二次根式单元检测试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.a 的值可能是( ) A .2-
B .2
C .
32
D .8
2.下列运算正确的是( )
A =
B =
C .3=
D 2=
3.若2019202120192020a =⨯-⨯,b =,c a ,b ,c 的大小关系是( ) A .a b c << B .a c b <<
C .b a c <<
D .b c a <<
4.下列运算正确的是( )
A .52223-=y y
B .428x x x ⋅=
C .(-a-b )2=a 2-2ab+b 2
D =5.下列计算正确的是( )
A =
B 1-=
C =
D 6=
=
6.已知a ( )
A .0
B .3
C .
D .9
7.的下列说法中错误的是( )
A 12的算术平方根
B .34<<
C 不能化简
D 是无理数 8.以下运算错误的是( )
A =
B .2=
C
D 2=a >0)
9.m 的值为( ) A .7
B .11
C .2
D .1
10.下列属于最简二次根式的是( )
A B C
D 二、填空题
11.已知x =()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭
_________
12.=___________.
13.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用“
”表示算数平
方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为: 22164?a x a x +=则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.
14.已知函数1
x f x
x
,那么21
f _____.
15222a a ++的最小值是______. 16.下面是一个按某种规律排列的数阵:
1
1第行
3
2
5 6
2第行
7
22
3
10 11 23
3第行 13
15
4
17
32 19
25
4第行
根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是 (用含 n 的代数式表示). 17.若2x ﹣3x 2﹣x=_____.
18.20n n 的最小值为___ 19.已知x =
512,y =51
2
,则x 2+xy +y 2的值为______. 20.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记
2
a b c
p ++=
,那么三角形的面积()()()S p p a p b p c =---ABC 中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若4a =,5b =,7c =,则ABC 面积是
_______.
三、解答题
21.若x ,y 为实数,且y
1
2
.求x y y x ++2-x
y y x +-2的值.
【分析】
根据二次根式的性质,被开方数大于等于0可知:1﹣4x ≥0且4x ﹣1≥0,解得x =1
4
,此时y =
1
2
.即可代入求解. 【详解】
解:要使y 有意义,必须140410x x -≥⎧⎨-≤⎩,即1
4
14
x x ⎧≤⎪⎪
⎨
⎪≥
⎪⎩
∴ x =14.当x =14
时,y =12.
又∵
x y y x ++2-x y
y x +-2
=
-
| ∵x =
14,y =1
2,∴ x y <y x
.
∴
+
当x =14
,y =1
2时,原式=
.
【点睛】
(a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
22.观察下列各式子,并回答下面问题.
(1)试写出第n 个式子(用含n 的表达式表示),这个式子一定是二次根式吗?为什么? (2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.
【答案】(1
,该式子一定是二次根式,理由见解析;(2
15和16之间.理由见解析. 【分析】
(1)依据规律可写出第n 个式子,然后判断被开方数的正负情况,从而可做出判断; (2)将16n =代入,得出第16
,再判断即可. 【详解】
解:(1
该式子一定是二次根式,
因为n 为正整数,2
(1)0n n n n -=-≥,所以该式子一定是二次根式
(2
15=
16=,
∴1516<
<.
15和16之间. 【点睛】
本题考查的知识点是二次根式的定义以及估计无理数的大小,掌握用“逼近法”估算无理数的大小的方法是解此题的关键.
23.阅读材料,回答问题:
两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式
a =
,
)
1
11=
1
1互为有理化因式.
(1
)1的有理化因式是 ;
(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:
==
2
5384532
++==
==-进行分母有理化.