二次根式单元检测试卷

合集下载

二次根式单元测试附答案

二次根式单元测试附答案

二次根式单元测试一、填空题(3×10=30)1.数5的平方根是 ,算术平方根是 ;2的平方根是 ,a 2的算数平方根是 ;3.若二次根式有意义,则的取值范围是___________.4.已知,则.5.比较大小:. 6.在实数范围内因式分解:. 7.若,则__________.8.=成立的条件是 ;9.a = ,的值为 ;10.在一个半径为2m 的圆形纸片上截出一个面积最大的正方形,则这个正方形的边长是 .二.选择题(3×8=24)11. )A .0B .2CD .不存在4.若x<0,则xx x 2-的结果是( ) A .0 B .—2 C .0或—2 D .25.下列二次根式中属于最简二次根式的是( )A .14B .48C .b a D .44+a6. 已知y =2xy 的值为( )A .15-B .15C .152- D . 152 7.化简6151+的结果为( ) A .3011 B .33030 C .30330 D .1130 8.小明的作业本上有以下四题:①24416a a =; ②a a a 25105=⨯; ③a aa a a =∙=112;④a a a =-23。

做错的题是( )A .①B .②C .③D .④9.若最简二次根式a a 241-+与的被开方数相同,则a 的值为( )A .43-=a B .34=a C .a=1 D .a= —1 10. 计算221-631+8的结果是( ) A .32-23 B .5-2C .5-3D .22 三.解答题(共66分)19.(16分)计算:(1)21437⎪⎪⎭⎫ ⎝⎛- (2) )459(43332-⨯(3)2484554+-+(4)2332326--20.(5分)化简求值:2a (a+b )-(a+b )2,其中ab;21.(24分)化最简二次根式:(1(2(3 (4(5)-(622.(10分)计算:(1)(2)222)(2-23.(61x x =-24.(5分)若8a ,小数部分是b ,求2ab -b 2的值.25.(5分)在矩形ABCD 中,,,AB a BC b M ==是BC 的中点,DE AM ⊥,垂足为E 。

《二次根式》单元测试题含答案

《二次根式》单元测试题含答案

《二次根式》单元测试题含答案work Information Technology Company.2020YEAR《二次根式》单元测试题(一)判断题:(每小题1分,共5分)1.ab 2)2(-=-2ab .…………………( )【提示】2)2(-=|-2|=2.【答案】×. 2.3-2的倒数是3+2.( )【提示】231-=4323-+=-(3+2).【答案】×.3.2)1(-x =2)1(-x .…( )【提示】2)1(-x =|x -1|,2)1(-x =x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×. 4.ab 、31b a 3、b a x 2-是同类二次根式.…( )【提示】31b a 3、bax 2-化成最简二次根式后再判断.【答案】√. 5.x 8,31,29x +都不是最简二次根式.( )29x +是最简二次根式.【答案】×.(二)填空题:(每小题2分,共20分) 6.当x __________时,式子31-x 有意义.【提示】x 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x ≠9. 7.化简-81527102÷31225a =_.【答案】-2a a .【点评】注意除法法则和积的算术平方根性质的运用.8.a -12-a 的有理化因式是____________.【提示】(a -12-a )(________)=a 2-22)1(-a .a +12-a .【答案】a +12-a .9.当1<x <4时,|x -4|+122+-x x =________________.【提示】x 2-2x +1=( )2,x -1.当1<x <4时,x -4,x -1是正数还是负数?x -4是负数,x -1是正数.【答案】3.10.方程2(x -1)=x +1的解是____________.【提示】把方程整理成ax =b 的形式后,a 、b 分别是多少?12-,12+.【答案】x =3+22.11.已知a 、b 、c 为正数,d 为负数,化简2222dc abd c ab +-=______.【提示】22d c =|cd |=-cd .【答案】ab +cd .【点评】∵ ab =2)(ab (ab >0),∴ ab -c 2d 2=(cd ab +)(cd ab -). 12.比较大小:-721_________-341.【提示】27=28,43=48.【答案】<.【点评】先比较28,48的大小,再比较281,481的大小,最后比较-281与-481的大小. 13.化简:(7-52)2000·(-7-52)2001=______________. 【提示】(-7-52)2001=(-7-52)2000·(_________)[-7-52.](7-52)·(-7-52)=?[1.]【答案】-7-52. 【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.【答案】40.【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________.【提示】∵ 3<11<4,∴ _______<8-11<__________.[4,5].由于8-11介于4与5之间,则其整数部分x =?小数部分y =?[x =4,y =4-11]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分)16.已知233x x +=-x 3+x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0【答案】D .【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义.17.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y 【提示】∵ x <y <0,∴ x -y <0,x +y <0. ∴222y xy x +-=2)(y x -=|x -y |=y -x .222y xy x ++=2)(y x +=|x +y |=-x -y .【答案】C .【点评】本题考查二次根式的性质2a =|a |. 18.若0<x <1,则4)1(2+-xx -4)1(2-+xx 等于………………………( )(A )x2 (B )-x2 (C )-2x (D )2x【提示】(x -x 1)2+4=(x +x 1)2,(x +x 1)2-4=(x -x1)2.又∵0<x <1,∴ x +x 1>0,x -x1<0.【答案】D .【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当0<x <1时,x -x1<0.19.化简aa 3-(a <0)得………………………………………………………………( )(A )a - (B )-a (C )-a - (D )a【提示】3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.【答案】C .20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --.【答案】C .【点评】本题考查逆向运用公式2)(a =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为a <0,b <0时,a 、b 都没有意义.(四)在实数范围内因式分解:(每小题3分,共6分)21.9x 2-5y 2;【提示】用平方差公式分解,并注意到5y 2=2)5(y .【答案】(3x +5y )(3x -5y ).22.4x 4-4x 2+1.【提示】先用完全平方公式,再用平方差公式分解.【答案】(2x +1)2(2x -1)2. (五)计算题:(每小题6分,共24分) 23.(235+-)(235--);【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(35-)2-2)2(=5-215+3-2=6-215. 24.1145--7114--732+;【提示】先分别分母有理化,再合并同类二次根式. 【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.25.(a 2m n -mab mn +m nn m )÷a 2b 2mn ; 【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式. 【解】原式=(a 2m n -mab mn +m nn m )·221b a nm=21bn m m n ⋅-mab 1n m mn ⋅+22b ma n n m n m ⋅ =21b-ab 1+221b a =2221b a ab a +-. 26.(a +ba abb +-)÷(b ab a ++a ab b --ab b a +)(a ≠b ).【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=ba abb ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=b a ba ++÷))((2222b a b a ab b a b ab b ab a a -++----=b a b a ++·)())((b a ab b a b a ab +-+-=-b a +. 【点评】本题如果先分母有理化,那么计算较烦琐.(六)求值:(每小题7分,共14分)27.已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值. 【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值. 【解】∵ x =2323-+=2)23(+=5+26, y =2323+-=2)23(-=5-26.∴ x +y =10,x -y =46,xy =52-(26)2=1.32234232yx y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652. 【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷. 28.当x =1-2时,求2222a x x a x x+-++222222a x x x a x x +-+-+221a x +的值.【提示】注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x 22a x +=22a x +(22a x +-x ),x 2-x 22a x +=-x (22a x +-x ). 【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+-=)()(22222222222222x a x a x x x a x x a x a x x x-++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++=x 1.当x =1-2时,原式=211-=-1-2.【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222a x x a x +--+-)11(22x x a x --++221a x +=x1.七、解答题:(每小题8分,共16分) 29.计算(25+1)(211++321++431++…+100991+).【提示】先将每个部分分母有理化后,再计算. 【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--)=(25+1)[(12-)+(23-)+(34-)+…+(99100-)]=(25+1)(1100-) =9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法. 30.若x ,y 为实数,且y =x 41-+14-x +21.求xy y x ++2-xyy x +-2的值. 【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x =41时,y =21.又∵xy y x ++2-xy y x +-2=2)(xy y x+-2)(xy y x -=|xy yx +|-|xyy x -|∵ x =41,y =21,∴y x <xy . ∴ 原式=x y y x +-y x x y +=2yx 当x =41,y =21时,原式=22141=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。

《二次根式》单元测试卷3套(含答案解析)

《二次根式》单元测试卷3套(含答案解析)
92
(2)(4 分) 5 6 3 5 6 3
22.(1)(6 分) x y y x x y (x≥0,y≥0);
(2)(6 分)(a-b) 1 b a a2 2ab b2 (b>a).
ba
23.(6 分)已知 a=
2
-1,求
2a a 1
1
a
a
a
的值.
24.(8 分)已知
A. 2 3 -1
B.1+ 3
C.2+ 3
D.2 3 -1
7.已知两条线段的长分别为 3 cm、 5 cm,那么能与它们组成直角三角形的第三条线段
的长是 ( )
A. 2 cm
B.2 2 cm
C. 2 cm 或 2 2 cm D. 15 cm
二、填空题(每题 3 分,共 21 分)
8.当 x 满足_______时, 2x 4 4 x 在实数范围内有意义.
3.计算 8 2 的结果是 ( )
A.6
B. 6
C.2
D. 2
4.下列四个数中,与 11 最接近的数是 ( )
A.2
B.3
C.4
5.若 a、b 为实数,且满足 a 2 b2 0 ,则 b-a 的值为
A.2
B.0
C.-2
D.5 ()
D.以上都不对
6.如图,数轴上 A、B 两点对应的实数分别是 1 和 3 ,若点 A 关于点 B 的对称点为点 C, 则点 C 所对应的实数为 ( )
1 x=
2
,求
1 x
1 x x2 2x 1
x 1 x 12 x 12
的值.
25.(8 分)已知实数 x,y,a 满足: x y 8 8 x y 3x y a x 2y a 3 ,

八年级下册数学二次根式单元试卷(含答案)

八年级下册数学二次根式单元试卷(含答案)

, x − 3 ≥ 0
{ 3−x ≥ 0
解得x=3,
将 代入 ,得 x=3
−−−−−
−−−−−
y = √x − 3 + √3 − x + 2
, y = 2 将x=3、y=2代入xy得 9,
所以xy=9.
13.使式子
−−−−− √m − 2
有意义的最小整数m是
.
【参考答案】
答案:2. 解:根据题意得,m-2≥0, 解得m≥2, 所以最小整数m是2.
−−−−−−−
−−−−−−−
已知 < < ,化简 14.
2x5
√(x

2
2)
+
√(x

2
5)
=
.
【参考答案】
答案:3.
−−−−−−−
−−−−−−−
解: , √(x − 2)2 + √(x − 5)2 = | x - 2 | + | x - 5 |
因为2<x<5,所以x-2>0,x-5<0,
所以|x-2|+|x-5|=x-2+5-x=3.
,宽为
2
−− √10
,则下列说法不正确的是().
A.大长方形的长为6
−− √10
B.大长方形的宽为5
−− √10
C.大长方形的周长为11
−− √10
D.大长方形的面积为300
【参考答案】
答案:C.
解:
由题意得大长方形的两边分别为 , , −−
−−
−−
3 √10 + 2 √10 = 5 √10
−−
−−
人教版数学八年级第十六章 二次根式单元卷
一、选择题

二次根式单元测试题及答案word

二次根式单元测试题及答案word

二次根式单元测试题及答案word一、选择题1. 计算下列二次根式的结果:A. √16 = 4B. √25 = 5C. √36 = 6D. √49 = 7答案:A2. 以下哪个表达式是正确的?A. √(-4) = 2iB. √(-9) = 3iC. √(-16) = 4iD. √(-25) = 5i答案:C3. 根据二次根式的乘法法则,下列哪个等式是正确的?A. √2 * √8 = √16B. √3 * √3 = √9C. √5 * √5 = √20D. √7 * √7 = √49答案:D二、填空题4. 计算√(2x^2) 的结果,其中 x = 3。

答案:3√25. 如果√(a^2) = a,那么 a 的取值范围是:答案:a ≥ 06. 将下列二次根式化为最简形式:√(48) = √(16 * 3) = 4√3答案:4√3三、计算题7. 计算下列表达式的值:(5√2 + 3√3)^2答案:79 + 30√68. 简化下列二次根式:√(2/9) * √(18/4)答案:√(2 * 2) = 2四、解答题9. 证明:√(a^2 + b^2) = √a^2 + √b^2 只有在 a = b = 0 时成立。

答案:略(根据二次根式的性质进行证明)10. 解下列方程:x^2 - 4√3x + 12 = 0答案:x = 2√3五、综合题11. 已知 a, b 是正整数,且√a + √b = 9,求 a 和 b 的值。

答案:a = 1, b = 64 或 a = 4, b = 4912. 一个直角三角形的两条直角边分别是3√2 和 6,求斜边的长度。

答案:斜边长度为 9六、附加题13. 如果√(2x + 1) + √(2 - 2x) = 2,求 x 的值。

答案:x = 0注意:本试题及答案仅供参考,具体题目和答案可能会根据教学大纲和教材内容有所变动。

二次根式单元试卷

二次根式单元试卷
7.B
【分析】先逆用同底数幂的相乘法则与积的乘方法则将式子变形为 ,再运用平方差公式计算底数,然后计算乘方,即可计算出结果.
【详解】解:

故选:B.
【点睛】本题考查实数的运算,熟练掌握同底数幂的相乘法则与积的乘方法则的逆用,二次根式运算法则是解题的关键.
8.B
【分析】直接利用二次根式的性质得出 的符号进而化简求出答案;
10.A
【分析】先把 化为 再结合 从而可得答案.
【详解】解:∵ ,




故选A.
【点睛】本题考查的是二次根式的大小比较,二次根式的混合运算,掌握“二次根式的大小比较的方法”是解本题的关键.
11. 且
【分析】根据二次根式有意义的条件可得 ,根据分式有意义的条件可得 ,再解不等式即可.
【详解】解:由题意得: 且 ,
3.下列二次根式的运算正确的是()
A. B.
C. D.
4.若 成立,则x的取值范围是( )
A. B. C. D.任意实数
5.等式 成立的条件是()
A. B. C. 或 D.
6.已知a、b、c在数轴上的位置如图所示,则 的化简结果是()
A. B. C. D.
7.计算式子 的结果是()
A. B. C. D.
6.C
【分析】根据a、b、c在数轴上的位置得出 , ,从而得出 , ,再根据绝对值的意义和二次根式性质,进行化简即可.
【详解】解:根据a、b、c在数轴上的位置可知, , ,
∴ , ,


故选:C.
【点睛】本题主要考查了绝对值的意义,二次根式的性质,数轴上点的特点,解题的关键是根据点a、b、c在数轴上的位置确定 , .

初二数学二次根式单元检测试卷 (4)

初二数学二次根式单元检测试卷 (4)

初二数学二次根式单元检测试卷一、单选题1.如果ab >0,a +b <0,那么下面各式:①,②,③,其中正确的是( )A .①②B .②③C .①③D .①②③2.下列二次根式是最简二次根式的是( )A B C D3.下列式子中,是最简二次根式的是( )A .43 B .30 C D .a 27 4.下列计算正确的是( )A .√2+√3=√5B .a 3•a 2=a 6C .a 7÷a=a 6D .(﹣2a 2)3=86 5.下列计算正确的是( )A .(a ﹣b )2=a 2﹣b 2B .x+2y=3xyC 0=D .(﹣a 3)2=﹣a 66.化简A .B .2C .-D .-7﹣a ,则a 的值( )A .a >2B .a≥2C .a <2D .a≤2 8.下列计算正确的是A .-(-3)2=9B .=3C .-(-2)0=1D .=-3 9.对于任意实数a ,下列各式中一定成立的是( )A .√a 2−1=√a −1·√a +1B .√(a +6)2=a +6C .√(−16)·(−a )=−4√−aD .√25a 4=5a 210.计算的值是( )A .2B .3CD .二、填空题1112.当 x________有意义.13.化简的结果是 .14.计算__________15x 的值是_______16.计算312﹣27的结果是 .三、解答题17.计算:322663-+-⨯18.计算: 19.计算(1)12﹣54(21)0(320.计算(1 (2m≥0,n≥0) (4ac≥0) (6))21.计算:(1⎛ ⎝;(2.22.计算: 1)--23.计算:(√3+1)2−3÷√324. 032)参考答案1.B【解析】试题分析:由ab>0可知a,b同号,又因为a+b<0,所以可知a,b两个数都是负数.所以①中√a和√b无意义,故不正确;②√ab ·√ba=√ab×ba=√1=1,正确;③√ab÷√a b =√ab×ba=√b2=|b|=−b,正确.所以②③正确,故选B.考点:二次根式的乘除法;根式有意义的条件.2.C【解析】【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】===不是最简二次根式;故选:C.【点睛】本题考查最简二次根式的定义.解决此题的关键,是掌握最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3.B.【解析】试题分析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式是否同时满足,同时满足的就是最简二次根式,否则就不是. 因此,=A2BC=不是最简二次根式;D.故选B.考点:最简二次根式.4.C【解析】【分析】直接利用二次根式的加减运算法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案.【详解】A、√2+√3,无法计算,故此选项错误;B、a3•a2=a5,故此选项错误;C、a7÷a=a6,正确;D、(﹣2a2)3=﹣8a6,故此选项错误;故选:C.【点睛】此题主要考查了二次根式的加减运算以及同底数幂的乘除运算和积的乘方运算,正确掌握相关运算法则是解题关键.5.C【解析】【分析】根据平方差公式、合并同类项、幂的乘方、二次根式的运算法则即可求出答案.【详解】(A)原式=a2﹣2ab+b2,故A错误;(B)x与2y不是同类项,不能合并,原式=x+2y,故B错误;(C)原式=0=,故C正确;(D)原式=a6,故D错误;故选:C.【点睛】本题考查了平方差公式、合并同类项、幂的乘方、二次根式,解题的关键是熟练运用运算法则,本题属于基础题型.6.D【解析】【分析】先判断a的正负性,然后原式利用二次根式的性质化简即可得到结果.【详解】∵8a ->0,∴a<0,∴a===-故选D.【点睛】此题考查了二次根式的性质与化简,熟练掌握运算法则是解本题的关键.7.D【解析】2a=-=2-a,∴2-a≥0,∴a≤2.故选D.8.B【解析】试题分析:根据实数的运算法则,逐项进行计算即可求得答案.试题解析:A.-(-3)2=-9≠9,故该选项错误;B.=3,该选项正确;C.-(-2)0=-1≠1,故该选项错误;D.=3≠-3,故该选项错误.故选B.考点:实数的运算.9.D【解析】√25a4=√52·√a4=5a2,故选D.10.D【解析】试题分析:二次根式的加减法实际上就是合并同类项.根据二次根式的计算法则可得:原式=(3-1考点:二次根式的计算11.587.9【解析】=≈5.879,5.879100587.9≈⨯=,故答案为:587.9.点睛:本题主要考查二次根式乘法法则的逆用,解决本题的关键是对二次根式法则得逆向运用.12.x≥3【解析】【分析】为二次根式,所以被开方数大于或等于0,列不等式求解.【详解】根据二次根式的性质,被开方数大于或等于0,可知:x-3≥0,解得:x≥3.【点睛】主要考查了二次根式的意义和性质.a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.13.-【解析】试题分析:由题意知:30a -≥,所以a <0.==-. 考点: 二次根式的性质与化简.14.-3【解析】【分析】先将各个二次根式化成最简二次根式,再把同类二次根式进行合并求解即可.【详解】原式=2×6=3故答案为:-3. 【点睛】 本题考查了二次根式的加减法,解答本题的关键在于掌握二次根式的化简与同类二次根式合并.15.1.【解析】【分析】根据题意,它们的被开方数相同,列出方程求解.【详解】x+2=3x.解得x=1,故答案为1.【点睛】此题考查最简二次根式,同类二次根式,解题关键在于掌握其定义. 16.337-【解析】试题分析:原式=332﹣33=337-, 考点:二次根式的加减法.17.22.【解析】试题分析:先算乘除、去绝对值符号,再算加减.试题解析:原式=23323-+- =22考点:二次根式运算.18【解析】【分析】根据二次根式的乘除运算法则计算即可.【详解】解:原式=324⨯=3123⨯. 【点睛】本题考查二次根式的乘除计算,掌握二次根式乘除运算法则是解题关键.19.(1)2;(2)【解析】【分析】(1)先进行二次根式的化简,然后再合并同类二次根式即可;(2)按顺序先分别进行分母有理化、二次根式的化简、0次幂的运算,然后再按运算顺序进行计算即可;(3)先进行二次根式的乘除法运算,再进行加减法运算即可.【详解】(1)原式=; (2)原式21111⨯+=+=;(3)原式=44=+【点睛】本题考查了二次根式的混合运算、熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.20.(1)(2)52 ;(3);(5)10a²;(6)【解析】【分析】(1)直接把被开方数开平方即可;(2)首先被开方数变正数,再分别开方;(3)(4)直接化成最简二次根式;(5) 利用二次根式的性质化简,计算即可得到结果;(6) 利用二次根式的性质化简,计算即可得到结果.【详解】(13=⨯=;(241352=⨯=;m≥0,n≥0)2=(423⨯ac≥0) ;(6) ).【点睛】本题考查了二次根式的性质与化简.化简二次根式的步骤:①把被开方数分解因式;②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.21.(1)-(2【解析】【分析】(1)直接利用二次根式的乘法运算法则计算得出答案.(2)直接利用二次根式的乘除法运算法则计算得出答案.【详解】(1)原式(2)原式=24b = 【点睛】 本题主要二次根式的乘除法,解题的关键是熟练掌握二次根式的乘除运算法则.特别注意二次根式相乘除时,分别把根号外的相乘除,根号内的相乘除.最后结果必须是最简二次根式.22.2.【解析】【分析】首先化简二次根式进而同类二次根式合并得出答案.【详解】解:原式=2=2【点睛】此题主要考查了二次根式的加减,正确化简二次根式是解题关键.23.4+√3【解析】【分析】原式利用完全平方公式和二次根式性质计算即可.【详解】解:原式=(√3)2+2√3+1−(√3)2÷√3=4+√3 .【点睛】本题考查了完全平方公式和二次根式的乘除运算,准确计算是解题的关键. 24.(1)1;(2)2.【解析】试题分析:(10,0)a b =≥≥ 计算即可;(2)根据二次根式的性质,零指数的意义化简后合并即可.试题解析:(1)原式1===; (2)原式=12×4-13×3-0+1=2-1+1=2.。

数学《二次根式》单元测试含答案

数学《二次根式》单元测试含答案

《二次根式》单元测试满分:150分;考试时间:120分钟一.选择题(共10小题,满分40分)1.(4分)下列各式中,一定是二次根式的个数为(),,,,,(a≥0),(a<)A.3个B.4个C.5个D.6个2.(4分)使代数式有意义的x的取值范围()A.x>2 B.x≥2 C.x>3 D.x≥2且x≠33.(4分)如果一个三角形的三边长分别为、k、,则化简﹣|2k ﹣5|的结果是()A.﹣k﹣1 B.k+1 C.3k﹣11 D.11﹣3k4.(4分)若实数m满足|m﹣4|=|m﹣3|+1,那么下列四个式子中与(m﹣4)相等的是()A.B.C.D.5.(4分)下列各式正确的是()A.B.若a>b,c<0,则ac>bcC.ab3﹣a3b分解因式的结果为ab(a2﹣b2)D.若分式的值为正数,则x>26.(4分)在、、、、中,最简二次根式有()A.1个B.2个C.3个D.4个7.(4分)等式=(b﹣a)成立的条件是()A.a≥b,x≥0 B.a≥b,x≤0 C.a≤b,x≥0 D.a≤b,x≤0 8.(4分)估计代数式+的运算结果应在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间9.(4分)++…+的整数部分是()A.3 B.5 C.9 D.610.(4分)如果,那么的值是()A.0 B.1 C.2 D.4二.填空题(共5小题,满分25分,每小题5分)11.(5分)若,则a m=.12.(5分)已知a、b满足=a﹣b+1,则ab的值为.13.(5分)把化成最简二次根式的结果为.14.(5分)已知x=,则4x2+4x﹣2017=.15.(5分)观察下列等式:,,,…请你从上述等式中找出规律,并利用这一规律计算:=.三.解答题(共7小题,满分85分)16.(20分)计算:(1)÷×(2)﹣(4﹣)(3)(7+4)(7﹣4)﹣(3﹣1)2(4)|﹣|+|﹣2|+17.(8分)已知x,y为实数,且y=+4,求的值.18.(9分)实数a在数轴上的位置如图,化简|a﹣2|+.19.(10分)最简二次根式与是同类二次根式,且x为整数,求关于m的方程xm2+2m﹣2=0的根.20.(12分)观察思考:()2=,()2=,()2=,()2=…由此得到:(1)()2=.(2)计算()2(说明:式子中的n是正整数,写出解题过程).21.(12分)某同学作业本上做了这么一道题:“当a=时,试求a+的值”,其中是被墨水弄污的,该同学所求得的答案为,请你判断该同学答案是否正确,说出你的道理.22.(14分)阅读下面计算过程:﹣1;.﹣2请解决下列问题(1)根据上面的规律,请直接写出=.(2)利用上面的解法,请化简:.(3)你能根据上面的知识化简吗?若能,请写出化简过程.参考答案一.选择题1.A.2.D.3.D.4.D.5.D.6.B.7.C.8.B.9.C.10.D.二.填空题11.1.12.±.13.14.﹣2015.15.2006.三.解答题16.解:(1)原式==1;(2)原式=3﹣2+5=6;(3)原式=49﹣48﹣(45﹣6+1)=1﹣46+6=﹣45+6;(4)原式=﹣+2﹣+2=4﹣.17.解:由题意得,x﹣16≥0,16﹣x≥0,解得x=16,y=+4=4,则=4﹣2=2.18.解:由数轴知2<a<4,则a﹣2>0、a﹣4<0,所以原式=a﹣2+|a﹣4|=a﹣2+4﹣a=2.19.解:∵最简二次根式与是同类二次根式,且x为整数,∴2x2﹣x=4x﹣2,即2x2﹣5x+2=0,解得:x=(舍去)或x=2,把x=2代入方程得:2m2+2m﹣2=0,即m2+m﹣1=0,解得:m=.20.解:(1)根据题意知()2=,故答案为:;(2)原式=(3×)2=32×()2=9×=.21.解:该同学的答案是不正确的.当a≥1时,原式=a+a﹣1=2a﹣1,当a<1时,原式=a﹣a+1=1,∵该同学所求得的答案为,∴a≥1,∴2a﹣1=,a=与a≥1不一致,∴该同学的答案是不正确的.22.解:(1)==﹣.(2)=﹣1+﹣+﹣+…+﹣+﹣=﹣1=10﹣1=9;(3)==+.故答案为:﹣.人教版八年级数学下册16章单元测试题(含答案)一.选择题(共5小题)1.下列式子一定是二次根式的是()A.B.C.D.2.下列二次根式中,无论x取什么值都有意义的是()A.B.C.D.3.化简的结果是()A.5 B.﹣5 C.±5 D.254.下列根式中属于最简二次根式的是()A.B.C.D.5.下列运算结果正确的是()A.=﹣9 B.C.D.二.填空题(共5小题)6.若代数式在实数范围内有意义,则x的取值范围是.7.计算:=.8.计算:=.9.计算:﹣×=.10.已知n为整数,则使为最小正有理数的n的值是.三.解答题(共6小题)11.直接写出答案=;=;=.=,(﹣)2=,=.12.化简:(1)×;(2)×.(3).(4).13.计算:(1).(2)÷2×.(3).(4)6﹣.(5)﹣+(6)2×÷.14.计算:(1)2÷×.(2)2.(3)×÷.(4).(5).(6)2﹣6+.15.计算:(1)4x2.(2).(3)(﹣)÷.(4)(+3)(+2)(5)(2﹣)2.(6).16.观察下列的计算:==﹣1;==﹣,根据你的观察发现,可得代数式(+++…+)×(+1)的结果为.人教版八年级数学下册16章单元测试题参考答案一.选择题(共5小题)1.C 2.D.3.A.4.A.5.B.二.填空题(共5小题)6.x≤.7.2017.8.3.9..10.3.三.解答题(共6小题)11.2;5a;.1,3,4.12.解:(1)×=3;(2)×===6.(3)=×=11×6=66.(4).=×=×=.13.解:(1)原式=3×5×=15.(2)原式===8=4.(3)原式==.(4)原式=12﹣4=8.(5)原式=3﹣4+=0.(6)原式=×=.14.解:(1)原式=4÷×3=8×3=24.(2)原式=2××=××=6.(3)原式=÷=.(4)原式===20.(5)原式=3﹣+2=.(6)原式=4﹣6×+4=8﹣2=615.解:(1)原式=4x2÷12×3=x2=xy.(2)原式==x.(3)原式=﹣=2﹣=(4)原式=5+2+3+6=11+5;(5)原式=20﹣4+2=22﹣4.(6)原式=5﹣2+3﹣2+1=7﹣2.16.解:由题意给出的等式可知:原式=(﹣1+﹣+﹣+…+﹣)×(+1)=(﹣1)(+1)=2014﹣1=2013《二次根式》单元检测与简答一.选择题(共10小题)1.下列各式中是二次根式的是( )A .B D2x 的取值范围是( ) A .x ≥1B .x >1C .x ≤1D .x <13.下列根式中,最简二次根式是( )A .BC D 4.下列运算正确的是( )A .2a +3b=5abB .﹣2m (m ﹣3)=﹣2m 2﹣6mC .(2a 2)3=6a 6D .=3 5.下列说法中正确的是( )A .9的平方根为3 B化简后的结果是2C .D .﹣27没有立方根6 )A .B .C 7.下列计算正确的是( )A .B =﹣1C =38.如果(2)2=a +(a ,b 为有理数),那么a +b 等于( )A .7B .8C .D .109.已知等腰三角形的两条边长为1,则这个三角形的周长为( )A .2B .1+C .2+1+D .1+10.2,…,,2,4, (1)4),14的位置记为(2,2),则这组数中最大的有理数的位置记为( ) A .(7,2) B .(7,5) C .(6,2) D .(6,3)二.填空题(共8小题)11.代数式3-22x x -有意义,则x 的取值范围是 . 12.计算(23)(23)+-的结果为 .13.若120x y ++-=,则x y +=_________.14.把1a a-的根号外的因式移到根号内等于? 15.若最简二次根式312b a -+与4b a -是同类二次根式,则2017(2)a b - .16.化简:231-的结果是______. 17.比较大小:23__32.(填“>、<、或=”)18.若5的整数部分是a ,小数部分是b ,则5b a -=______________.三.解答题(共6小题)19.已知+=b +8.(1)求a 的值;(2)求a 2﹣b 2的平方根.20.若最简二次根式和是同类二次根式.(1)求x 、y 的值.(2)求的值. 21.已知x=23y=23(1)x 2+2xy +y 2;(2)x 2﹣y 2.22.计算:(1)12+33;(2)+5;(3)(23+6)2;(4)18+1015﹣8+1453.23.已知长方形的长a=1322,宽b=1183.(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系.24.解决下列问题:已知二次根式(1)当x=3时,求的值.(2)若x是正数,是整数,求x的最小值.(3)若和是两个最简二次根式,且被开方数相同,求x的值.2017—2018学年湘教版八年级数学上册第5章《二次根式》单元检测简答一.选择题(共10小题)1.C.2.A.3.C.4.D.5.B.6.A.7.D.8.D.9.B.10.A.二.填空题(共8小题)11.x.12.-1 13. 1 14.﹣a15.-1 16.3+117.<18.3—25三.解答题(共6小题)19.已知+=b+8.(1)求a的值;(2)求a2﹣b2的平方根.【分析】(1)根据被开方数是非负数,即可求得a的值;(2)根据(1)的结果即可求得b的值,然后利用平方根的定义求解.【解答】解:根据题意得:,解得:a=17;(2)b+8=0,解得:b=﹣8.则a2﹣b2=172﹣(﹣8)2=225,则平方根是:±15.【点评】本题考查的知识点为:二次根式的被开方数是非负数.20.若最简二次根式和是同类二次根式.(1)求x、y的值.(2)求的值.【分析】(1)根据同类二次根式的定义列出方程求解即可;(2)把x、y的值代入代数式进行计算即可得解.【解答】解:(1)由题意得,3x﹣10=2,2x+y﹣5=x﹣3y+11,解得x=4,y=3;(2)当x=4,y=3时,==5.【点评】此题主要考查了同类二次根式的定义,即化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.21.已知x=23y=23(1)x2+2xy+y2;(2)x2﹣y2.【分析】(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x2+2xy+y2=(x+y)2,然后利用整体代入的方法计算;(2)根据已知条件先计算出x+y=4,x﹣y=﹣3,再利用平方差公式得到x2﹣y2=(x+y)(x﹣y),然后利用整体代入的方法计算.【解答】解:(1)∵x=23,y=23,∴x+y=4,∴x2+2xy+y2=(x+y)2=42=16;(2))∵x=23,y=23,∴x+y=4,x﹣y=﹣3,∴x2﹣y2=(x+y)(x﹣y)=4×(﹣3)=﹣3.【点评】本题考查了二次根式的化简求值:先根据二次根式的性质和运算法则进行化简,然后把满足条件的字母的值代入求值.22.计算:(1)12+33;(2)+5;(3)(23+6)2;(4)18+1015﹣8+1453.【分析】(1)先把12化为最简二次根式,然后合并即可;(2)根据二次根式的除法法则运算;(3)利用完全平方公式计算;(4)先把二次根式化为最简二次根式,然后合并即可.【解答】解:(1)原式=23+33=53;(2)原式=﹣+5=355=3;(3)原式=12+2+6=18+2;(4)原式2+5252+5【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.23.已知长方形的长1322,宽1183.(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系.【分析】首先化简a=1322=22,b=1183=2.(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可.【解答】解:a=1322=22,b=1183=2.(1)长方形的周长=(22+2)×2=62;(2)正方形的周长=4=8,∵62=72, 8=64,∵72>64∴62>8.【点评】此题考查二次根式的实际运用,掌握二次根式的化简方法以及长方形、正方形的周长与面积计算方法是解决问题的关键.24.解决下列问题:已知二次根式(1)当x=3时,求的值.(2)若x是正数,是整数,求x的最小值.(3)若和是两个最简二次根式,且被开方数相同,求x的值.【分析】(1)根据题意可以求得的值;(2)根据x是正数,是整数,可以求得x的最小值;(3)根据和是两个最简二次根式,且被开方数相同,可以求得x的值.【解答】解:(1)当x=3时,=;(2)∵x 是正数,是整数, ∴的最小值是2, 解得,x=1或x=﹣1(舍去),即x 的最小值是1;(3)∵和是两个最简二次根式,且被开方数相同, ∴2x 2+2=2x 2+x +4,解得,x=﹣2,即x 的值是﹣2.【点评】本题考查同类二次根式,解题的关键是明确题意,找出所求问题需要的条件.二次根式单元检测题姓名: ;成绩: ;一、选择题(4分×12=48分) 51x- ) A、x ≥1 B、x≤1 C、x≠1 D、x<1 2、若代数式32x x +-在实数范围内有意义,则x 的取值范围为( ) A、x<-3 B、x≥-3 C、x>2 D、x≥-3,且x≠23、函数4y x =-y 取值最小值时x 的取值是( )A、0 B、4 C、2 D、不存在 4、如果2693a a a -+=成立,那么实数a 的取值范围是( )A、a≤0 B、a≤3 C、a≥-3 D、a≥35、已知a<03a b - )A、ab -- B 、ab - C 、a ab D 、ab -6、设2,3a b ==a 、b 0.54,则下列表示正确的是( ) A、0.3ab B、3ab C、0.1ab D、0.1a 3b 50232+ ) A、在4和5之间 B、在5和6之间 C、在6和7之间 D、在7和8之间 8、一次函数(3)2y m x n =-+-(m 、n 为常数),则化简22()441n m n n m --+-的结果为( )A、-2n+3 B、-2m+3 C、m-3 D、-19、对于任意不相等的两个正实数a 、b ,定义一种新运算“※”如下:a※1a b ,2316=1,那么2※12的结果是( )A、1 B 、-1 C 、2 D 、-2 10、把33a - ) a -、a C 、3a - D 、3a 11、若20171m =-54322016m m m --的值为( ) A、1 B、0 C、2016 D、2017 2(4)4a a -=-,52a -a 的值的个数是( )A、1 B、2 C、3 D、4二、填空题(4分×6=24分)13、现有一张边长为1m 的正方形彩纸,欲从中剪下一个面积为其一半的正方形,剪下的正方形的边长是 m 。

【3套试卷】人教版数学八年级下第16章二次根式单元考试题(有答案)

【3套试卷】人教版数学八年级下第16章二次根式单元考试题(有答案)

人教版数学八年级下第16章二次根式单元考试题(有答案)人教版八年级数学下册第十六章二次根式单元检测卷总分:150分,时间:120分钟;姓名:;成绩:;一、选择题(4分×12=48分)1、下列二次根式是最简二次根式的是()C.B.2)A. B.C.3a能够取的值是()A. 0B. 1C. 2D.34有意义的条件是()A.x≥1B.x≤1C.x≠1D.x<15、若135a是整数,则a的最小正整数值是( )A.15 B.45 C.60 D.1356、则实数x的取值范围在数轴上的表示正确的是( )=-)7aA. -B.C. -D.8、已知(5m=n,如果n是整数,则m可能是()A. 5 C.9、下列计算正确的是( )A. 4B. 1C. 3 210、若a 、b 、c )A. 2a -2cB. -2cC. 2bD.2a11、已知a ,b a 、b ,则下列表示正确的是( )A. 0.3abB. 3abC. 0.1abD.0.9ab12、定义:m Δn =(m+n )2,m ※n =mn -2,则[(]Δ)的值是()C. 5二、填空题(4分×6=24分)13= ;14、已知矩形的长为cm cm ,则矩形的面积为 ;15、当a = 时,16、已知a =,b =,则a 2b+ab 2= ;171x =成立的条件是 ;1822510b b +=,则a+b 的平方根是 ;三、22a 10分×2=20分)19、计算(1)21+( (2)2019+(-1)20、计算:(1)220,0)a a b >>(2)2(0,0)aa b m n ÷>>四、解答题(9分×4=36分)21、用四张一样大小的长方形纸片拼成一个正方形ABCD ,如图所示,它的面积是75,AE=22、化简求值:2(2)(2)(2)(43)a b a b a b b a b +-+--+,其中a 1,b ;23、观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式: 121212)12)(12()12(1121-=--=-+-⨯=+ 232323)23)(23()23(1231-=--=-+-⨯=+ 同理可得:32321-=+ 从计算结果中找出规律,并利用这一规律计算.......1)的值24、已知a,b,c在数轴上如图所示,化简:+b c五、解答题(10分+12分=22分)25、现有一组有规律的数:1,-1,2,-2,3,-3,1,-1,2,-2,3,-3,…,其中1,-1,2,-2,3,-3这6个数按此规律重复出现.(1)第50个数是什么数?(2)把从第1个数开始的前2018个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方相加,如果和为520,那么一共是多少个数的平方相加?26、小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+()2.善于思考的小明进行了以下探索:设=()2(其中a、b、m、n均为整数),则有=m2+2n2∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若=()2,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若)2,且a 、m 、n 均为正整数,求a 的值?2019年春人教版数学八年级下第16章二次根式单元考试题答案一、选择题CDBDA CABDA AB二、填空题13、1; 14、2; 15、6; 16、6; 17、x ≥-1;18、±3三、解答题19、计算:(1)5; (2)0;20、(1)12a 3b 2;(2)2221a ab a b -+; 四、解答题21、22、;23、2017;24、-a五、解答题25、(1)第50个数是-1.(2)从第1个数开始的前2018个数的和是0.(3)一共是261个数的平方相加.26、26、(1)223,2m n mn + (2)16,8,2,2(答案不唯一)(3)7或13.人教版初中数学八年级下册第十六章《二次根式》单元基础卷一、选择题(每小题3分,共30分)1x 的取值范围是( ).A. 1x >B. 1x ≥C. 1x <D. 1x ≤ 2.若a -1+b 2-4b +4=0,则ab 的值等于( )A .-2B .0C .1D .23.=x 的取值范围是( ) A. 2x ≠B. 0x ≥C. 2x >D. 2x ≥4.是同类二次根式的是( )。

二次根式单元测试题及参考答案

二次根式单元测试题及参考答案

新华师大版九年级上册数学第21章 二次根式单元测试卷姓名____________ 时间: 90分钟 满分:120分 总分____________ 一、选择题(每小题3分,共30分)1. 若二次根式15-x 有意义,则x 的取值范围是 【 】(A )51>x (B )x ≥51(C )x ≤51 (D )51<x2. 化简()221-的结果是 【 】(A )12- (B )21- (C )()12-±(D )()21-±3. 下列二次根式中是最简二次根式的是 【 】 (A )32(B )2 (C )9 (D )12 4. 下列运算正确的是 【 】 (A )x x x 32=+ (B )3223=- (C )3232=+ (D )25188=+5. 下列二次根式中能与32合并的是 【 】 (A )8 (B )31(C )18 (D )9 6. 等式1313+-=+-x x x x 成立的x 的取值范围在数轴上可表示为 【 】 A. B. C. D.7. 已知a 为整数,且53<<a ,则a 等于 【 】 (A )1 (B )2 (C )3 (D )48. 计算()5452-515-÷⎪⎪⎭⎫⎝⎛的结果为 【 】(A )5 (B )5- (C )7 (D )7-9. 已知21,21-=+=n m ,则代数式mn n m 322-+的值为 【 】 (A )9 (B )3± (C )5 (D )3 10. 已知0>xy ,则化简二次根式2x yx -的结果是 【 】 (A )y (B )y - (C )y -(D )y --二、填空题(每小题3分,共15分)11. 计算:=--124_________. 12. 化简:()=--7177_________.13. 菱形的两条对角线的长分别为()1210+cm 和()3210-cm,则该菱形的面积为_________cm 2.14. 12与最简二次根式15+a 是同类二次根式,则=a _________.15. 对于任意的正数n m ,定义运算※为:m ※⎪⎩⎪⎨⎧<+≥-=nm n m nm n m n ,,,计算(3※2)⨯(8※12)的结果为_________.三、解答题(共75分)16. 计算:(每小题4分,共8分)(1)()1212362-⎪⎭⎫⎝⎛--+⨯-;(2)()()()2217373---+.17. 先化简,再求值:(每小题8分,共16分)(1)44212122+--÷⎪⎭⎫⎝⎛--+x x x x x x ,其中3=x ;(2)11112-÷⎪⎭⎫⎝⎛-+x x x ,其中12+=x .18.(10分)(1)要使x 21-在实数范围内有意义,求x 的取值范围; (2)已知实数y x ,满足条件:()211221-+-+-=x x x y ,求()100y x +的值.19.(10分)在二次根式b ax +中,当1=x 时,其值为2;当6=x 时,其值为3. (1)求使该二次根式有意义的x 的取值范围; (2)当15=x 时,求该二次根式的值.20.(10分)一个三角形的三边长分别为xx x x 5445,2021,55. (1)求它的周长;(2)请你给一个适当的x 值,使它的周长为整数,并求出此时三角形的周长.21.(10分)已知c b a ,,满足()023582=-+-+-c b a . (1)求c b a ,,的值;(2)以c b a ,,为边能否构成三角形?若能,求出该三角形的周长;若不能,请说明理由.22.(11分)规律探究: 观察下列各式:()()()()()().;34434343431;23323232321;12212121211 -=-+-=+-=-+-=+-=-+-=+(1)请利用上面的规律直接写出100991+的结果;(2)请用含n (n 为正整数)的代数式表示上述规律,并证明;(3)计算:()20171201720161431321211+⨯⎪⎭⎫⎝⎛++++++++ .新华师大版九年级上册数学摸底试卷(一)第21章 二次根式单元测试卷C 卷参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共15分)11.2312. 7 13. 44 14. 2 15. 2 三、解答题(共75分)16. 计算:(每小题4分,共8分)(1)()1212362-⎪⎭⎫⎝⎛--+⨯-;解:原式23212--+-=33332-=--=(2)()()()2217373---+. 解:原式()222179+---=1222232-=+-=17. 先化简,再求值:(每小题8分,共16分)(1)44212122+--÷⎪⎭⎫⎝⎛--+x x x x x x ,其中3=x ;解:44212122+--÷⎪⎭⎫⎝⎛--+x x x x x x()()xx x x x x x x x x 3223222212=-⋅-=--÷-+-+=当3=x 时原式333=.(2)11112-÷⎪⎭⎫⎝⎛-+x x x ,其中12+=x .解:11112-÷⎪⎭⎫⎝⎛-+x x x ()()()()x x x x x x x xx x 11111111-+⋅+-=-+÷+--=()xx -=--=11当12+=x 时原式2121-=--=.18.(10分)(1)要使x 21-在实数范围内有意义,求x 的取值范围; (2)已知实数y x ,满足条件:()211221-+-+-=x x x y ,求()100y x +的值.解:(1)由二次根式有意义的条件可知:x 21-≥0解之得:x ≤21; ……………………………………3分 (2)∵x 21-≥0,12-x ≥0∴x ≤21,x ≥21 ∴21=x……………………………………6分∴21211210022=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-++=y……………………………………8分 ∴()112121100100100==⎪⎭⎫⎝⎛+=+y x .……………………………………10分 19.(10分)在二次根式b ax +中,当1=x 时,其值为2;当6=x 时,其值为3. (1)求使该二次根式有意义的x 的取值范围;(2)当15=x 时,求该二次根式的值.解:(1)由题意可得:⎪⎩⎪⎨⎧=+=+362b a b a ∴⎩⎨⎧=+=+964b a b a ……………………………………4分解之得:⎩⎨⎧==31b a……………………………………6分 ∴该二次根式为3+x 由二次根式有意义的条件可知:3+x ≥0 解之得:x ≥3-;……………………………………8分 (2)当15=x 时23183153==+=+x .……………………………………10分 20.(10分)一个三角形的三边长分别为xx x x 5445,2021,55. (1)求它的周长;(2)请你给一个适当的x 值,使它的周长为整数,并求出此时三角形的周长. 解:xx x x C 5445202155++=∆ x x x 52155++=x 525=; ……………………………………7分 (2)答案不唯一.……………………………………10分 21.(10分)已知c b a ,,满足()023582=-+-+-c b a .(1)求c b a ,,的值;(2)以c b a ,,为边能否构成三角形?若能,求出该三角形的周长;若不能,请说明理由. 解:(1)∵()023582=-+-+-c b a()28-a ≥0,5-b ≥0,23-c ≥0∴023,05,08=-=-=-c b a ∴23,5,228====c b a ; ……………………………………7分 (2)能.……………………………8分52523522+=++=∆C .……………………………………10分 22.(11分) 解:(1)11310-;……………………………………2分 (2)n n n n -+=++111……………………………………4分证明:()()nn nn n n n n -+++-+=++11111 nn n n nn -+=-+-+=111……………………………………7分 (3) 2016.(过程略)……………………………………11分。

(word完整版)二次根式单元测试附答案

(word完整版)二次根式单元测试附答案

二次根式单元测试一、填空题(3×10=30)1.数5的平方根是 ,算术平方根是 ;2。

4的平方根是 ,a 2的算数平方根是 ;3。

若二次根式有意义,则的取值范围是___________. 4。

已知,则。

5.比较大小:。

6。

在实数范围内因式分解:。

7。

若,则__________。

82111a a a +-=-成立的条件是 ; 9.16a -是整数,则非负整数a = ,16a -的值为 ;10.在一个半径为2m 的圆形纸片上截出一个面积最大的正方形,则这个正方形的边长是 .二。

选择题(3×8=24)11.2x -,二次根式能表示的最小实数是( )A 。

0 B.2 C 2 D 。

不存在4.若x<0,则xx x 2-的结果是( ) A .0 B .—2 C .0或—2 D .25.下列二次根式中属于最简二次根式的是( )A .14B .48C .ba D .44+a 6. 已知25523y x x =---则2xy 的值为( )A .15-B .15C .152-D . 152 7.化简6151+的结果为( ) A .3011 B .33030 C .30330 D .1130 8.小明的作业本上有以下四题:①24416a a =; ②a a a 25105=⨯; ③a aa a a =•=112;④a a a =-23.做错的题是( )A .①B .②C .③D .④9.若最简二次根式a a 241-+与的被开方数相同,则a 的值为( )A .43-=a B .34=a C .a=1 D .a= -1 10. 计算221-631+8的结果是( ) A .32-23 B .5-2C .5-3D .22 三.解答题(共66分)19。

(16分)计算:(1)21437⎪⎪⎭⎫ ⎝⎛- (2) )459(43332-⨯(3)2484554+-+ (4)2332326--20.(5分)化简求值:2a (a+b )-(a+b )2,其中ab;21。

《二次根式》单元测试题含答案

《二次根式》单元测试题含答案

《二次根式》单元测试题含答案《二次根式》单元测试题(一)判断题:(每小题1分,共5分)1.ab 2)2(-=-2ab .…………………( )【提示】2)2(-=|-2|=2.【答案】×. 2.3-2的倒数是3+2.( )【提示】231-=4323-+=-(3+2).【答案】×.3.2)1(-x =2)1(-x .…( )【提示】2)1(-x =|x -1|,2)1(-x =x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×. 4.ab 、31b a 3、bax 2-是同类二次根式.…( )【提示】31b a 3、bax 2-化成最简二次根式后再判断.【答案】√. 5.x 8,31,29x +都不是最简二次根式.( )29x +是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分) 6.当x __________时,式子31-x 有意义.【提示】x 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x ≠9. 7.化简-81527102÷31225a =_.【答案】-2a a .【点评】注意除法法则和积的算术平方根性质的运用.8.a -12-a 的有理化因式是____________.【提示】(a -12-a )(________)=a 2-22)1(-a .a +12-a .【答案】a +12-a . 9.当1<x <4时,|x -4|+122+-x x =________________.【提示】x 2-2x +1=( )2,x -1.当1<x <4时,x -4,x -1是正数还是负数?x -4是负数,x -1是正数.【答案】3.10.方程2(x -1)=x +1的解是____________.【提示】把方程整理成ax =b 的形式后,a 、b 分别是多少?12-,12+.【答案】x =3+22.11.已知a 、b 、c 为正数,d 为负数,化简2222dc abd c ab +-=______.【提示】22d c =|cd |=-cd . 【答案】ab +cd .【点评】∵ ab =2)(ab (ab >0),∴ ab -c 2d 2=(cd ab +)(cd ab -).12.比较大小:-721_________-341.【提示】27=28,43=48.【答案】<.【点评】先比较28,48的大小,再比较281,481的大小,最后比较-281与-481的大小. 13.化简:(7-52)2000·(-7-52)2001=______________.【提示】(-7-52)2001=(-7-52)2000·(_________)[-7-52.](7-52)·(-7-52)=?[1.]【答案】-7-52. 【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.【答案】40.【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________. 【提示】∵ 3<11<4,∴ _______<8-11<__________.[4,5].由于8-11介于4与5之间,则其整数部分x =?小数部分y =?[x =4,y =4-11]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了. (三)选择题:(每小题3分,共15分)16.已知233x x +=-x 3+x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0【答案】D .【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义.17.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y 【提示】∵ x <y <0,∴ x -y <0,x +y <0. ∴ 222y xy x +-=2)(y x -=|x -y |=y -x .222y xy x ++=2)(y x +=|x +y |=-x -y .【答案】C .【点评】本题考查二次根式的性质2a =|a |.18.若0<x <1,则4)1(2+-x x -4)1(2-+xx 等于………………………( )(A )x2 (B )-x2 (C )-2x (D )2x【提示】(x -x 1)2+4=(x +x 1)2,(x +x 1)2-4=(x -x1)2.又∵ 0<x <1,∴ x +x1>0,x -x1<0.【答案】D .【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当0<x <1时,x -x1<0. 19.化简aa 3-(a <0)得………………………………………………………………( ) (A )a - (B )-a (C )-a - (D )a 【提示】3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.【答案】C .20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --. 【答案】C .【点评】本题考查逆向运用公式2)(a =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为a <0,b <0时,a 、b 都没有意义.(四)在实数范围内因式分解:(每小题3分,共6分) 21.9x 2-5y 2;【提示】用平方差公式分解,并注意到5y 2=2)5(y .【答案】(3x +5y )(3x -5y ). 22.4x 4-4x 2+1.【提示】先用完全平方公式,再用平方差公式分解.【答案】(2x +1)2(2x -1)2. (五)计算题:(每小题6分,共24分) 23.(235+-)(235--);【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(35-)2-2)2(=5-215+3-2=6-215.24.1145--7114--732+;【提示】先分别分母有理化,再合并同类二次根式. 【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.25.(a 2mn -m ab mn +m nn m )÷a 2b 2mn ; 【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a 2m n -m ab mn +m n n m )·221b a nm =21b n m m n ⋅-mab 1n m m n ⋅+22b ma n nm n m ⋅ =21b -ab 1+221b a =2221b a ab a +-.26.(a +ba abb +-)÷(b ab a ++a ab b --ab b a +)(a ≠b ).【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=ba abb ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=ba ba ++÷))((2222b a b a ab b a b ab b ab a a -++----=ba ba ++·)())((b a ab b a b a ab +-+-=-b a +.【点评】本题如果先分母有理化,那么计算较烦琐.(六)求值:(每小题7分,共14分)27.已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值. 【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.【解】∵ x =2323-+=2)23(+=5+26, y =2323+-=2)23(-=5-26.∴ x +y =10,x -y =46,xy =52-(26)2=1.32234232y x y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652. 【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷. 28.当x =1-2时,求2222ax x a x x+-++222222ax x x a x x +-+-+221ax +的值.【提示】注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x 22a x +=22a x +(22a x +-x ),x 2-x 22a x +=-x (22a x +-x ). 【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+- =)()(22222222222222x a x a x x x a x x a x a x x x -++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++=x1.当x =1-2时,原式=211-=-1-2.【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222a x xa x +--+-)11(22x x a x --++221a x +=x1.七、解答题:(每小题8分,共16分) 29.计算(25+1)(211++321++431++…+100991+).【提示】先将每个部分分母有理化后,再计算. 【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--)=(25+1)[(12-)+(23-)+(34-)+…+(99100-)]=(25+1)(1100-) =9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法. 30.若x ,y 为实数,且y =x 41-+14-x +21.求xy y x ++2-xyy x +-2的值. 【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x=41时,y =21. 又∵xyy x ++2-xyy x +-2=2)(xy y x+-2)(xy y x -=|xy y x +|-|xyy x -|∵ x =41,y =21,∴y x<x y .∴ 原式=x y y x +-y x x y +=2yx 当x =41,y =21时,原式=22141=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。

二次根式单元专项训练检测试卷

二次根式单元专项训练检测试卷

二次根式单元专项训练检测试卷一、选择题1.下列计算正确的是( )A.532-= B .223212⨯= C .933÷=D .423214+= 2.2的倒数是( )A .2B .22C .2-D .22- 3.已知526x =-,则2101x x -+的值为( )A .306-B .106C .1862--D .04.要使2020x -有意义,x 的取值范围是( )A .x≥2020B .x≤2020C .x> 2020D .x< 20205.下列式子中,为最简二次根式的是( )A .12B .7C .4D .486.式子2x -在实数范围内有意义,则x 的取值范围是( )A .0x <B .0xC .2xD .2x 7.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( ) 123256722310A .210B .41C .52D .51 8.实数a ,b ,c ,满足|a |+a =0,|ab |=ab ,|c |-c =0,那么化简代数式2b -|a +b |+|a -c |-222c bc b -+的结果为( )A .2c -bB .2c -2aC .-bD .b 9.若a 、b 、c 为有理数,且等式成立,则2a +999b +1001c 的值是( ) A .1999 B .2000 C .2001 D .不能确定10.下列计算正确的是( )A 235=B 236=C 2434=D ()233-=-11.下列运算一定正确的是( )A .2a a =B .ab a b =⋅C .222()a b a b ⋅=⋅D .()0n m n a a m=≥ 12.若3x -在实数范围内有意义,则x 的取值范围是( ) A .x >0 B .x >3 C .x ≥3 D .x ≤3二、填空题13.设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第二个正方形AEGH ,如此下去…….⑴记正方形ABCD 的边长为11a =,按上述方法所作的正方形的边长依次为234,,,,n a a a a ,请求出234,,a a a 的值;⑵根据以上规律写出n a 的表达式.14.若x +y =5+3,xy =15-3,则x+y=_______.15.将一组数2,2,6,22,10,…,251按图中的方法排列:若2的位置记为(2,3),7的位置记为(3,2),则这组数中最大数的位置记为______.16.使式子32x x -+有意义的x 的取值范围是______. 17.已知4a 2(3)|2|a a +--=_____.18.3a ,小数部分是b 3a b -=______.19.函数y 4x -中,自变量x 的取值范围是____________. 20.12a 1-能合并成一项,则a =______.三、解答题21.计算:(1(2))((222+-+.【答案】(1)【分析】 (1)先化简二次根式,再合并同类二次根式即可;(2)根据平方差公式化简,再化简、合并同类二次根式即可.【详解】(1==(2))((222+-+=2223--+ =5-4-3+2=022.计算 (1)2213113a a a a a a +--+-+-;(2)已知a 、b +b =0.求a 、b 的值(3)已知abc =1,求111a b c ab a bc b ac c ++++++++的值【答案】(1)22223a a a ----;(2)a =-3,b ;(3)1. 【分析】(1)先将式子进行变形得到()()113113a a a a a a +--+-+-,此时可以将其化简为1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭,然后根据异分母的加减法法则进行化简即可;(2)根据二次根式及绝对值的非负性得到2a +6=0,b =0,从而可求出a 、b ; (3)根据abc =1先将所求代数式转化:11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,然后再进行分式的加减计算即可. 【详解】解:(1)原式=()()113113a a a a a a +--+-+- =1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭ =1113a a --+- =()()()()3113a a a a -++-+- =22223a a a ----;(20b =,∴2a +6=0,b =0,∴a =-3,b ;(3)∵abc =1, ∴11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++, ∴原式=1111a ab ab a ab a ab a ++++++++ =11a ab ab a ++++ =1.【点睛】本题考查了分式的化简求值和二次根式、绝对值的非负性,分式中一些特殊求值题并非一味的化简,代入,求值,熟练掌握转化、整体思想等解题技巧是解答这类题目的关键.23.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中1x =..【分析】根据分式的运算法则进行化简,再代入求解.【详解】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭.将1x == 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.24.)÷)(a ≠b ). 【答案】【解析】试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论.试题解析:解:原式=()()a b a b --+-25.小明在解决问题:已知2a 2﹣8a+1的值,他是这样分析与解的: ∵=2 ∴a ﹣2=∴(a ﹣2)2=3,a 2﹣4a+4=3∴a 2﹣4a=﹣1∴2a 2﹣8a+1=2(a 2﹣4a )+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1(2)若,求4a2﹣8a+1的值.【答案】(1)9;(2)5.【解析】试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===. (2)先对a 1 ,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a - 的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a ===,解法一:∵22(1)11)2a -=-= ,∴2212a a -+= ,即221a a -=∴原式=24(2)14115a a -+=⨯+=解法二∴ 原式=24(211)1a a -+-+24(1)3a =--211)3=--4235=⨯-=点睛:(1得22=-=-a b ,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.26.阅读下列材料,然后回答问题:1== . 以上这种化简过程叫做分母有理化.221===. (1)请用其中一种方法化简; (2+99+【答案】(2) 3 1.【分析】(1)运用了第二种方法求解,即将4(2)先把每一个加数进行分母有理化,再找出规律,即后面的第二项可以和前面的第一项抵消,然后即可得出答案.【详解】(1)原式==; (2)原式=+++… =﹣1+﹣+﹣+…﹣=﹣1 =3﹣1 【点睛】本题主要考查了分母有理化,找准有理化的因式是解题的关键.27.观察下列各式. 11133+=112344+=113455+=114566+=…… 根据上述规律回答下列问题.(1)接着完成第⑤个等式: _____;(2)请用含(1)n n ≥的式子写出你发现的规律;(3)证明(2)中的结论.【答案】(111577+=211(1)22n n n n +=+++3)见解析 【分析】(1)当n=511577+= (211(1)22n n n n +=+++ (3)直接根据二次根式的化简即可证明.【详解】解:(1115677+=(211(1)22n n n n +=+++(3212122n n n n n +++=++2(1)1(22n n n n +==+++【点睛】此题主要考查探索数与式的规律,熟练发现规律是解题关键.28.计算:(1;(2+2)2+2).【答案】(1-2)【分析】(1)直接化简二次根式进而合并得出答案;(2)直接利用乘法公式计算得出答案.【详解】解:(1)原式=-(2)原式=3434++-=6+.【点睛】本题考查了二次根式的运算,在进行二次根式运算时,可以运用乘法公式,运算率简化运算.29.2020(1)-【答案】1【分析】先计算乘方,再化简二次根式求解即可.【详解】2020(1)-=1=1.【点睛】本题考查了二次根式的混合运算,先把二次根式化为最简二次根式,再合并即可.30.化简求值:212(1)211x x x x -÷-+++,其中1x =.【解析】分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可. 详解:原式2112,2111x x x x x x -+⎛⎫=÷- ⎪++++⎝⎭2112,211x x x x x -+-=÷+++()211,11x x x x -+=⋅-+ 1.1x =+当1x =时,11x ==+ 点睛:考查分式的混合运算,掌握运算顺序是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】A 不符合题意;∵12=,故选项B 符合题意;C 不符合题意;∵=D 不符合题意;故选:B .【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.2.B解析:B【分析】根据倒数的定义,即可得到答案.【详解】2,2; 故选:B.【点睛】本题考查了倒数的定义和化为最简二次根式,解题的关键是熟记倒数的定义进行解题. 3.D解析:D【分析】把x的值代入原式计算即可求出值.【详解】解:当时,原式=()2-10×()+1+1=0.故选:D.【点睛】本题考查了二次根式的化简求值,熟练掌握运算法则是解题的关键.4.A解析:A【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∴x-2020≥0,解得:x≥2020;故选:A.【点睛】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.5.B解析:B【分析】根据最简二次根式的定义即可求出答案.【详解】=,故A不是最简二次根式;2是最简二次根式,故B正确;,故C不是最简二次根式;=D不是最简二次根式;故选:B.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.6.D解析:D【分析】根据二次根式有意义的条件(被开方数≥0),列出不等式求解即可得到答案;【详解】解:式子2x-在实数范围内有意义,即:20x-≥,解得:2x,故选:D;【点睛】本题主要考查了二次根式有意义的条件,掌握二次根式有意义即被开方数≥0是解题的关键. 7.B解析:B【解析】【分析】由图形可知,第n行最后一个数为()11232n nn++++=,据此可得答案.【详解】由图形可知,第n行最后一个数为()1 1232n nn++++=,∴第8行最后一个数为89362⨯==6,则第9行从左至右第5个数是36541+=,故选B.【点睛】本题主要考查数字的变化类,解题的关键是根据题意得出第n行最后一个数为()12n n+.8.D解析:D【解析】解:∵|a|+a=0,∴|a|=﹣a,∴﹣a≥0,∴a≤0,∵|ab|=ab,∴ab≥0,∴b≤0,∵|c|﹣c=0,∴| c|=c,∴c≥0,∴原式=﹣b+(a+b)﹣(a﹣c)﹣(c﹣b)=b.故选D.9.B解析:B【解析】因=,所以a=0,b=1,c=1,即可得2a+999b+1001c=999+1001=2000,故选B.点睛:本题考查了二次根式的性质与化简,将复合二次根式根据完全平方公式化简并比较系数是解题的关键.10.B解析:B【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案.【详解】解:A23A错误;B236=,故B正确;C243822==C错误;-=,故D错误;D()233故选:B.【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.11.C解析:C【分析】直接利用二次根式的性质与化简以及积的乘方运算法则分别计算即可得出答案.【详解】A2a|a|,故此选项错误;B.ab a b,则a,b均为非负数,故此选项错误;C.a2•b2=(a•b)2,正确;D n ma m n a(a≥0),故此选项错误.故选C.【点睛】本题主要考查了二次根式的性质与化简以及积的乘方运算,正确掌握相关运算法则是解题的关键.12.C解析:C【详解】解:根据题意得:x-3≥0解得:x≥3故选C.二、填空题13.(1)a2=,a3=2,a4=2;(2)an=(n为正整数).【解析】(1)∵四边形ABCD是正方形,∴AB=BC=1,∠B=90°.∴在Rt△ABC中,AC===.同理:AE=2,EH=2,解析:(1)a2,a3=2,a4=;(2)a n n为正整数).【解析】(1)∵四边形ABCD是正方形,∴AB=BC=1,∠B=90°.∴在Rt△ABC中,ACAE=2,EH=,…,即a2a3=2,a4=(2)an n为正整数).14.8+2【解析】根据配方法,由完全平方公式可知x+y==()2-2,然后把+=+,=-整体代入可得原式=(+)2-2(-)=5+3+2-2+2=8+2.故答案为:8+2.解析:【解析】根据配方法,由完全平方公式可知+=+-)2x+y=2222整体代入可得原式=2-2)故答案为:15.(17,6)【解析】观察、分析这组数据可发现:第一个数是的积;第二个数是的积;第三个数是的积,的积.∵这组数据中最大的数:,∴是这组数据中的第102个数.∵每一行排列了6个数,而∴是第1解析:(17,6)【解析】的积,.∵这组数据中最大的数:∴102个数.∵每一行排列了6个数,而1026=17÷ ∴17行第6个数,∴这组数据中最大的一个数应记为(17,6).点睛:(1)这组数据组中的第n 2)该组数据是按从左到右,从小到大,每行6个数进行排列的;(3)6n ÷6n ÷的余数是所在的列数.16.且【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:,解得且,故答案为:且.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分解析:3x ≤且2x ≠-【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键.17.-5【分析】根据a 的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∵,∴a+3<0,2-a>0,∴-a-3-2+a=-5,故答案为:-5.【点睛】此解析:-5【分析】根据a的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】a,∵4∴a+3<0,2-a>0,-=-a-3-2+a=-5,|2|a故答案为:-5.【点睛】此题考查二次根式的化简,绝对值的化简,整式的加减法计算法则,正确化简代数式是解题的关键.18.【详解】若的整数部分为a,小数部分为b,∴a=1,b=,∴a-b==1.故答案为1.解析:【详解】a,小数部分为b,∴a=1,b1,∴-b1)=1.故答案为1.19.x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由y=,得4-x≥0且x-2≠0.解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方解析:x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】,得4-x≥0且x-2≠0.解:由y=2x-解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方数是非负数、分母不能为零得出4-x≥0且x-2≠0是解题关键.20.4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】解:=2,由最简二次根式与能合并成一项,得a-1=3.解解析:4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】能合并成一项,得a-1=3.解得a=4.故答案为:4.【点睛】本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.a 的值可能是( ) A .2-B .2C .32D .82.下列运算正确的是( )A =B =C .3=D 2=3.若2019202120192020a =⨯-⨯,b =,c a ,b ,c 的大小关系是( ) A .a b c << B .a c b <<C .b a c <<D .b c a <<4.下列运算正确的是( )A .52223-=y yB .428x x x ⋅=C .(-a-b )2=a 2-2ab+b 2D =5.下列计算正确的是( )A =B 1-=C =D 6==6.已知a ( )A .0B .3C .D .97.的下列说法中错误的是( )A 12的算术平方根B .34<<C 不能化简D 是无理数 8.以下运算错误的是( )A =B .2=CD 2=a >0)9.m 的值为( ) A .7B .11C .2D .110.下列属于最简二次根式的是( )A B CD 二、填空题11.已知x =()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭_________12.=___________.13.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用“”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为: 22164?a x a x +=则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.14.已知函数1x f xx,那么21f _____.15222a a ++的最小值是______. 16.下面是一个按某种规律排列的数阵:11第行325 62第行722310 11 233第行 131541732 19254第行根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是 (用含 n 的代数式表示). 17.若2x ﹣3x 2﹣x=_____.18.20n n 的最小值为___ 19.已知x =512,y =512,则x 2+xy +y 2的值为______. 20.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b cp ++=,那么三角形的面积()()()S p p a p b p c =---ABC 中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若4a =,5b =,7c =,则ABC 面积是_______.三、解答题21.若x ,y 为实数,且y12.求x y y x ++2-xy y x +-2的值.【分析】根据二次根式的性质,被开方数大于等于0可知:1﹣4x ≥0且4x ﹣1≥0,解得x =14,此时y =12.即可代入求解. 【详解】解:要使y 有意义,必须140410x x -≥⎧⎨-≤⎩,即1414x x ⎧≤⎪⎪⎨⎪≥⎪⎩∴ x =14.当x =14时,y =12.又∵x y y x ++2-x yy x +-2=-| ∵x =14,y =12,∴ x y <y x.∴+当x =14,y =12时,原式=.【点睛】(a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.22.观察下列各式子,并回答下面问题.(1)试写出第n 个式子(用含n 的表达式表示),这个式子一定是二次根式吗?为什么? (2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.【答案】(1,该式子一定是二次根式,理由见解析;(215和16之间.理由见解析. 【分析】(1)依据规律可写出第n 个式子,然后判断被开方数的正负情况,从而可做出判断; (2)将16n =代入,得出第16,再判断即可. 【详解】解:(1该式子一定是二次根式,因为n 为正整数,2(1)0n n n n -=-≥,所以该式子一定是二次根式(215=16=,∴1516<<.15和16之间. 【点睛】本题考查的知识点是二次根式的定义以及估计无理数的大小,掌握用“逼近法”估算无理数的大小的方法是解此题的关键.23.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a =,)111=11互为有理化因式.(1)1的有理化因式是 ;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:==25384532++====-进行分母有理化.(3)利用所需知识判断:若a =,2b =a b ,的关系是 . (4)直接写结果:)1= .【答案】(1)1;(2)7-;(3)互为相反数;(4)2019 【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出; (2)原式分子分母同时乘以分母的有理化因式(2,化简即可; (3)将a =(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可. 【详解】解:(1)∵()()1111=,∴1的有理化因式是1;(22243743--==--(3)∵2a ===,2b =-, ∴a 和b 互为相反数;(4))1++⨯=)11⨯=)11=20201- =2019, 故原式的值为2019.【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.24.计算:(1)+(2(33+-【答案】(1)2) -10 【分析】(1)原式二次根式的乘除法法则进行计算即可得到答案;(1)原式第一项运用二次根式的性质进行化简,第二项运用平方差公式进行化简即可. 【详解】解:(1)+===(2(33+-=5+9-24=14-24 =-10. 【点睛】此题主要考查了二次根式的化简,熟练掌握二次根式的性质是解答此题的关键.25.(1)计算:(2)先化简,再求值:(()8a a a a +--,其中14a =.【答案】(1)2)82-a ,【分析】(1)分别根据二次根式的除法法则、二次根式的性质、二次根式的乘法法则计算和化简各项,再合并同类二次根式即可;(2)分别根据平方差公式和单项式乘以多项式的法则计算各项,再把a 的值代入化简后的式子计算即可. 【详解】(1)==;(2)(()8a a a a +--2228a a a =--+82a =-,当14a =时,原式1824⎫=⨯-=⎪⎭.【点睛】本题考查了整式的乘法和二次根式的混合运算,属于常考题型,熟练掌握基本知识是解题的关键.26.计算(11)1)⨯; (2)【答案】(12+;(2). 【解析】分析:先将二次根式化为最简,然后再进行二次根式的乘法运算.详解:(1)11+;=()31-2 ;(2)原式=(22⨯,==3⨯==点睛:此题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.27.观察下列各式:11111122=+-=11111236=+-=111113412=+-= 请你根据上面三个等式提供的信息,猜想:(1=_____________ (2)请你按照上面每个等式反映的规律,写出用n (n 为正整数)表示的等式:______________;(3【答案】(1)1120;(211(1)n n =++;(3)1156,过程见解析【分析】(1)仿照已知等式确定出所求即可; (2)归纳总结得到一般性规律,写出即可; (3)原式变形后,仿照上式得出结果即可. 【详解】解:(1111114520=+-=; 故答案为:1120;(2111111(1)n n n n =+-=+++;11(1)n n =++;(31156== 【点睛】此题是一个阅读题目,通过阅读找出题目隐含条件.总结:找规律的题,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.28.计算:(1)13⎛+-⨯ ⎝⎭(2))()2221+.【答案】(1)6-;(2)12-【分析】(1)原式化简后,利用二次根式乘法法则计算即可求出值; (2)原式利用平方差公式,以及完全平方公式计算即可求出值. 【详解】解:(1)原式=1(233⨯⨯-⨯=-⨯=⨯⎭=6-;(2)原式=3﹣4+12﹣=12﹣.【点睛】此题考查了二次根式的混合运算,以及平方差公式、完全平方公式,熟练掌握运算法则及公式是解本题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】直接利用最简二次根式的定义分析得出答案.【详解】∴a≥0,且a故选项中-2,32,8都不合题意,∴a的值可能是2.故选:B.【点睛】此题主要考查了最简二次根式的定义,正确把握定义是解题关键.2.D解析:D【分析】利用二次根式的加减法对A、C进行判断;利用二次根式的性质对B进行判断;利用二次根式的除法法则对D进行判断.【详解】解:A A选项错误;B=B选项错误;C、=C选项错误;D 2=,所以D 选项正确. 故选:D . 【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.A解析:A 【分析】利用平方差公式计算a ,利用完全平方公式和二次根式的化简求出b ,利用二次根式大小的比较办法,比较b 、c 得结论. 【详解】解:a=2019×2021-2019×2020=(2020-1)(2020+1)-(2020-1)×2020 =20202-1-20202+2020 =2019; ∵20222-4×2021 =(2021+1)2-4×2021 =20212+2×2021+1-4×2021 =20212-2×2021+1 =(2021-1)2 =20202, ∴b=2020;> ∴c >b >a . 故选:A . 【点睛】本题考查了完全平方公式、平方差公式、二次根式的化简、二次根式大小的比较等知识点.变形2019×2021-2019×2020解决本题的关键.4.D解析:D 【分析】由合并同类项、同底数幂乘法、完全平方公式、以及二次根式的加减运算,分别进行判断,即可得到答案. 【详解】解:A 、222523y y y -=,故A 错误;B 、426x x x ⋅=,故B 错误;C 、222()2a b a ab b --=++,故C 错误;D ==D 正确;故选:D .【点睛】本题考查了合并同类项、同底数幂乘法、完全平方公式、以及二次根式的加减运算,解题的关键是熟练掌握运算法则进行解题.5.A解析:A【分析】本题涉及二次根式化简,在计算时,需要针对每个选项分别进行计算,然后根据实数的运算法则求得计算结果.【详解】=D. 6===,故本项错误;故选:A .【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式的运算.6.B解析:B【解析】=,可知当(a ﹣3)2=0,即a=3故选B .7.C解析:C【分析】根据算术平方根的定义,无理数的定义及估值,二次根式的化简依次判断.【详解】A 12的算术平方根,故该项正确;B 、34<<,故该项正确;C =D=是无理数,故该项正确;故选:C.【点睛】此题考查算术平方根的定义,无理数的定义及估值,二次根式的化简,熟练掌握各知识点并运用解题是关键.8.C解析:C【分析】利用二次根式的乘法法则对A、B进行判断;利用二次根式的化简对C、D进行判断.【详解】A.原式=所以A选项的运算正确;B.原式=所以,B选项的运算正确;C.原式==5,所以C选项的运算错误;D.原式=2,所以D选项的运算正确.故选C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.9.C解析:C【分析】几个二次根式化为最简二次根式后,如果被开方数相同,则这几个二次根式即为同类二次根式.【详解】解=m=7时==,故A错误;当m=11时==B错误;当m=1时=故D错误;当m=2时=故C正确;故选择C.【点睛】本题考查了同类二次根式的定义.10.B解析:B【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【详解】解:A ,不符合题意;BC =2,不符合题意;D 故选B .【点睛】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.二、填空题11.【分析】利用完全平方公式化简,得到;化简分式,最后将代入化简后的分式,计算即可.【详解】将代入得:故答案为:【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在解析:1-【分析】利用完全平方公式化简x =1x =;化简分式,最后将1x =代入化简后的分式,计算即可.【详解】1x =====()211422(2)(2)2221(2)(2)2(1)x x x x x x x x x x x -++-+-⎛⎫+⋅= ⎪-+--+-⎝⎭1x x =-将1x =1=-故答案为:1-【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在于化简x =熟练掌握相关知识点是解题关键. 12.+1【分析】先将用完全平方式表示,再根据进行化简即可.【详解】因为,所以,故答案为:.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二+1【分析】先将3+,()()()0000a a a a a a ⎧>⎪===⎨⎪-<⎩进行化简即可.【详解】因为(2231211+=+=+=+,11===故答案为:1.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二次根式利用完全平方公式分解. 13.a+3【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2所示题目(字母代表正数)翻【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2∵a>0+3.a=a+3.【点睛】本题考查阅读理解的能力,正确理解题意是关键.14.【分析】根据题意可知,代入原函数即可解答.【详解】因为函数,所以当时,.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键.解析:2+【分析】根据题意可知1x=,代入原函数即可解答.【详解】因为函数1xf xx,所以当1x=时,211()2221f x.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键. 15.0【解析】【分析】先将化简为就能确定其最小值为1,再和1作差,即可求解。

相关文档
最新文档