标准式和曲线C 的直角坐标方程; (2)若直线OP 与曲线C 交于A 、B 两点,求11PA PB+的值.【变式1】在直角坐标系xOy 中,直线l的参数方程为2{x t y =-+=(t 为参数),若以该直角坐标系的原点O 为极点, x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 4cos 0ρθθ+=. (Ⅰ)求直线l 与曲线C 的普通方程;(Ⅱ)已知直线l 与曲线C 交于,A B 两点,设()2,0M -,求11MA MB-的值.二、ρ的几何意义【例2】(2011新课标全国卷)在直角坐标系xOy 中,曲线C 1的参数方程为:2cos 22sin x y αα=⎧⎨=+⎩(α为参数)M 是C 1上的动点,P 点满足2OP OM =,P 点的轨迹为曲线C 2(Ⅰ)求C 2的方程(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求AB .【变式2】在平面直角坐标系中,曲线122:x cos C y sin αα=+⎧⎨=⎩(α为参数)经伸缩变换2x x y y⎧=⎪⎨⎪='⎩'后的曲线为2C ,以坐标原点O 为极点, x 轴非负半轴为极轴建立极坐标系. (1)求曲线2C 的极坐标方程; (2),A B 是曲线2C 上两点,且3AOB π∠=,求OA OB +的取值范围三、面积【例3】.在直角坐标系xOy 中,曲线C 的参数方程是35cos 35sin x y αα=+⎧⎨=+⎩(α为参数),以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系.(1)求曲线的极坐标方程; (2)设12:,:,63l l ππθθ==,若12,l l 与曲线C 分别交于异于原点的,A B 两点,求AOB的面积.【变式3】【2015高考新课标1,文23】选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (I )求12,C C 的极坐标方程. (II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C M N ∆ 的面积. 四、交点【例4】已知直线l 的参数方程为:2cos sin x t y t αα=-+⎧⎨=⎩(t 为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 2cos ρθθ=-.(Ⅰ)求曲线C 的参数方程; (Ⅱ)当4πα=时,求直线l 与曲线C 交点的极坐标.【变式4】【2013课标全国Ⅰ,文23】已知曲线C 1的参数方程为45cos ,55sin x t y t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).五、轨迹【例5】(2013全国Ⅱ卷)已知动点,P Q 都在曲线2cos :2sin x C y ββ=⎧⎨=⎩(β为参数)上,对应参数分别为βα=与)20(2πααβ<<=,M 为PQ 的中点. (Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.【变式5】在直角坐标系xOy 中,已知圆C : 2{2x cos y sin θθ== (θ为参数),点P 在直线l :40x y +-=上,以坐标原点为极点, x 轴的正半轴为极轴,建立极坐标系.(I )求圆C 和直线l 的极坐标方程;(II )射线OP 交圆C 于R ,点Q 在射线OP 上,且满足2OP OR OQ =⋅,求Q 点轨迹的极坐标方程六、参数方程的应用【例6】(2014课表全国Ⅰ)已知曲线22:149x y C +=,直线2:22x t l y t =+⎧⎨=-⎩(t 为参数).(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.【变式6】(2016·全国Ⅲ卷)在直角坐标系xOy 中,曲线1C 的参数方程为1:sin x C y αα⎧=⎪⎨=⎪⎩(α为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为sin()4πρθ+=。
高中数学选修44极坐标与全参数方程知识点与题型
选做题部分 极坐标系与参数方程一、极坐标系1.极坐标系与点的极坐标(1) 极坐标系: 如图 4-4-1 所示,在平面内取一个定点 O ,叫做极点,自极点 O 引一条射线 Ox ,叫做极轴;再选定一个长度单位, 一个角度单位 ( 往常取弧度 ) 及其正方向 ( 往常取逆时针方向 ) ,这样就成立了一个极坐标系.(2) 极坐标: 平面上任一点 M 的地点能够由线段 OM 的长度 ρ 和从 Ox 到 OM 的角度 θ 来刻画,这两个数构成的有序数对 ( ρ ,θ) 称为点M 的极坐标.此中 ρ 称为点 M 的极径, θ 称为点 M 的极角. 2.极坐标与直角坐标的互化点 M直角坐标 (x , y)极坐标 (ρ, θ)互化 公式题型一 极坐标与直角坐标的互化1、已知点 P 的极坐标为 ( 2,) ,则点 P 的直角坐标为 ( )4A.( 1,1)B. (1,-1 )C. (-1 ,1)D.(-1 ,-1)2、设点 P 的直角坐标为 ( 3,3) ,以原点为极点,实轴正半轴为极轴成立极坐标系(02 ) ,则点 P 的极坐标为( )A . (32,3 )B .(32,5)C .(3,5)D .(3,3)44 4 43.若曲线的极坐标方程为 ρ = 2sin θ +4cos θ ,以极点为原点,极轴为 x 轴正半轴 成立直角坐标系,则该曲线的直角坐标方程为 ________.4.在极坐标系中,过点 (1,0) 而且与极轴垂直的直线方程是 ( )A .ρ =cos θB . ρ = sin θC . ρcos θ= 1D.ρ sin θ= 15.曲线 C 的直角坐标方程为 x 2+y 2- 2x =0,以原点为极点, x 轴的正半轴为极轴成立极坐标系,则曲线 C 的极坐标方程为 ________.π6. 在极坐标系中,求圆ρ=2cos θ与直线 θ= 4( ρ>0) 所表示的图形的交点的极坐标.题型二极坐标方程的应用由极坐标方程求曲线交点、距离等几何问题时,假如不可以直接用极坐标解决,可先转变成直角坐标方程,而后求解.ππ3与极1. 在极坐标系中,已知圆 C经过点 P(2,4 ) ,圆心为直线ρsinθ-3=-2轴的交点,求圆 C 的直角坐标方程.π2.圆的极坐标方程为ρ=4cos θ,圆心为 C,点 P 的极坐标为 4,3,则|CP| =________.π3.在极坐标系中,已知直线 l 的极坐标方程为ρ sin θ+4=1,圆 C的圆心的极坐标π是 C 1,4,圆的半径为 1.(i)则圆 C的极坐标方程是 ________; (ii) 直线 l 被圆 C所截得的弦长等于 ________.π4. 在极坐标系中,已知圆C:ρ= 4cos θ被直线 l :ρsinθ-6=a截得的弦长为2 3,则实数 a 的值是 ________.二、参数方程1.参数方程和一般方程的互化(1)曲线的参数方程和一般方程是曲线方程的不一样形式.一般地,能够经过消去参数而从参数方程获得一般方程.(2)假如知道变数 x, y 中的一个与参数t 的关系,比如x=f(t),把它代入一般方程,求出另一个变数与参数的关系y=g(t),那么,x= f t ,就是曲线的参数方程.y= g t2.常有曲线的参数方程和一般方程点的轨迹一般方程直线y- y0= tan α(x-x0 )圆x2+ y2=r 2椭圆x2y2a2+b2= 1(a>b>0)参数方程x=x0+ tcos α(t 为参数 )y=y0+ tsin αx= rcos θ( θ为参数 )y= rsin θx= acos φ(φ为参数 )y= bsin φ题型一参数方程与一般方程的互化【例 1】把以下参数方程化为一般方程:1 x=3+cos θ,x=1+2t ,(1)(2)3 y=2-sin θ;y=5+t.2题型二直线与圆的参数方程的应用1、已知直线 l 的参数方程为x= 1+ t,x= 2cos θ+ 2,(参数 t∈R),圆 C 的参数方程为(参y= 4- 2t y= 2sin θ数θ∈ [0,2π,])求直线 l 被圆 C 所截得的弦长.2、曲线 C的极坐标方程为:ρ =acosθ(a>0),直线l的参数方程为:(1)求曲线 C与直线 l 的一般方程;(2)若直线 l 与曲线 C相切,求 a 值.3、在直角坐标系xoy 中,曲线 C1的参数方程为,(α 为参数),以原点O为极点, x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为.(Ⅰ)求曲线C1的一般方程与曲线C2的直角坐标方程;(Ⅱ)设 P 为曲线 C1上的动点,求点P 到 C2上点的距离最小值.综合应用1、曲线x25t(t为参数 ) 与坐标轴的交点是()y12tA(0,2、1B1、1,0)C(0,4)、(8,0)D(0,5 、) (,0)(0,) () (8,0) 52529x2sin2(为参数)化为一般方程为()3、参数方程sin2yA.y x2B. y x2C.y x2(2x3)D. y x2(0y 1)3.判断以下结论的正误.(1)平面直角坐标系内的点与坐标能成立一一对应关系,在极坐标系中点与坐标也是一一对应关系 ()π(2)若点 P 的直角坐标为 (1 ,- 3) ,则点 P的一个极坐标是(2,-3)()(3)在极坐标系中,曲线的极坐标方程不是独一的()(4)极坐标方程θ=π ( ρ≥0) 表示的曲线是一条直线 ()x t1)4.参数方程为t (t为参数 ) 表示的曲线是(y2A.一条直线B.两条直线C.一条射线D.两条射线5.与参数方程为A .x2y24C.x2y24x t(t为参数 ) 等价的一般方程为()y 2 1 t1 B .x2y21(0x1)41(0 y 2) D .x2y21(0x1,0 y 2)415.参数方程x2为参数所表示的曲线是()y tan cotA.直线B.两条射线 C .线段D.圆16.以下参数方程(t 是参数)与一般方程y2x 表示同一曲线的方程是:()x tB.x2x tD .x1cos2tA.t 2sin t C.y t1cos2ty y sin ty tant3. 由参数方程x 2 sec 21 为参数,给出曲线在直角坐标系下的方程y 2tan22是。
极坐标与参数方程知识点总结
极坐标与参数方程知识点总结文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]第一部分:坐标系与参数方程【考纲知识梳理】1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换()()⎩⎨⎧>•='>•='0,0,:μμλλϕy y x x 的作用下,点()y x P ,对应到点()y x P '',,称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系的概念 (1)极坐标系如图(1)所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系. (2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对()θρ,叫做点M 的极坐标,记作M ()θρ,.一般地,不作特殊说明时,我们认为θρ,0≥可取任意实数.特别地,当点M 在极点时,它的极坐标为()()R ∈θθ,0。
和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定πθρ20,0<≤>,那么除极点外,平面内的点可用唯一的极坐标()θρ,表示;同时,极坐标()θρ,表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图(2)所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是()y x ,,极坐标是()()0,≥ρθρ,于是极坐标与直角坐标的互化公式如表:在一般情况下,由θtan 确定角时,可根据点M 所在的象限最小正角. 4.常见曲线的极坐标方程注:由于平面上点的极坐标的表示形式不唯一,即()()()()θπρθπρθπρθρ+--+-+,,,,2,,,都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程θρ=点⎪⎭⎫ ⎝⎛4,4ππM 可以表示为⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+45,424,424,4ππππππππM M M 或或等多种形式,其中,只有⎪⎭⎫⎝⎛4,4ππM 的极坐标满足方程θρ=.二、参数方程 1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标()y x ,都是某个变数t 的函数()()⎩⎨⎧==t g y t f x ①,并且对于t 的每一个允许值,由方程组①所确定的点()y x M ,都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数()y x ,的变数t 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数()y x ,中的一个与参数t 的关系,例如()t f x =,把它代入普通方程,求出另一个变数与参数的关系()t g y =,那么()()⎩⎨⎧==t g y t f x 就是曲线的参数方程,在参数方程与普通方程的互化中,必须使()y x ,的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。
(word完整版)极坐标与参数方程知识点总结,推荐文档
第一部分:坐标系与参数方程【考纲知识梳理】1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换()()⎩⎨⎧>•='>•='0,0,:μμλλϕy y x x 的作用下,点()y x P ,对应到点()y x P '',,称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念(1)极坐标系如图(1)所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系. (2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对()θρ,叫做点M 的极坐标,记作M ()θρ,.一般地,不作特殊说明时,我们认为θρ,0≥可取任意实数.特别地,当点M 在极点时,它的极坐标为()()R ∈θθ,0。
和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定πθρ20,0<≤>,那么除极点外,平面内的点可用唯一的极坐标()θρ,表示;同时,极坐标()θρ,表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图(2)所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是()y x ,,极坐标是()()0,≥ρθρ,于点M直角坐标()y x ,极坐标()θρ,互化公式⎩⎨⎧==θρθρsin cos y x ()0tan 222≠=+=x xyy x θρ 在一般情况下,由θ确定角时,可根据点M 所在的象限最小正角. 曲线图形极坐标方程圆心在极点,半径为r 的圆()πθρ20<≤=r圆心为()0,r ,半径为r 的圆⎪⎭⎫ ⎝⎛<≤-=222πθπρr圆心为⎪⎭⎫⎝⎛2,πr ,半径为r 的圆()πθθρ<≤=0sin 2r过极点,倾斜角为α的直线(1)()()R R ∈+=∈=ραπθραθ或(2) ()()00≥+=≥=ραπθραθ或过点()0,a ,与极轴垂直的直线⎪⎭⎫ ⎝⎛<<-=22cos πθπθρa过点⎪⎭⎫⎝⎛2,πa ,与极轴平行的直线()πθθρ<<=0sin a注:由于平面上点的极坐标的表示形式不唯一,即()()()()θπρθπρθπρθρ+--+-+,,,,2,,,都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程θρ=点⎪⎭⎫⎝⎛4,4ππM 可以表示为⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+45,424,424,4ππππππππM M M 或或等多种形式,其中,只有⎪⎭⎫⎝⎛4,4ππM 的极坐标满足方程θρ=.二、参数方程 1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标()y x ,都是某个变数t 的函数()()⎩⎨⎧==t g y t f x ①,并且对于t 的每一个允许值,由方程组①所确定的点()y x M ,都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数()y x ,的变数t 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数()y x ,中的一个与参数t 的关系,例如()t f x =,把它代入普通方程,求出另一个变数与参数的关系()t g y =,那么()()⎩⎨⎧==t g y t f x 就是曲线的参数方程,在参数方程与普通方程的互化中,必须使()y x ,的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。
(完整版)极坐标与参数方程知识点总结大全
极坐标与参数方程一、参数方程1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 ⎩⎨⎧==)()(t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上(即曲线上的点在方程上,方程的解都在曲线上),那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.练习1.若直线的参数方程为,则直线的斜率为( )12()23x tt y t=+⎧⎨=-⎩为参数A .B .C .D .2323-3232-2.下列在曲线上的点是( )sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数A .B .C .D .1(,231(,)42-3.将参数方程化为普通方程为( )222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数A .B .C .D .2y x =-2y x =+2(23)y x x =-≤≤2(01)y x y =+≤≤注:普通方程化为参数方程,参数方程的形式不一定唯一(由上面练习(1、3可知))。
应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。
3.圆的参数方程如图所示,设圆的半径为,点从初始位置出发,按逆时针方向在圆上作匀速圆周运动,设,则。
这就是圆心在原点,半径为的圆的参数方程,其中的几何意义是转过的角度(称为旋转角)。
圆心为,半径为的圆的普通方程是,它的参数方程为:。
4.椭圆的参数方程以坐标原点为中心,焦点在轴上的椭圆的标准方程为其参数方程为,其中参数称为离心角;焦点在轴上的椭圆的标准方程是其参数方程为其中参数仍为离心角,通常规定参数的范围为∈[0,2)。
极坐标与参数方程知识点总结(最新整理)
第一部分:坐标系与参数方程【考纲知识梳理】1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换的作用下,点对应到点()()⎩⎨⎧>∙='>∙='0,0,:μμλλϕy y x x ()y x P ,,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.()y x P '',ϕ2.极坐标系的概念(1)极坐标系如图(1)所示,在平面内取一个定点,叫做极点,自极点引一条射线,叫做极轴;再选定一个长度单位,一O O Ox 个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为;以极轴为始边,射线为终ρOx OM 边的角叫做点M 的极角,记为.有序数对叫做点M 的极坐标,记作M .一般地,不作特xOM ∠θ()θρ,()θρ,殊说明时,我们认为可取任意实数.特别地,当点M 在极点时,它的极坐标为。
和直角坐θρ,0≥()()R ∈θθ,0标不同,平面内一个点的极坐标有无数种表示.如果规定,那么除极点外,平面内的点可用πθρ20,0<≤>唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的.()θρ,()θρ,3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图(2)所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是,极坐标是,于()y x ,()()0,≥ρθρ是极坐标与直角坐标的互化公式如表:点M直角坐标()y x ,极坐标()θρ,互化公式⎩⎨⎧==θρθρsin cos y x ()0tan 222≠=+=x xyy x θρ在一般情况下,由确定角时,可根据点M 所在的象限最小正角.θtan 4.常见曲线的极坐标方程曲线图形极坐标方程圆心在极点,半径为的圆r ()πθρ20<≤=r 圆心为,半径为的圆()0,r r ⎪⎭⎫ ⎝⎛<≤-=222πθπρr 圆心为,半径为的圆⎪⎭⎫⎝⎛2,πr r ()πθθρ<≤=0sin 2r 过极点,倾斜角为的直线α(1)()()R R ∈+=∈=ραπθραθ或(2)()()00≥+=≥=ραπθραθ或过点,与极轴垂直的直线()0,a ⎪⎭⎫ ⎝⎛<<-=22cos πθπθρa 过点,与极轴平行的直⎪⎭⎫⎝⎛2,πa 线()πθθρ<<=0sin a 注:由于平面上点的极坐标的表示形式不唯一,即都表示同一()()()()θπρθπρθπρθρ+--+-+,,,,2,,,点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程点可以表示为θρ=⎪⎭⎫⎝⎛4,4ππM 等多种形式,其中,只有的极坐标满足方程⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+45,424,424,4ππππππππM M M 或或⎪⎭⎫⎝⎛4,4ππM .θρ=二、参数方程1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数①,并且对()y x ,t ()()⎩⎨⎧==t g y t f x于的每一个允许值,由方程组①所确定的点都在这条曲线上,那么方程①就叫做这条曲线的参数方t ()y x M ,程,联系变数的变数叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫()y x ,t 做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数中的一个与参数的关系,例如,把它代入普通方程,求出另一个变数与参数()y x ,t ()t f x =的关系,那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使的取()t g y =()()⎩⎨⎧==t g y t f x ()y x ,值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。
(完整版)极坐标与参数方程知识点、题型总结(最新整理)
(完整版)极坐标与参数⽅程知识点、题型总结(最新整理)极坐标与参数⽅程知识点、题型总结⼀、伸缩变换:点是平⾯直⾓坐标系中的任意⼀点,在变换),(y x P 的作⽤下,点对应到点,称伸缩变换>?='>?=').0(,y y 0),(x,x :µµλλ?),(y x P ),(y x P '''⼀、1、极坐标定义:M 是平⾯上⼀点,表⽰OM 的长度,是,则有序实数实ρθMOx ∠数对,叫极径,叫极⾓;⼀般地,,。
,点P 的直⾓坐标、(,)ρθρθ[0,2)θπ∈0ρ≥极坐标分别为(x ,y )和(ρ,θ)2、直⾓坐标极坐标 2、极坐标直⾓坐标?cos sin x y ρθρθ=??=??222tan (0)x y y x xρθ?=+??=≠?3、求直线和圆的极坐标⽅程:⽅法⼀、先求出直⾓坐标⽅程,再把它化为极坐标⽅程⽅法⼆、(1)若直线过点M(ρ0,θ0),且极轴到此直线的⾓为α,则它的⽅程为:ρsin(θ-α)=ρ0sin(θ0-α)(2)若圆⼼为M (ρ0,θ0),半径为r 的圆⽅程为ρ2-2ρ0ρcos(θ-θ0)+ρ02-r 2=0⼆、参数⽅程:(⼀).参数⽅程的概念:在平⾯直⾓坐标系中,如果曲线上任意⼀点的坐标都是某个变数的函数并且对于的每⼀个允许值,由这个⽅程所确y x ,t ?==),(),(t g y t f x t 定的点都在这条曲线上,那么这个⽅程就叫做这条曲线的参数⽅程,联系变数),(y x M 的变数叫做参变数,简称参数。
相对于参数⽅程⽽⾔,直接给出点的坐标间关系的y x ,t ⽅程叫做普通⽅程。
(⼆).常见曲线的参数⽅程如下:直线的标准参数⽅程1、过定点(x 0,y 0),倾⾓为α的直线:(t 为参数)ααsin cos 00t y y t x x +=+=(1)其中参数t 的⼏何意义:点P (x 0,y 0),点M 对应的参数为t ,则PM =|t|(2)直线上对应的参数是。
(完整word版)参数方程和极坐标方程知识点归纳
专题九:坐标系与参数方程1、平面直角坐标系中的伸缩变换设点 P( x, y) 是平面直角坐标系中的随意一点,在变换:x x, ( 0),yy, (的作用0).下,点 P(x, y) 对应到点 P ( x , y ) ,称 为平面直角坐标系中的 坐标伸缩变换 ,简称 伸缩变换 。
2、极坐标系的观点在平面内取一个定点 O ,叫做 极点 ;自极点 O 引一条射线 Ox 叫做极轴 ;再选定一个长 度单位、 一个角度单位 ( 往常取弧度 ) 及其正方向 ( 往常取逆时针方向) ,这样就成立了一个 极坐标系 。
M ( , )Ox图 1点 M 的极坐标: 设 M 是平面内一点, 极点 O 与点 M 的距离 | OM | 叫做点 M 的极径 , 记为;以极轴 Ox 为始边,射线OM 为终边的 xOM 叫做点 M 的极角 ,记为数对 ( , ) 叫做 点 M 的极坐标 ,记为 M ( , ) .。
有序注: 极坐标 ( , ) 与 ( ,2k )(kZ) 表示同一个点。
极点O 的坐标为 (0, )(R ).若0 , 则0 , 规定点 (, ) 与点 ( , ) 对于极点对称,即(, ) 与( ,) 表示同一点。
假如规定0,02,那么除极点外, 平面内的点可用独一的极坐标(, )表示(即一一对应的关系);同时,极坐标( , ) 表示的点也是独一确立的。
极坐标与直角坐标都是一对有序实数确立平面上一个点,在极坐标系下,一对有序实数 、 对应唯一点 P (, ) ,但平面内任一个点 P 的极坐标不唯一.一个点能够有无数个坐标,这些坐标又有规律可循的, P ( , ) (极点除外)的所有坐标为 (, + 2k ) 或(, + ( 2k 1) ), ( kZ) .极点的极径为 0,而极角随意取.若对、 的取值范围加以限制. 则除极点外, 平面上点的极坐标就唯一了, 如限制 >0,0≤ < 2 或<0,< ≤ 等.极坐标与直角坐标的不一样是,直角坐标系中, 点与坐标是一一对应的, 而极坐标系中,点与坐标是一多对应的.即一个点的极坐标是不唯一的. 3、极坐标与直角坐标的互化设 M 是平面内随意一点,它的直角坐标是 ( x, y) ,极坐标是 ( ,) ,从图中能够得出:xcos ,y sinyy( x2x 2 y 2 , tan0).xN xMyx cosO Hx 2 y 22ysintany(x 0)x4、简单曲线的极坐标方程⑴圆的极坐标方程①以极点为圆心, a 为半径的圆的极坐标方程是 a ;(如图1)②以 (a,0) (a 0) 为圆心, a 为半径的圆的极坐标方程是2acos;(如图2)③以 (a, ) ( a0) 为圆心, a 为半径的圆的2极坐标方程是2asin;(如图4)⑵直线的极坐标方程①过极点的直线的极坐标方程是(0) 和(0) .(如图 1)②过点 A(a,0)(a0) ,且垂直于极轴的直线 l 的极坐标方程是cos a .化为直角坐标方程为x a .(如图2)③过点A(a, ) 且平行于极轴的直线l 的2极坐标方程是sin a .化为直角坐标方程为 y a .(如图4)5、柱坐标系与球坐标系MaO x图1aMaOx图42asinM(,)O x图1MaO图4asinMMa O xO a x图3图22acos2 a cosO x MMa( a , )aO x图5图62asin2a cos()MMOaa O图2图3a acos cosM(,)ON (a, )a aM O p图5a图6sin acos()x cos⑴柱坐标:空间点P 的直角坐标(x, y, z)与柱坐标( , , z)的变换关系为:y sin.z z⑵球坐标系x 2 y 2 z 2 r 2空间点 P 直角坐标 (x, y, z) 与球坐标 (r , ,) 的变换关系:x r sin cos .y r sin sinz r cos6、参数方程的观点在平面直角坐标系中,假如曲线上随意一点的坐标x, y 都是某个变数 t 的函数x f (t),而且对于 t 的每一个同意值,由这个方程所确立的点M (x, y) 都在这条曲线上,y g(t),那么这个方程就叫做这条曲线的 参数方程 ,联系变数 x, y 的变数 t 叫做 参变数 ,简称 参数 。
极坐标与参数方程知识点总结
第一部分:坐标系与参数方程【考纲知识梳理】1平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换® :严"一・x,(匸〉0 )的作用下,点p(x, y)对应到点y=U・y,(A;>0) 'Px,y■,称「为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. M於①]2•极坐标系的概念(1)极坐标系如图(1)所示,在平面内取一个定点0 ,叫做极点,自极点0引一条射线Ox,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系•注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可•但极坐标系和平面直角坐标系都是平面坐标系•(2)极坐标设M是平面内一点,极点0与点M的距离|0M|叫做点M的极径,记为;以极轴0灿始边,射线0M为终边的角• x0M叫做点M的极角,记为—有序数对几二叫做点M的极坐标记作M匸门•一般地,不作特殊说明时,我们认为「_ 0门可取任意实数•特别地,当点M在极点时,它的极坐标为0,匚< 三R 。
和直角坐标不同,平面内一个点的极坐标有无数种表示•如果规定T -0,0"::^ ::: 2-,那么除极点外,平面内的点可用唯一的极坐标几二表示;同时,极坐标订二表示的点也是唯一确定的3•极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图(2)所示:(2)互化公式:设M是坐标平面内任意一点,它的直角坐标是x, y,极坐标是:::0,于是极坐标与直角坐标的互化公式如表:点M 直角坐标(X, y )极坐标(巴日)互化公式P cos日= Psi n 日P2 =x2+ y2 tan® - y(x 式0 )x在一般情况下,由tan二确定角时,可根据点M所在的象限最小正角4•常见曲线的极坐标方程注:由于平面上点的极坐标的表示形式不唯一 ,即 几二,匚2二• v , -几二• v , -匚-二• v 都表示同一点的坐标,这与点的直角坐标的唯一性明显不同•所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可•例如对于极坐标方程P = ^点M — A [可以表示为 <4 4;p = e . 二、参数方程i •参数方程的概念「X = f (t )一般地,在平面直角坐标系中,如果曲线上任意一点的坐标 (x, y )都是某个变数t 的函数」 ①,并且对』= g (t )于t 的每一个允许值,由方程组①所确定的点M x, y 都在这条曲线上,那么方程①就叫做这条曲线的参数5 兀 〕 fn n 、 「 兀5兀、 M —,一+2兀 或M —-2兀 或M.——,——[等多种形式 14 4 「 i4 4 丿 (4 4 丿 ,其中,只有M 匕,丁的极坐标满足方程方程,联系变数x,y的变数t叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程•2•参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数x,y中的一个与参数t的关系,例如x = f t,把它代入普通方程,求出另一个变数与参数的关系y = g(t ),那么丿' '就是曲线的参数方程,在参数方程与普通方程的互化中,必须使(x,y)的取y = g(t)值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。
极坐标及参数方程知识点及高考题汇编DOC.doc
极坐标及参数方程知识点及例题一、极坐标知识点1.极坐标系的概念:在平面内取一个定点 O,从 O 引一条射线 Ox,选定一个单位长度以及计算角度的正方向 (通常取逆时针方向为正方向 ),这样就建立了一个极坐标系, O 点叫做极点,射线 Ox 叫做极轴①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可 .2.点 M 的极坐标:设 M 是平面内一点,极点 O 与点 M 的距离| OM |叫做点 M 的极径,记为;以极轴Ox 为始边,射线OM 为终边的xOM 叫做点M 的极角,记为。
有序数对(,) 叫做点M 的极坐标,记为M ( ,) .极坐标( , )与( , 2k )(k Z) 表示同一个点。
极点O 的坐标为(0, )( R ) .3.极坐标与直角坐标的互化:(1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合;②极轴与 x 轴的正半轴重合③两种坐标系中取相同的长度单位.(2)互化公式2 x2 y 2 , x cos ,y sin , tan y( x 0) x4.曲线的极坐标方程:1.直线的极坐标方程:若直线过点M ( 0 , 0 ) ,且极轴到此直线的角为,则它的方程为:sin()0 sin(0)几个特殊位置的直线的极坐标方程( 1)直线过极点(2)直线过点M(a,0)且垂直于极轴(3)直线过M (b,) 且平2 行于极轴方程:( 1)(R )或写成及(2)cos a(3)ρsinθ=b2.圆的极坐标方程: 若圆心为 M ( 0 , 0 ) ,半径为 r 的圆方程为:22 0 cos()2 r 2几个特殊位置的圆的极坐标方程( 1)当圆心位于极点, r 为半径 (2)当圆心位于 C (a,0) (a>0),a 为半径 ( 3) 当圆心位于 C(a,) (a 0) , a 为半径2 方程: (1) r (2)2acos (3)2asin5.在极坐标系中, (0) 表示以极点为起点的一条射线;(R)表示过极点的一条直线 .极坐标方程典型例题考点一 极坐标与直角坐标的互化1.点 M 的直角坐标是 ( 1, 3) ,则点 M 的极坐标为( )A . (2,)B . (2,)C .(2,2)D . (2, 2k),( k Z) 33332.点 2, 2 的极坐标为。
(完整版)极坐标与参数方程知识点、题型总结
极坐标与参数方程知识点、题型总结一、伸缩变换:点是平面直角坐标系中的任意一点,在变换),(y x P 的作用下,点对应到点,称伸缩变换⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ),(y x P ),(y x P '''一、1、极坐标定义:M 是平面上一点,表示OM 的长度,是,则有序实数实ρθMOx ∠数对,叫极径,叫极角;一般地,,。
,点P 的直角坐标、(,)ρθρθ[0,2)θπ∈0ρ≥极坐标分别为(x ,y )和(ρ,θ)2、直角坐标极坐标 2、极坐标直角坐标⇒cos sin x y ρθρθ=⎧⎨=⎩⇒222tan (0)x y yx xρθ⎧=+⎪⎨=≠⎪⎩3、求直线和圆的极坐标方程:方法一、先求出直角坐标方程,再把它化为极坐标方程方法二、(1)若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α)(2)若圆心为M (ρ0,θ0),半径为r 的圆方程为ρ2-2ρ0ρcos(θ-θ0)+ρ02-r 2=0二、参数方程:(一).参数方程的概念:在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数 并且对于的每一个允许值,由这个方程所确y x ,t ⎩⎨⎧==),(),(t g y t f x t 定的点都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数),(y x M 的变数叫做参变数,简称参数。
相对于参数方程而言,直接给出点的坐标间关系的y x ,t 方程叫做普通方程。
(二).常见曲线的参数方程如下:直线的标准参数方程1、过定点(x 0,y 0),倾角为α的直线:(t 为参数)ααsin cos 00t y y t x x +=+=(1)其中参数t 的几何意义:点P (x 0,y 0),点M 对应的参数为t ,则PM =|t| (2)直线上对应的参数是。
极坐标与参数方程知识点+典型例题与详解(可编辑修改word版)
⎩ ⎩ 极坐标和参数方程知识点+典型例题及其详解知识点回顾(一)曲线的参数方程的定义:在取定的坐标系中,如果曲线上任意一点的坐标 x 、y 都是某个变数 t 的函数,即⎧x = ⎨y = f (t ) f (t )并且对于 t 每一个允许值,由方程组所确定的点 M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系 x 、y 之间关系的变数叫做参变数,简称参数. (二)常见曲线的参数方程如下:1. 过定点(x 0,y 0),倾角为α的直线:x = x 0 + t cos y = y 0 + t sin(t 为参数)其中参数 t 是以定点 P (x 0,y 0)为起点,对应于 t 点 M (x ,y )为终点的有向线段 PM 的数量,又称为点 P 与点 M 间的有向距离. 根据 t 的几何意义,有以下结论.○1 .设 A 、B 是直线上任意两点,它们对应的参数分别为 t A 和 t B ,则 AB = t B -t A =.t A + t B.线段 AB 的中点所对应的参数值等于 .22. 中心在(x 0,y 0),半径等于 r 的圆:x = x 0 + r cosy = y 0 + r s in(为参数)3. 中心在原点,焦点在 x 轴(或 y 轴)上的椭圆:x = a c os y = b s in(为参数) (或x = b c os )y = a s in中 心 在 点 ( x0,y0) 焦 点 在 平 行 于 x 轴 的 直 线 上 的 椭 圆 的 参 数 方 程⎧x = x 0 + a cos ,⎨y = y + b sin (为参数) .4. 中心在原点,焦点在 x 轴(或 y 轴)上的双曲线:(t B - t A ) - 4t ⋅ t2A B○2 0x = a s ec (为参数) (或x = b tg)y = b tgy = a s ec5. 顶点在原点,焦点在 x 轴正半轴上的抛物线:x = 2 pt 2 y = 2 pt(t 为参数,p >0)直线的参数方程和参数的几何意义过定点P (x ,y ),倾斜角为的直线的参数方程是⎧x = x 0 + t cos(t 为参数).⎨⎩ y = y 0+ t sin(三)极坐标系1、定义:在平面内取一个定点 O ,叫做极点,引一条射线 Ox ,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向)。
极坐标与参数方程知识点、题型总结
极坐标与参数方程知识点、题型总结知识点和题型总结:一、伸缩变换伸缩变换是指点P(x,y)在变换作用下对应到点P'(x',y'),其中x' = λx (λ。
0),y' = μy (μ。
0)。
这个变换称为伸缩变换。
二、极坐标和直角坐标的转换1、极坐标定义在平面上,点M的极坐标表示为(ρ,θ),其中ρ表示OM 的长度,θ表示∠MOx的角度,且θ∈[0,2π),ρ≥0.点P的直角坐标为(x,y),极坐标为(ρ,θ)。
2、直角坐标转换为极坐标x = ρcosθ,y = ρsinθ。
3、极坐标转换为直角坐标ρ = √(x²+y²),tanθ = y/x (x≠0),x = ρcosθ,y = ρsinθ。
4、直线和圆的极坐标方程方法一:先求出直角坐标方程,再把它化为极坐标方程。
方法二:1)若直线过点M(ρ,θ),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α) = ρsin(θ-α)。
2)若圆心为M(ρ,θ),半径为r的圆方程为ρ²-2ρrcos(θ-θ)+ρ²-r² = 0.三、参数方程1、参数方程的概念在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数,且对于t的每一个允许值,由这个方程所确定的点M(x,y)都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数x,y的变数t叫做参变数,简称参数。
相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。
2、常见曲线的参数方程1)直线的标准参数方程过定点(x,y),倾角为α的直线:x = x+tcosα,y = y+tsinα (t为参数)。
其中参数t的几何意义是点P(x,y),点M对应的参数为t,则PM = |t|。
直线上P1,P2对应的参数是t1,t2.|P1P2| = |t1-t2| = √((x1-x2)²+(y1-y2)²)。
(word完整版)高中数学极坐标与参数方程知识汇编及高考题型汇总,文档
高中数学极坐标与参数方程知识点汇编及题型汇总编者:邬小军【知识汇编】参数方程: 直线参数方程:x x 0 t cos (t 为参数 ) ( x 0, y 0 )为直线上的定点,t 为直线上任一点yy 0 t sin(x, y) 到定点 (x 0 , y 0 ) 的数量;圆锥曲线参数方程:圆的参数方程:x a r cos为参数 ) (a,b) 为圆心, r 为半径;y b(r sin椭圆 x 2y 2 1的参数方程是x a cos (为参数 ) ;a 2b 2y b sin双曲线 x 2 y 21的参数方程是 x a sec为参数 );a 2 -b 2 y b tan ( 抛物线 y 22 px 的参数方程是x 2 pt 2y 2 pt (t 为参数 )极坐标与直角坐标互化公式:假设以直角坐标系的原点为极点, x 轴正半轴为极轴建立坐标系,点P 的极坐标为 ( , ) ,直角坐标为 (x, y) ,那么xcos, ysin ,2x 2 y 2 , tanx y。
【题型 1】参数方程和极坐标根本看法1.点 M 的直角坐标是 ( 1, 3) ,那么点 M 的极坐标为〔 C〕A . (2,) B .(2,)2D . (2,2 k ),( k Z)C .(2, )33332.圆5cos5 3 sin 的圆心坐标是〔 A 〕A .( 5,4) B . ( 5, ) C .(5, 3 ) D .( 5,5)3 333. P 为半圆 C : 〔为参数,〕上的点,点 A 的坐标为〔 1,0 〕,O 为坐标原点,点 M 在射线 OP 上,线段 OM 与 C 的弧 的长度均为 3。
1〕以 O 为极点, x轴的正半轴为极轴建立极坐标系,求点 M 的极坐标;2〕求直线 AM 的参数方程。
解: 1〕由, M 点的极角为3,且 M 点的极径等于 3 ,故点 M 的极坐标为〔 3 , 3 〕.2〕M 点的直角坐标为〔 , 3 〕,A 〔0,1 〕,故直线 AM 的参数方程为6 61x 1 (1)t6y3t6〔 t 为参数〕x2 5 cos4.曲线 C的参数方程为y1 5 sin(为参数),以直角坐标系原点为极点,Ox轴正半轴为极轴建立极坐标系。
极坐标与参数方程知识点总结
第一部分:坐标系与参数方程【考纲知识梳理】1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换()()⎩⎨⎧>∙='>∙='0,0,:μμλλϕy y x x 的作用下,点()y x P ,对应到点()y x P '',,称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念(1)极坐标系如图(1)所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系. (2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对()θρ,叫做点M 的极坐标,记作M ()θρ,.一般地,不作特殊说明时,我们认为θρ,0≥可取任意实数.特别地,当点M 在极点时,它的极坐标为()()R ∈θθ,0。
和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定πθρ20,0<≤>,那么除极点外,平面内的点可用唯一的极坐标()θρ,表示;同时,极坐标()θρ,表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图(2)所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是()y x ,,极坐标是()()0,≥ρθρ,在一般情况下,由确定角时,可根据点M 所在的象限最小正角.注:由于平面上点的极坐标的表示形式不唯一,即()()()()θπρθπρθπρθρ+--+-+,,,,2,,,都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程θρ=点⎪⎭⎫⎝⎛4,4ππM 可以表示为⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+45,424,424,4ππππππππM M M 或或等多种形式,其中,只有⎪⎭⎫⎝⎛4,4ππM 的极坐标满足方程θρ=.二、参数方程1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标()y x ,都是某个变数t 的函数()()⎩⎨⎧==t g y t f x ①,并且对于t 的每一个允许值,由方程组①所确定的点()y x M ,都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数()y x ,的变数t 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数()y x ,中的一个与参数t 的关系,例如()t f x =,把它代入普通方程,求出另一个变数与参数的关系()t g y =,那么()()⎩⎨⎧==t g y t f x 就是曲线的参数方程,在参数方程与普通方程的互化中,必须使()y x ,的取值范围保持一致.注:普通方程化为参数方程.参数方程的形式不一定唯一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⎨y ' = ⋅ y,(> 0). 0
⎩ 极坐标与参数方程知识点、题型总结
一、伸缩变换:点 P (x , y ) 是平面直角坐标系中的任意一点,在变换
: ⎧x ' = ⋅ x,(> 0), 的作用下,点 P (x , y ) 对应到点 P '(x ', y ') ,称伸缩变换 ⎩
一、
1、极坐标定义:M 是平面上一点, 表示 OM 的长度,是∠MOx ,则有序实数实 数对(,) , 叫极径,叫极角;一般地,∈[0, 2) , ≥ 0 。
,点 P 的直角坐标、 极坐标分别为(x ,y )和(ρ,θ)
⎧x = cos ⎨ ⎧2 = x 2
+ y 2
⎪ 2、直角坐标⇒ 极坐标
y = sin 2、极坐标⇒ 直角坐标⎨tan = y
(x ≠ 0)
⎩ ⎪⎩ x
3、求直线和圆的极坐标方程:方法一、先求出直角坐标方程,再把它化为极坐标方程方法二、(1)若直线过点 M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:
ρsin(θ-α)=ρ0sin(θ0-α)(2)若圆心为 M (ρ0,θ0),半径为 r 的圆方
程为ρ2-2ρ0ρcos(θ-θ0)+ρ 2-r 2=0 二、参数方程:(一).参数方程的概念:在平面直角坐标系中,如果曲线上任意一点的
⎧x = f (t ),
坐标 x , y 都是某个变数t 的函数⎨ y = g (t ),
并且对于t 的每一个允许值,由这个方程所确
定的点 M (x , y ) 都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数x , y 的变数t 叫做参变数,简称参数。
相对于参数方程而言,直接给出点的坐标间关系的方
程叫做普通方程。
(二).常见曲线的参数方程如下:直线的标准参数方程
x = x 0 + t cos
1、过定点(x 0,y 0),倾角为α的直线:
(t 为参数)
y = y 0 + t sin
(1) 其中参数 t 的几何意义:点 P (x 0,y 0),点 M 对应的参数为t ,则 PM =|t|
(2)直线上 P 1 , P 2 对应的参数是t 1, t 2 。
|P 1P 2|=|t 1-t 2|=
t 1+t 2 2-4t 1t 2.
+ = + = {
) 4 x = x 0 + at 直线的一般参数方程:
(t 为参数)若 a y = y 0 + bt
的几何意义成立,否则,不成立。
(2)
圆心在(x 0,y 0),半径等于 r 的圆:
2
+ b 2
= 1 ,则上面(1)、(2)中
x = x 0 + r cos
y = y 0 + r s in
(为参数)
x 2 (3) 椭圆 a 2 y 2 y 2 b 2 1(或 a 2 x 2
b 2 1):
x = a cos x = b cos
y = b s in
( 为参数) (或
)
y = a sin
x = 2 pt 2
(4) 抛物线 y 2 = 2 px
:
(t 为参数,p >0)
y = 2 pt
题型归类:(1) 极坐标与直角坐标的互相转化
(2) 参数方程与普通方程互化 (3)
利用参数方程求值域
参数的几何意义
一、极坐标方程与直角方程的互化,求极坐标方程:方法:代公式 1.已知某圆的极坐标方程为
2
- 4 2cos(
-
+ 6 = 0 4
(I )将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程;
(II )
若点 P (x , y ) 在该圆上,求 x + y 的最大值和最小值.6,2
2 极坐标方程4⋅sin 2 = 5 表示的曲线是(
) 抛物线
2
⎛
⎫
2 3、直线的极坐标方程为
sin + ⎪ =
⎝ ⎭ ,则极点到该直线的距离是
2
4、极坐标方程
2
cos - = 0 转化成直角坐标方程为 x 2 + y 2 = 0或x = 1
二、参数方程与普通方程的互化
1、参数方程⇒ 普通方程:方法;消参, 普通方程⇒ 参数方程:代公式
⎧⎪x = 2t - 2-t
5、方程⎨ ⎪⎩ y = 2t
(t 为参数)表示的曲线是(
)
+ 2-t
2
2
3 2 ⎨ y = sin , ⎪ ⎩
⎩ ⎪ A. 双 曲线 B.双曲线的上支 C.双曲线的下支 D.圆
⎧
x = 1 + 1 t ,
6. 已知直线 : ⎨ 2
⎪ y = t .
⎩ 2
(t 为参数), 曲线C 1 : ⎧x = cos , ⎩ (为参数).
(Ⅰ)设 与C 1 相交于 A , B 两点,求| AB | ;1
(Ⅱ)若把曲线C 上各点的横坐标压缩为原来的 1 倍,纵坐标压缩为原来的
3
倍,得
1
2
2 6 (
- 1) 到曲线C 2 ,设点 P 是曲线C 2 上的一个动点,求它到直线 的距离的最小值. 4
7. 曲线 C : ⎧x = c os
⎧ x =
曲线 D : 2
t - 2 (t 。
⎨ y = sin ( 为参数) ⎨ ⎪ y = 2 t ⎩ 2
为参数)
(1) 指出曲线 C 、D 分别是什么曲线?并说明曲线 C 与 D 公共点人的个数。
(2) 若把曲线 C 、D 上各点的纵坐标压缩为原来的 1
倍,分别得到曲线 C1、D1,请
2
写出曲线 C1、D1 的参数方程,说明其公共点的个数和曲线 C 、D 公共点是否相同? 2、普通方程化为参数方程
8. 直线l 过点 P (1,1) ,倾斜角
= ,(1)写出l 的参数方程;
6
(2)直线l 与圆
⎧x = 2 cos 为参数)相交于 A 、B 两点,求| PA | | PB | 。
⎨
y = 2 s in ( x 2 2
9. 点P(x,y) 为椭圆
+ y 3
= 1上一点,求(1) S = x + y 的范围;
(2)若 x + y + a ≥ 0 垣成立,求 a 的范围。
2
⎪
2 3 ⎨ ⎨ y = 2 + t ⎩
题型三、利用参数方程求值域 10、在曲线C :
⎧x = 1 + cos 为参数)上求一点,使它到直线C :
⎧x = -2 1
⎨
⎩ + 1 t y = sin
( 2
⎪ 2 (t 为参数)距离最小,并求出该点坐标和最小距离。
1 P (1- 2 ,- 2 )
⎨
⎪ y = 1- 1 t
⎩ 2
2 2
x 3 t 2
11、曲线 C 的极坐标方程是
2 s in
,设直线 L 的参数方程是 5 y 4 t 5
, ( t 为 参数).(Ⅰ)将曲线 C 的极坐标方程转化为直角坐标方程;
x 2 y 2 2 y 0
(Ⅱ)设直线 L 与 x 轴的交点是 M , N 曲线 C 上一动点,求 MN 题型四:直线参数方程中的参数的几何意义
的最大值
+1
12、已知直线 l 经过点 P (1,1) ,倾斜角
= ,①写出直线 l 的参数方程;
6
②设 l 与圆 x 2 + y 2 = 4 相交与两点 A , B ,求点 P 到 A , B 两点的距离之积. 2
⎧
x = 1+ 4 t 13、求直线⎪ 5
(
t 为参数)被曲线= 3 2 cos(+ 4 所截的弦长. 7 5
⎪ y = -1- t ⎩ 5
14 直线⎧x = 1+ 2t
(t 为参数) 被圆 x 2 + y 2 = 9 截得的弦长为
⎩
15 曲线C 的参数方程为
⎧x = cos
C 上所有点的横坐标伸长为
1
⎨
y = sin ( 为参数),将曲线
1 原来的
2 倍,纵坐标伸长为原来的 倍,得到曲线C 2 .以平面直角坐标系 xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线
l : (cos - 2 sin ) = 6 .(1)求曲线C 2 和直线l 的普通方程;(2) P 为曲线C 2 上任
意一点,求点 P 到直线l 的距离的最值.
5 ) ⎪。