必修五简单线性规划典型例题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. “平面区域”型考题 1.不等式组⎪⎩
⎪
⎨⎧-≥≤+<31y y x x
y ,表示的区域为D ,点P 1(0,-2),P 2(0,0),则
( )
A .D P D P ∉∉21且
B .D P D P ∈∉21且
C .
D P D P ∉∈21且D .D P D P ∈∈21且 2.已知点P (x 0,y 0)和点A (1,2)在直线0823:=-+y x l 的异侧,则
( )
A .02300>+y x
B .<+0023y x 0
C .82300<+y x
D .82300>+y x
3.已知点P (1,-2)及其关于原点的对称点均在不等式012>+-by x 表示的平面区域内,则b 的取值范围是 . 2. “平面区域的面积”型考题
1.设平面点集,则所表示的平面图形的面积为 A B C D
2.在平面直角坐标系xOy ,已知平面区域{(,)|1,A x y x y =+≤且0,0}x y ≥≥,则平面区域
{(,)|(,)}B x y x y x y A =+-∈的面积为 ( )A .2 B .1 C .12 D .1
4
3、若A 为不等式组0
02x y y x ≤⎧⎪
≥⎨⎪-≤⎩
表示的平面区域,则当a 从-2连续变化到1时,动直线x y a +=扫
过A 中的那部分区域的面积为 .
4、 若不等式组0
3434
x x y x y ≥⎧⎪
+≥⎨⎪+≤⎩
所表示的平面区域被直线43y kx =+分为面积相等的两部分,则k
的值是 (A )
73 (B ) 37 (C )43 (D ) 34
高 5、若0,0≥≥b a ,且当⎪⎩
⎪
⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a ,b 为坐标点(,)P a b 所形成的平面
区域的面积等于__________.
3. “求约束条件中的参数”型考题
1.在平面直角坐标系中,若不等式组(为常数)所表示的平面区域内的面积等于2,则的值为 A. -
5 B. 1 C. 2 D. 3 2、若直线上存在点满足约束条件,则实数的最大值为( )
A .
B .1
C .
D .2
3、设二元一次不等式组2190802140x y x y x y ⎧+-⎪-+⎨⎪+-⎩
,
,≥≥≤所表示的平面区域为M ,使函数(01)x
y a a a =>≠,的图
象过区域M 的a 的取值范围是( )A .[1,3] B .[2,10] C .[2,9] D .[10,9]
4.设m 为实数,若{250(,)300x y x y x mx y -+≥⎧⎪-≥⎨⎪+≥⎩
}22
{(,)|25}x y x y ⊆+≤,则m 的取值范围是___________.
4. “截距”型考题
1. 满足约束条件,则的最大值为( )
2.设变量满足,则的最大值为A .20 B .35 C .45 D .55
3.若满足约束条件,则的最小值为 。
4.设函数,是由轴和曲线及该曲线在点处的切线所围成的封闭区域,则在上的最大值为 . 5 . “距离”型考题
1. 设不等式组x 1x-2y+30y x ≥⎧⎪
≥⎨⎪≥⎩
所表示的平面区域是1Ω,平面区域是2Ω与1Ω关于直线3490x y --=对
称,对于1Ω中的任意一点A 与2Ω中的任意一点B, ||AB 的最小值等于()A.
285 C. 12
5
2.设不等式组,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是A B C D
3、如果点P 在平面区域⎪⎩
⎪⎨⎧≥-≤-+≥+-012020
22y y x y x 上,点O 在曲线的那么上||,1)2(2
2PQ y x =++最小值为
(A)
23
(B)
15
4- (C)122- (D)12- 6. “斜率”型考题 1.足10,0
x y x -+≤⎧⎨
>⎩则y
x 的取值范围是( )A.(0,1) B.(]0,1 C.(1,+∞) D.[)1,+∞
2.已知正数满足:则的取值范围是 .
7. “求目标函数中的参数”型考题
1.若x ,y 满足约束条件,目标函数仅在点(1,0)处取得最小值,则a 的取值范围是 ( )A .(,
2) B .(,2) C . D .
2.设m >1,在约束条件下,⎪⎩
⎪
⎨⎧≤+≤≥1y x mx y x
y 目标函数z=x+my 的最大值小于2,则m 的取值范围为
A .)21,1(+
B .),21(+∞+
C .(1,3)
D .),3(+∞
6、已知x 、y 满足以下约束条件5
503x y x y x +≥⎧⎪-+≤⎨⎪≤⎩
,使z=x+ay(a>0)取得最小值的最优
解有无数个,则a 的值为 ( ) A 、-3 B 、3 C 、-1 D 、1 8. “平面区域内的整点”型问题
1、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个
2、某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件⎪⎩⎪⎨⎧≤≥+-≥-.112,
932,
22115x y x y x 则1010z x y =+的最大值是(A)80 (B) 85 (C) 90 (D)95 9、线性规划的综合题
1、设实数x ,y 满足3≤xy 2
≤8,4≤≤9,则的最大值是 _________ .
2、设x ,y 满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,0020
63y x y x y x ,
若目标函数(0,0)z ax by a b =+>> 的值是最大值为12,则
23a b
+的最小值为( ) A. 625 B. 38 C. 311
D. 4
3.设,x y 满足约束条件220
8400 , 0x y x y x y -+≥⎧⎪--≤⎨
⎪≥≥⎩
,若目标函数()0,0z abx y
a b =+>> 的最大值为8,则
a b +的最小值为________.
4、已知为直角坐标系原点,,的坐标均满足不等式组,则的最小值为
A .
B .
C .
D .1
5、定义在R 上的函数()f x 是减函数,且对任意的a R ∈,都有()()0f a f a -+=。若,x y 满足不等式2
2
(2)(2)0f x x f y y -+-≤,则当14x ≤≤时,2x y -的最大值为是 _________ .