常见光纤传感器比较
光纤传感器的分类及应用
光纤传感器的分类及应用2008级光信息科学与技术3班牛鑫学号:2光纤传感器(Optical Fiber Transducer)就是利用光导纤维的传光特性,把被测量转换为光特性(强度、相位、偏振态、频率、波长)改变的传感器。
它的基本工作原理是将来自光源的光经过光纤送入调制器,使待测参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏正态等)发生变化,称为被调制的信号光,在经过光纤送入光探测器,经解调后,获得被测参数。
随着现代科学技术的发展, 信息的获得显得越来越重要。
传感器正是感知、检测、监控和转换信息的重要技术手段。
光纤传感器是继光学、电子学为一体的新型传感器, 与以往的传感器不同, 它将被测信号的状态以光信号的形式取出。
光信号不仅能被人所直接感知, 利用半导体二极管如光电二极管等小型简单元件还可以进行光电、电光转换, 极易与一些电子装配相匹配, 这是光纤传感器的优点之一; 另外光纤不仅是一种敏感元件, 而且是一种优良的低损耗传输线; 因此, 光纤传感器还可用于传统的传感器所不适用的远距离测量。
近年来光纤传感器得到了越来越广泛的应用。
近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。
在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。
它具有很多独特的优点:1、灵敏度高由于光是一种波长极短的电磁波, 通过光的相位便得到其光学长度。
以光纤干涉仪为例, 由于所使用的光纤直径很小, 受到微小的机械外力的作用或温度变化时其光学长度要发生变化, 从而引起较大的相位变化。
2、测量速度快光的传播速度最快且能传送二维信息, 因此可用于高速测量。
对雷达等信号的分析要求具有极高的检测速率, 应用电子学的方法难以实现, 利用光的衍射现象的高速频谱分析便可解决。
3 、信息容量大被测信号以光波为载体, 而光的频率极高, 所容纳的频带很宽, 同一根光纤可以传输多路信号。
4 、适用于恶劣环境光纤是一种电介质, 耐高压、耐腐蚀、抗电磁干扰, 可用于其它传感器所不适应的恶劣环境中。
什么是光纤传感器_光纤传感器分类
什么是光纤传感器_光纤传感器分类
光纤传感器简介光纤最早是应用于光的传输,适合长距离传递信息,是现代信息社会光纤通信的基石。
光波在光纤中传播的特征参量会因外界因素的作用而间接或直接地发生变化,由此光纤传感器就能分析探测这些物理量、化学量和生物量的变化。
光纤传感器由光源、入射光纤、出射光纤、光调制器、光探测器以及解调制器组成。
其基本原理是将光源的光经入射光纤送入调制区,光在调制区内与外界被测参数相互作用,使入射光的某些光学性质(如强度、波长、频率、相位、偏正态等)发生变化而成为被调制的信号光,再经出射光纤送入光探测器、解调器而获得被测参数。
光纤传感器的分类光纤传感器按结构类型可分两大类:一类是功能型(传感型)传感器;另一类是非功能性(传光型)传感器。
(1)功能型光纤传感器利用对外界信息具有敏感能力和检测能力的光纤(或特殊光纤)作为传感元件,对光纤内传输的光进行调制,使传输的光的强度、相位、频率或偏振态等特性发生变化,再通过被调制过的信号进行解调,从而得出被测信号。
光纤在其中不仅是导光媒质,而且也是敏感元件,多采用多模光纤。
优点:结构紧凑,灵敏度高。
缺点:须用特殊光纤,成本高。
典型应用:光纤陀螺、光纤水听器等。
(2)非功能型传感器是利用其它敏感元件感受被测量的变化,光纤仅作为信息的传输介质,常采用单模光纤。
光纤在其中仅起导光作用,光照在光纤型敏感元件上被测量调制。
优点:无需特殊光纤及其他特殊技术,比较容易实现,成本低。
缺点:灵敏度较低。
实用化的大都是非功能型的光纤传感器根据被调制的光波的性质参数不同,这两类光纤传。
光纤传感器
第三节光纤传感器光纤传感器是七十年代发展起来的新型传感技术,与常规传感器相比,有很多优点:①抗电磁干扰能力强。
光纤主要由电绝缘材料做成,工作时利用光子传输信息,因而不怕电磁场干扰;此外,光波易于屏蔽,外界光的干扰也很难进入光纤。
②光纤直径只有几微米到几百微米。
而且光纤柔软性好,可深入到机器内部或人体弯曲的内脏等常规传感器不宜到达的部位进行检测。
③光纤集传感与信号传输于一体,利用它很容易构成分布式传感测量。
光纤传感器的优点突出,发展极快。
自1977年以来,已研制出多种光纤传感器,被测量遍及位移、速度、加速度、液位、应变、力、流量、振动、水声、温度、电流、电压、磁场和化学物质等。
新的传感原理及应用正在不断涌现和扩大。
一、光纤传感器的基本知识光纤是一种传输光的细丝,它能够将进入光纤一端的光线传到光纤的另一端。
通常光纤由两层光学性质不同的材料组成,如图7-15所示。
光纤的中间部分是导光的纤芯,纤芯的周围是包层。
包层的折射率n2略小于纤芯的折射率n1,它们的相对折射率差Δ(Δ=1-n2/n1)通常为0.005~0.140。
光纤传光的基础是光的全内反射。
当光线以入射角θ进入光纤的端面时,在端面出发生折射,设折射角为θˊ,然后光线以φ角入射至纤芯与包层的界面。
时, 即当φ角大于纤芯与包层间的临界角φc(7-10)则射入的光线在光纤的界面上发生全反射,并在光纤内部以同样的角度反复逐次反射,直至传播到另一端面。
实际工作时光纤可能弯曲,只要仍满足全反射定律,光线仍继续前进。
由于光纤具有一定柔软性,很容易使光线“转弯”,这给传感器的设计带来了极大的方便。
根据斯乃尔折射定律,(7-11)设当φ达到临界角φc 时的入射角为θc, 由式(7-10)和式(7-11)可得(7-12)式中n0sinθc是为光纤的数值孔径,用NA表示。
它表示当入射光从折射率为n0的外部介质进入光纤时,只有入射角小于θc的光才能在光纤中传播。
否则,光线会从包层中逸出而产生漏光。
光纤传感器的分类及特点
1 光纤传感器基本原理随着工艺水平的提高,光纤技术目前相对成熟。
光纤传感器即为应用光纤传输的基本原理组合的一个广电感应系统。
通常的光纤传感系统由光源、光导纤维、光传感元件,光调制元件和信号处理部分组成[3]。
其工作原理如下图所示:光源发出的光经过光导纤维进入光传感元件,而在光传感元件中受到周围环境场的影响而发生变化的光再进入光调制机构,由其将传感元件测量的参数调制成幅度、相位、偏振等信息,这一过程称为光电转换过程,最后利用微处理器进行信号分析。
如前所述可以看出光纤传感器的传感机理和电磁传感器的传感机理是相似的,但是光纤传感器由于其测量信号的载体是激光,其在光导纤维内部传播,很难受到外界电磁场干扰,因此适合复杂工况下的检测,且操作方便灵活,信号输出自动化。
2 光纤传感器的分类及特点2.1 光纤传感器的分类2.1.1 光纤传感器的分类有不同的方式按光纤在光纤传感器中的作用可分为传感型和传光型两种类型。
传感型光纤传感器的光纤不仅起传递光作用,同时又是光电敏感元件。
由于外界环境对光纤自身的影响,待测量的物理量通过光纤作用于传感器上,使光波导的属性(光强、相位、偏振态、波长等)被调制。
传感器型光纤传感器又分为光强调制型、相位调制型、振态调制型和波长调制型等。
2.1.2 传光型光纤传感器传光型光纤传感器是将经过被测对象所调制的光信号输入光纤后,通过在输出端进行光信号处理而进行测量的,这类传感器带有另外的感光元件对待测物理量敏感,光纤仅作为传光元件,必须附加能够对光纤所传递的光进行调制的敏感元件才能组成传感元件。
光纤传感器根据其测量范围还可分为点式光纤传感器、积分式光纤传感器、分布式光纤传感器三种。
其中,分布式光纤传感器被用来检测大型结构的应变分布,可以快速无损测量结构的位移、内部或表面应力等重要参数。
目前用于土木工程中的光纤传感器类型主要有Math-Zender干涉型光纤传感器,Fabry-pero 腔式光纤传感器,光纤布喇格光栅传感器等。
常见光纤传感器比较
常见光纤传感器比较法布利-比罗特(简称FP)、布拉格光栅(简称FBG)和荧光式光纤传感器都是当前流行,技术上也比较先进的传感器。
因为它们都是基于光纤,所以有很多共同的特点,比如抗电磁干扰可应用于恶劣环境(没有加入电磁过程),传输距离长(光纤中光衰减慢),使用寿命长,结构小巧等等,这里就不再赘述。
我们将重点讨论他们的不同。
精度应该说它们都具有很高的精度,都可以满足绝大多数需求。
但如果进行深入的探讨,从理论上,光纤光栅传感器所能达到的精度要为高。
从加工的角度来说FP的传感精度主要决定于腔长的加工精度,而FBG的精度主要决定于光栅周期间距与有效折射率的控制。
当加工精度都得到保证的时候,FBG将凭借其本身测量机理中优异线性度取胜。
从传感原理可以看出,FP的腔长变化转化为Δλ是通过相位变化和干涉实现的,这是一个非线性过程,而FBG直接通过公式λB=2neffΛ实现有效折射率和光栅周期关于Δλ的转化,完全线性,理论上说将能提供更好的精度。
除此以外,光纤光栅反射光在频域内较之FP干涉极大波包更为尖锐,因此对其中心谱线的测量也应当更为精确。
荧光式测温精度主要取决于荧光物质受激发出荧光的特性和对荧光光强度变化的检测,目前的技术工艺水平,使其测量精度与前两种技术相当,其成本会随精度和测量范围而变化。
但在实际产品中,测量精度受到具体厂家对产品本身的材料、工艺加工水平、信号解调器分辨率等客观因素的影响,还需要针对具体的产品进行具体对比。
集成度与组网在这方面,FBG无疑有着很明显的优势。
光纤光栅其本身的特点使得每个探点仅利用相当少的光源分量,绝大部分光都透过并继续传播。
根据上文介绍,一根光纤上可以最多同时使用30个光栅,传输距离超过45km。
这一特点无疑为组网带来巨大便利。
同时波分复用等技术的使用,也提高了这一技术的可行性。
总得来说FBG非常适合做大范围多节点的分布式测量。
至于FP和荧光式,则对于小规模的网络将更容易实现。
光纤传感器
目录一、引言 (1)二、光纤传感器的基本原理及特点 (1)2.1基本原理 (1)2.2 特点 (2)三、光纤传感器的发展历程 (2)四、光纤传感器的分类及应用原理 (3)4.1 分类 (3)4.2 应用原理 (4)4.2.1光强调制型 (4)4.2.2相位调制型 (5)4.2.3偏振态调制型 (6)五、光纤传感器的应用及存在问题 (6)5.1光纤温度传感器及其应用 (7)5.2光纤陀螺及其应用 (7)六、光纤传感器的发展趋势 (8)光纤传感器一、引言传感器在当代科技领域及实际应用中占有十分重要的地位,各种类型的传感器早已广泛应用于各个学科领域。
近年来,传感器朝着灵敏、精巧、适应性强、智能化和网络化方向发展。
光纤传感技术是20世纪70年代末新兴的一项技术,在全世界成了研究热门,已与光纤通信并驾齐驱。
光纤传感器作为传感器家族的一名新成员,由于其优越的性能而备受青睐,其具有体积小、质量轻、抗电磁干扰、防腐蚀、灵敏度高、测量带宽、检测电子设备与传感器可以间隔很远等优点,优良的性能使得光纤传感器具有广泛的应用前景。
本文从光纤传感器的基本原理及特点、光纤传感器的发展历程、光纤传感器的分类及应用原理、光纤传感器的应用及存在问题以及光纤传感器的发展趋势五大方面对光纤传感器进行介绍。
二、光纤传感器的基本原理及特点光纤( Optical Fiber) 是光导纤维的简称,光纤的主要成份为二氧化硅,由折射较高的纤芯、折射率较低的包层及保护层组成。
纤芯为直径大约0.1 mm 左右的细玻璃丝,把光封闭在其中并沿轴向进行传播的导波结构。
光纤传感器的发现起源于探测光纤外部扰动的实践,在实践中,人们发现当光纤受到外界环境的变化时,会引起光纤内部传输光波参数的变化,而这些变化与外界因素成一定规律,由此发展出光纤传感技术。
2.1基本原理图 1 是光纤传感器的原理结构图。
光纤传感器通常由光源、传输光纤、传感元件或调制区、光检测等部分组成。
最常见的传感器类型
最常见的传感器类型一、接近式传感器接近式传感器可检测附近区域物体是否存在,并且无需物理接触。
存在传感器,是离散输出设备。
通常情况下,磁性趋近式传感器通过感应位于执行器中的磁体,来检测执行器是否到达特定位置。
从一家公司购买执行器,而从另一家公司购买磁性趋近式传感器,通常来说并不是一个好主意。
虽然传感器制造商可能会说,传感器与X、Y和Z执行器兼容,但实际情况是磁铁和安装位置的变化,可能会导致传感问题。
例如,当磁体未处于正确位置时,传感器可能会励磁,或者根本无法励磁。
如果执行器制造商提供与执行器匹配的趋近式传感器,那它应该是首选的传感器。
基于晶体管的趋近式传感器没有移动部件,使用寿命长。
基于簧片的趋近式传感器采用机械触点,使用寿命要短,但成本要低于晶体管类型。
簧片传感器最适合于需要交流电源的应用场合和高温应用场合。
二、位置传感器位置传感器具有模拟量输出,根据执行器上磁体的位置指示器来显示执行器的位置。
从控制角度来讲,位置传感器提供了很大的灵活性。
控制工程师可以确定一系列的设定值点,与组件变化相匹配。
由于这些位置传感器基于磁体(如趋近式传感器),因此最好从同一制造商处购买传感器和执行器(如果可能的话)。
通过Io-Unk功能,可以获取位置传感器的数据,这也可以简化控制,实现参数化。
三、电感式传感器电感趋近式传感器使用法拉第感应定律,来测量物体的存在或模拟输出位置。
选择电感式传感器时,最关键的因素是确定传感器检测的金属类型,从而确定感应距离。
与黑色金属相比,有色金属的传感范围要减少50%以上。
传感器制造商的产品手册应提供样品选择所需的信息。
四、压力、真空传感器确保压力或真空传感器,能够满足以英制(磅/平方英寸)和公制(巴)计量的测量压力范围。
指定最适合所分配空间的外形尺寸。
在设备安装时,应考虑传感器是否应配置指示灯或显示屏幕,以方便运行人员使用。
如果需要快速更改设定值,可考虑采用配置了Io-Link的压力和真空传感器。
光纤传感器的分类
电类传感器 电阻、电容、电感等 温-电敏、力-电敏、磁-电敏 电 电线、电缆
电类传感器
光 光纤传感器
源 光 缆
光量检测
分类内容 调制参量 敏感材料 传输信号 传输介质 光纤传感器 光的振幅、相位、频率、偏振态 温-光敏、力-光敏、磁-光敏 光 光纤、光缆
第9章 光纤传感器 光纤传感器的分类
传感器 干 涉 型 光学现象 被测量
电流、磁场 电场、电压 角速度 振动、压力、加速度、位移 温度 温度、振动、压力、加速度、位移 温度 温度 振动、压力、加速度、位移 振动、压力、位移 气体浓度 液位 电流、磁场 电场、电压、 温度 振动、压力、加速度、位移 速度、流速、振动、加速度 气体浓度 温度
第9章 光纤传感器
1.强度调制型光纤传感器
是一种利用被测对象的变化引起敏感元件的折射率、吸收 或反射等参数的变化,而导致光强度变化来实现敏感测量的传 感器。有利用光纤的微弯损耗;各物质的吸收特性;振动膜或 液晶的反射光强度的变化;物质因各种粒子射线或化学、机械 的激励而发光的现象;以及物质的荧光辐射或光路的遮断等来 构成压力、振动、温度、位移、气体等各种强度调制型光纤传 感器。 优点:结构简单、容易实现,成本低。 缺点:受光源强度波动和连接器损耗变化等影响较大 。
第9章 光纤传感器
第9章 光纤传感器
Fiber Optic Sensors
第9章 光纤传感器
概
论
光纤传感器(FOS: Fiber Optical Sensor)是20世纪70年 代中期发展起来的一种基于光导纤维的新型传感器。它是光纤 和光通信技术迅速发展的产物,它与以电为基础的传感器有本 质区别。光纤传感器用光作为敏感信息的载体,用光纤作为传 递敏感信息的媒质。因此,它同时具有光纤及光学测量的特点。 光纤传感器的特点:
一文深度了解光纤传感器的应用场景
一文深度了解光纤传感器的应用场景文| 传感器技术(WW_CGQJS)光纤传感器与测量技术是当今传感器技术领域新的发展引应用,其测量用的光纤传感器有很多种类,有很多种工作方式。
国内市场上光纤传感器应用主要在以下四种:光纤陀螺、光纤光栅传感器、光纤电流传感器和光纤水听器。
下面对这四种产品分别介绍一下。
光纤传感器应用种类一、光纤陀螺。
光纤陀螺按原理可分为干涉型、谐振型和布里渊型,这是三代光纤陀螺的代表.第一代干涉型光纤陀螺,目前该项技术已经成熟,适合进行批量生产和商品化;第二代谐振型光纤陀螺,暂时还处于实验室研究向实用化推进的发展阶段;第三代布里渊型,它还处于理论研究阶段.光纤陀螺结构根据所采用的光学元件有三种实现方法:小型分立元件系统、全光纤系统和集成光学元件系统。
目前分立光学元件技术已经基本退出,全光纤系统用在开环低精度、低成本的光纤陀螺中,集成光学器件陀螺由于其工艺简单、总体重复性好、成本低,所以在高精度光纤陀螺很受欢迎,是其主要实现方法。
二、光纤光栅传感器目前国内外传感器领域的研究热点之一光纤布拉格光栅传感器。
传统光纤传感器基本上可分为两种类型:光强型和干涉型。
光强型传感器的缺点在于光源不稳定,而且光纤损耗和探测器容易老化;干涉型传感器由于要求两路干涉光的光强同等,所以需要固定参考点而导致应用不方便.目前开发的以光纤布拉格光栅为主的光纤光栅传感器可以避免出现上面两种情况,其传感信号为波长调制、复用能力强.在建筑健康检测、冲击检测、形状控制和振动阻尼检测等应用中,光纤光栅传感器是最理想的灵敏元件.光纤光栅传感器在地球动力学、航天器、电力工业和化学传感中有广泛的应用。
三、光纤电流传感器电力工业的迅猛发展带动电力传输系统容量不断增加,运行电压等级也越来越高,电流也越来越大,这样测量起来就非常困难,这就显现出光纤电流传感器的优点了。
在电力系统中,传统的用来测量电流的传感器是以电磁感应为基础,这就存在以下缺点:它容易爆炸以至引起灾难性事故;大故障电流会造成铁芯磁饱和;铁芯发生共振效应;频率响应慢;测量精度低;信号易受干扰;体积重量大、价格昂贵等等,已经很难满足新一代数字电力网的发展需要。
光纤传感器
2.反射系数型
工作原理:利用光纤光强反射系数的改 变来实现透射光强的调制。
5 吸收系数强度调制
利用光纤的吸收特性进行强度调制
光吸 收系 数强 度调 制原 理图
利用半导体的吸收特性进行强度调制 大多数半导体的禁带宽度都随着温度的升 高而近似线性地减小。因此,它们的光吸 收边的波长将随着T的升高而变化。如果选 用辐射谱与相适应的发光二极管,那么通 过半导体的光强将随着T的升高而下降,测 量透过的光强,即可确定温度。
4 折射率强度调制
作用机理:许多物理量(如温度、压力、应 变等)可以引起物质折射率的变化,从而实 现光调制。 调制方式: (1)利用光纤折射率的变化引起传输波损耗 变化的光强调制; (2)利用折射率的变化引起光纤光强反射系 数改变的透射光强调制。
1.光纤折射率变化型
一般光纤的纤芯和包层的折射率温度系数不 同。在温度恒定时,包层折射率与纤芯折射 率之间的差值是恒定的。当温度变化时, n2、 n1 之间的差发生变化,从而改变传输损耗。 因此,以某一温度时接收到的光强为基准, 根据传输功率的变化即可确定温度的变化。 利用这一原理可以构成温度报警装置。
当外界力增大时,泄 漏到包层的散射光增 大,光纤纤芯的输出 光强度减小;当外界 力减小时,光纤纤芯 的输出光强度增强。 它们之间呈线性关系。
作用机理:
光纤由变形器引起微弯变形时,纤芯中 的光有一部分溢出到包层。若采取适当 的方式探测光强的变化,则可测量位移 变化量,据此可以制作出温度、压力、 振动、位移、应变等光纤传感器。微变 光纤强度调制传感器的优点是灵敏度高、 结构简单、响应速度快。
1、光纤传感器的特点
(1)抗电磁干扰,电绝缘和耐腐蚀; (2)灵敏度高; (3)重量轻、体积小,外形可变; (4)测量对象广泛; (5)对被测介质影响小; (6)容易实现对被测信号的远距离监控,便 于复用,便于成网。
光纤传感器的原理和分类
光纤传感器的原理和分类(以下文章使用普通散文格式书写)光纤传感器的原理和分类光纤传感器是一种基于光学原理的传感器,通过利用光纤的传输特性,实现对物理量、化学量等的测量和检测。
光纤传感器具有高精度、高灵敏度、无电磁干扰等优点,在许多领域得到广泛应用。
本文将介绍光纤传感器的工作原理和主要分类。
一、光纤传感器的原理光纤传感器的原理基于光纤对光的传输和传感。
光信号通过光纤传输时,会因为受到温度、压力、形变等物理量的影响而产生改变。
光纤传感器通过监测光信号的强度、相位、频率或色散等参数的变化,来实现对被测物理量的测量。
光纤传感器的基本原理可以分为干涉型、散射型和吸收型三类。
1. 干涉型光纤传感器干涉型光纤传感器基于光的干涉原理。
光信号在光纤中传输时,会与外界环境发生干涉,从而改变光信号的性质。
典型的干涉型光纤传感器有光纤布里渊散射传感器和光纤干涉仪。
2. 散射型光纤传感器散射型光纤传感器利用光在传输过程中产生的散射现象进行测量。
散射型光纤传感器根据散射光的特性,可分为拉曼散射传感器、布里渊散射传感器和雷利散射传感器。
3. 吸收型光纤传感器吸收型光纤传感器通过测量光在光纤中的吸收情况来实现测量。
常见的吸收型光纤传感器有红外光纤传感器和光纤光谱传感器。
二、光纤传感器的分类根据不同的测量原理和应用场景,光纤传感器可以分为多种不同的分类。
1. 根据测量原理光纤传感器可以根据测量原理的不同进行分类。
常见的分类有干涉型光纤传感器、散射型光纤传感器和吸收型光纤传感器。
2. 根据测量物理量光纤传感器也可以根据测量的物理量进行分类。
根据不同的物理量,可以有温度传感器、压力传感器、形变传感器、气体传感器等。
3. 根据应用场景光纤传感器还可以根据应用场景进行分类。
例如在医疗领域中,可以有生物光纤传感器、荧光光纤传感器等。
三、光纤传感器的应用领域光纤传感器由于其优异的性能和广泛的测量范围,被广泛应用于各个领域。
在石油和天然气工业中,光纤传感器可以用于油井测温、裂缝检测等。
光纤传感器的组成
光纤传感器的组成光纤传感器是一种利用光纤作为传感元件的传感器。
它主要由光源、光纤和光电探测器三部分组成。
光源是光纤传感器中的重要组成部分,它通常采用发光二极管(LED)或激光二极管(LD)作为光源。
光源的选择要根据具体的应用需求来确定,LED光源具有发光稳定、寿命长和成本低的优点,适合一些简单的光纤传感器应用;而LD光源具有光强大、调制速度快等特点,适合一些高要求的光纤传感器应用。
光纤是光纤传感器中的传感元件,它负责将光信号传输到被测物体或环境中,并将反射或散射的光信号传回光电探测器进行检测。
光纤的选择要考虑到传输距离、传输损耗和环境适应能力等因素。
常见的光纤有单模光纤和多模光纤两种,其中单模光纤适用于长距离传输和高精度测量,而多模光纤适用于短距离传输和一般测量。
光电探测器是光纤传感器中的另一个重要组成部分,它负责将经过光纤传输的光信号转换成电信号。
常见的光电探测器有光敏二极管(PD)和光电倍增管(PMT)两种,其中光敏二极管适用于一般的光纤传感器应用,而光电倍增管适用于对光信号强度要求较高的应用。
除了以上三个主要组成部分,光纤传感器还常常需要辅助元件来实现特定的功能。
例如,光纤耦合器用于将光源与光纤连接,光纤分束器用于将光信号分成多个通道,光纤衰减器用于调节光信号的强度等。
这些辅助元件能够提高光纤传感器的性能和功能,使其更加适用于各种实际应用。
光纤传感器是一种利用光纤作为传感元件的传感器。
它由光源、光纤和光电探测器三部分组成,并常常需要辅助元件来实现特定的功能。
光纤传感器具有灵敏度高、抗干扰能力强、体积小等优点,广泛应用于工业控制、环境监测、医疗诊断等领域。
随着光纤技术的不断发展,光纤传感器将在更多领域展现出其巨大的潜力和应用前景。
光纤传感器品牌和参数指标
光纤传感器品牌和参数指标
光纤传感器是一种利用光纤作为传感元件的传感器,它可以通过光学原理来检测光信号的变化,广泛应用于工业自动化、通信、医疗等领域。
以下是一些常见的光纤传感器品牌和一些常见的参数指标:
1. 品牌:
Honeywell,Honeywell是一家知名的工业自动化和控制系统制造商,其光纤传感器产品具有高精度和可靠性。
Omron,Omron也是一家知名的自动化解决方案提供商,其光纤传感器产品广泛应用于工业生产线和机器人系统中。
Keyence,Keyence是一家专注于工业自动化和检测技术的公司,其光纤传感器产品具有高灵敏度和稳定性。
2. 参数指标:
检测距离,光纤传感器的检测距离是指传感器可以有效检测
到目标的最大距离,通常以毫米(mm)为单位。
响应时间,光纤传感器的响应时间是指传感器检测到目标后产生输出信号所需的时间,通常以毫秒(ms)为单位。
光源类型,光纤传感器的光源类型包括LED、激光等,不同的光源类型适用于不同的检测场景和要求。
工作温度范围,光纤传感器的工作温度范围是指传感器可以正常工作的温度范围,通常以摄氏度(℃)表示。
除了上述参数指标外,光纤传感器的安装方式、防护等级、输出类型等也是选择光纤传感器时需要考虑的重要因素。
不同的品牌和型号的光纤传感器在这些参数上可能会有所不同,用户在选择光纤传感器时需要根据实际应用需求进行综合考量,以确保选择到适合的产品。
几种新型传感器简介
9.1 光纤传感器 9.2 光栅传感器 9.3 生物传感器 9.4 超声波传感器 9.5 CCD传感器
图9-1 光纤的结构
9.1 光纤传感器
9.1.1 光纤结构及导光原理 结构:
图9-2 光在光纤中反射过程示意图
1
光纤的主要特性参数
2
数值孔径NA
3
光线在光纤中全反射的入射角的大小称为光导纤维的孔径角,孔径角的正弦与入射光线所在媒质的折射率的乘积称为数值孔径NA。
在两光栅夹角θ一定的情况下,当一块光栅不动,另一块光栅沿x轴方向移动时莫尔条纹沿着近似垂直于光栅运动方向(近似沿y轴方向)运动。如果光栅移动一个栅距d,莫尔条纹对应地移动一个莫尔条纹间距w。并且,当主光栅沿x轴正方向(向右)移动时,莫尔条纹将向上(y轴正方向)移动,当主光栅沿x轴负方向(向左)移动时,莫尔条纹将向下(y轴负方向)移动。这种严格的对应关系,不仅可以根据莫尔条纹的移动量来判断光栅尺的位移量,同时还可以根据莫尔条纹的移动方向来判断光栅尺的位移方向。
四倍频细分就是用四个光电元件依次相距1/4莫尔条纹间距放置,获得依次相位差为90°的四个正弦波信号。用电子线路中的鉴零器,分别鉴取四个信号的零电平,即每个信号由负到过零时发出一个计数脉冲,使得在莫尔条纹的一个周期内产生四个等间隔的计数脉冲,实现了四倍频细分。四倍频细分也可以用两个相距1/4莫尔条纹间距的光电元件获得相位差依次为90°的四个正弦信号。实际上用辨向原理中的两个相位差为90°的辨别信号,加上将它们倒相后的两个信号就可获得这四个信号。
4
数值孔径是表示光导纤维集光能力的一个参数,数值孔径越大表示光导纤维接收的光通量越多,这有利于耦合效率的提高。但数值孔径越大,光信号畸变也越严重,所以要适当选择。
光纤传感器介绍
用光纤作为探头,接收由被测对 象辐射的光或被其反射、散射的光。
结构简单,造耦价合低器廉. 光缺发点送是器灵敏度低。
光纤 被测对象
其典型例子如光纤激光多普勒速度计 信号 光受
、辐射式光纤温度传感器等。
处理 信器
2020/1/15
13
光纤传感技术的分类——按调制方式分
强度调制型 偏振调制型 相位调制型 波长调制型
2020/1/15
9
光纤的基本知识
光纤是一种传输光信息的导光纤维,主要由高强度 石英玻璃、常规玻璃和塑料制成。 光纤由纤芯、包层、护套组成。
纤芯
n1
n2
包层
纤芯 包层
光主要在纤芯中传输,光纤的导光能力 主要取决于纤芯和包层的折射率,纤芯的 折射率n1稍大于包层的折射率n2,典型 数值是n1=1.46~1.51,n2=1.44~1.50.
2020/1/15
氙闪光灯
触发 电极
激光束 聚光器 红宝石棒Al 2O3
2
光纤传感器的发展
但是在当时,光纤传感器真正投入实际应用的却不多,这 主要是因为与传统的传感技术相比,光纤传感器的优势是 本身的物性特性而不是功能特性。
因此,光纤传感技术的重要应用之一是利用光纤质轻、径 细、强抗电磁干扰、抗腐蚀、耐高温、信号衰减小,集信 息传感与传输于一体等特点,解决常规检测技术难以完全 胜任的测量问题。
2020/1/15
3
光纤传感器的发展
20世纪90年代后期,光通信带动下的光子产业取 得了巨大的成功,光纤传感器呈产业化发展,在 国际上形成了许多应用领域,即医学和生物、电 力工业、化学和环境、军事和职能结构、石油行 业、汽车行业、船舶、航空航天等领域。
光纤传感器介绍范文
光纤传感器介绍范文光纤传感器(Optical Fiber Sensor)是一种通过利用光纤作为感应元件的传感器,能够实现对光、温度、压力、形变、流速、湿度等物理量的感测与测量。
它具有快速响应、高精度、抗电磁干扰、免维护等优点,并且在工业、农业、医疗、军事等领域有着广泛的应用。
首先,根据测量参数的不同,光纤传感器可以分为光强传感器、光频传感器和光相位传感器。
光强传感器根据光的强度变化来测量物理量,如压力传感器、形变传感器等。
光频传感器利用光的波长变化来测量物理量,如温度传感器、流速传感器等。
光相位传感器则是通过光的相位变化来测量物理量,如力传感器、应变传感器等。
其次,根据光纤结构的不同,光纤传感器可分为点式传感器和分布式传感器。
点式传感器是将传感元件集中在光纤的一段上,对目标物理量进行测量,如光纤光强传感器。
分布式传感器则是在整根光纤中布置传感元件,可以实现全面、连续的测量,如光纤拉曼温度传感器。
另外,光纤传感器还有许多特殊类型,如布拉格光纤传感器、光纤内腔传感器、光纤光栅传感器等。
布拉格光纤传感器是将布拉格光纤光栅结构应用于传感器中,通过检测光栅的特征谱线来进行测量。
光纤内腔传感器是将传感元件置于光纤内,通过控制光的温度、压力等参数的变化来检测目标物理量。
光纤光栅传感器是将光栅结构直接写入光纤中,通过测量光的衍射特性来进行测量。
光纤传感器具有许多优点,首先是灵敏度高。
光纤传感器可以实现毫微米、微米甚至纳米级的测量精度,适用于许多高精度测量应用。
其次是抗电磁干扰能力强。
光纤传感器的测量信号不受外部电磁干扰的影响,能够在电磁环境恶劣的条件下正常工作。
此外,光纤传感器还具有抗腐蚀、免维护、远程测量等优点,在工业生产、环境监测等领域有广泛的应用。
光纤传感器在许多领域都有实际应用。
在工业自动化领域,光纤传感器可用于测量温度、压力、流速、湿度等参数,实现对生产过程的监控与控制。
在农业领域,光纤传感器可以用于土壤湿度测量、植物生长监测等应用,为农业生产提供精细化管理手段。
光纤传感器的分类及其应用原理
光纤传感器的分类及其应用原理一、本文概述光纤传感器是一种基于光纤技术的高精度、高灵敏度的测量装置,具有广泛的应用前景。
本文旨在全面介绍光纤传感器的分类及其应用原理。
我们将首先概述光纤传感器的基本概念和分类,然后深入探讨各类光纤传感器的应用原理,以及它们在不同领域中的实际应用。
通过阅读本文,读者将能够更深入地理解光纤传感器的工作原理和应用领域,为相关研究和应用提供有益的参考。
在本文中,我们将重点关注光纤传感器的分类,包括基于干涉原理的传感器、基于光强调制的传感器、基于偏振态的传感器等。
每种类型的光纤传感器都有其独特的工作原理和应用场景。
我们将逐一分析这些传感器的工作原理,以及它们在通信、环境监测、医疗健康、军事等领域中的应用实例。
我们还将关注光纤传感器的优势与挑战。
光纤传感器具有抗电磁干扰、灵敏度高、传输距离远等优点,但同时也面临着成本、可靠性等方面的挑战。
我们将对这些问题进行深入探讨,以期为读者提供全面的光纤传感器知识。
本文旨在全面介绍光纤传感器的分类及其应用原理,帮助读者更好地理解和应用光纤传感器技术。
我们希望通过本文的阐述,能够激发读者对光纤传感器技术的兴趣,推动相关研究和应用的发展。
二、光纤传感器的分类光纤传感器按照其工作原理和传感机制的不同,大致可以分为以下几类:强度调制型光纤传感器:这类传感器主要利用光强的变化来感知外界的物理量,如温度、压力、位移等。
当外界物理量作用于光纤时,会导致光纤中的光强发生变化,通过测量这种变化,就可以实现对物理量的测量。
相位调制型光纤传感器:相位调制型光纤传感器主要利用外界物理量对光纤中光的相位进行调制。
当外界物理量作用于光纤时,会导致光的相位发生变化,通过测量相位变化,可以实现对物理量的测量。
这类传感器具有较高的灵敏度和精度。
偏振调制型光纤传感器:偏振调制型光纤传感器主要利用外界物理量对光纤中光的偏振状态进行调制。
当外界物理量作用于光纤时,会导致光的偏振状态发生变化,通过测量偏振状态的变化,可以实现对物理量的测量。
五类光纤传感器基本原理和优点简介
五类光纤传感器基本原理和优点简介来源:与非网根据被调制的光波的性质参数不同,这两类光纤传感器都可再分为强度调制光纤传感器、相位调制光纤传感器、频率调制光纤传感器、偏振态调制光纤传感器和波长调制光纤传感器。
1)强度调制型光纤传感器基本原理是待测物理量引起光纤中传输光光强的变化,通过检测光强的变化实现对待测量的测量。
恒定光源发出的强度为I的光注入传感头,在传感头内,光在被测信号的作用下其强度发生了变化,即受到了外场的调制,使得输出光强的包络线与被测信号的形状一样,光电探测器测出的输出电流也作同样的调制,信号处理电路再检测出调制信号,就得到了被测信号。
这类传感器的优点是结构简单、成本低、容易实现,因此开发应用的比较早,现在已经成功的应用在位移、压力、表面粗糙度、加速度、间隙、力、液位、振动、辐射等的测量。
强度调制的方式很多,大致可分为反射式强度调制、透射式强度调制、光模式强度调制以及折射率和吸收系数强度调制等等。
一般反射式强度调制、透射式强度调制、折射率强度调制称为外调制式,光模式称为内调制式。
但是由于原理的限制,它易受光源波动和连接器损耗变化等的影响,因此这种传感器只能用于干扰源较小的场合。
2)相位调制型光纤传感器基本原理是:在被测能量场的作用下,光纤内的光波的相位发生变化,再用干涉测量技术将相位的变化转换成光强的变化,从而检测到待测的物理量。
相位调制型光纤传感器的优点是具有极高的灵敏度,动态测量范围大,同时响应速度也快,其缺点是对光源要求比较高同时对检测系统的精密度要求也比较高,因此成本相应较高。
目前主要的应用领域为:利用光弹效应的声、压力或振动传感器;利用磁致伸缩效应的电流、磁场传感器;利用电致伸缩的电场、电压传感器;利用赛格纳克效应的旋转角速度传感器(光纤陀螺)等。
3)频率调制型光纤传感器基本原理是利用运动物体反射或散射光的多普勒频移效应来检测其运动速度,即光频率与光接收器和光源间运动状态有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
法布利-比罗特(简称FP)、布拉格光栅(简称FBG)和荧光式光纤传感器都是当前流行,技术上也比较先进的传感器。
精度
应该说它们都具有很高的精度,都可以满足绝大多数需求。
但如果进行深入的探讨,从理论上,光纤光栅传感器所能达到的精度要为高。
从加工的角度来说FP的传感精度主要决定于腔长的加工精度,而FBG的精度主要决定于光栅周期间距与有效折射率的控制。
当加工精度都得到保证的时候,FBG将凭借其本身测量机理中优异线性度取胜。
从传感原理可以看出,FP的腔长变化转化为Δλ是通过相位变化和干涉实现的,这是一个非线性过程,而FBG直接通过公式λB= 2neffΛ 实现有效折射率和光栅周期关于Δλ的转化,完全线性,理论上说将能提供更好的精度。
除此以外,光纤光栅反射光在频域内较之FP干涉极大波包更为尖锐,因此对其中心谱线的测量也应当更为精确。
荧光式测温精度主要取决于荧光物质受激发出荧光的特性和对荧光光强度变化的检测,目前的技术工艺水平,使其测量精度与前两种技术相当,其成本会随精度和测量范围而变化。
但在实际产品中,测量精度受到具体厂家对产品本身的材料、工艺加工水平、信号解调器分辨率等客观因素的影响,还需要针对具体的产品进行具体对比。
集成度与组网
在这方面,FBG无疑有着很明显的优势。
光纤光栅其本身的特点使得每个探点仅利用相当少的光源分量,绝大部分光都透过并继续传播。
根据上文介绍,一根光纤上可以最多同时使用30个光栅,传输距离超过45km。
这一特点无疑为组网带来巨大便利。
同时波分复用等技术的使用,也提高了这一技术的可行性。
总得来说FBG非常适合做大范围多节点的分布式测量。
至于FP和荧光式,则对于小规模的网络将更容易实现。
复杂度
FP和荧光式系统的复杂度应当远低于FBG,其中荧光式最简单。
正如原理部分所阐述,前两种传感器技术最终都归结到对Δλ的测量,明显的,因为FBG的信号弱,并且多伴有解复用要求,其系统要远复杂于FP。
而荧光式属于光强检测,相对更加简单。
响应频率
响应频率更多的取决于网络的设计与滤波解调设备的响应速度。
FBG需要一个高性能的解调解复用接收端,接收端的处理能力往往会影响到其响应频率。
FP和荧光式因其相对简单,响应频率一般可以得到保证。
光源
根据上文的讨论,FBG对光源的要求相当高,需要大功率宽带光源或可调谐光源。
而FP和荧光式的要求则要低得多,这得益于FP有较强的反射信号,及荧光式的光源仅需起到激发荧光的作用即可。
灵活性与适用范围
三者的探头都是相当小巧与灵活的,但是FBG显然要受制于其复杂的波长移位检测技术。
在温度较高的环境中(300 °C) 左右,光栅将有可能被擦去。
所以FBG不适用于较大的温度范围。
成本
根据以上讨论,就单测点(或少数测点,如少于50个测点)时,FP和荧光式系统因为复杂性低,波长移位检测技术简单,光源要求低等条件,无疑要占据优势。
而荧光式最具成本优势。
然而,对于大型超过50节点的系统,FP和荧光式因为其组网的困难,会带来的成本的迅速上升。
综上所述,一般认为FBG传感器适用于大型,复杂,高精度要求的低温分布式传感网络。
而FP和荧光式响应频率快(可达200KHz)、探头体积小(微米量级)、光源寿命长等优点,则适用于灵活,小型,简单的传感系统。
荧光式尤其具备高温测量和低成本的优势。
当今先进的光纤传感器的特点
伴随着光导纤维和光纤通信技术发展而出现的光纤传感器, 其传感灵敏度要比传统传感器高许多倍,而且它可以在高电压、大噪声、高温、强腐蚀性等很多特殊环境下正常工作,还可以与光纤遥感、遥测技术配合,形成光纤遥感系统和光纤遥测系统。
光纤传感技术是许多经济、军事强国争相研究的高新技术,它可广泛应用于国民经济的各个领域和国防军事领域。
在航天航空(飞机及航天器各部位压力测量、温度测量、陀螺等)、航海(声纳等)、工程项目(桥梁建设及修复的监测、铁路等)石油开采(液面高度、流量测量、二相流中空隙度的测量)、电力传输(高压输电网的电流测量、电压测量)、核工业(放射剂量测量、原子能发电站泄漏剂量监测)医疗(血液流速测量、血压及心音测量)、科学研究(地球自转,敏感蒙皮)等众多领域都得到了广泛的应用.因此我公司代理多家国外专业厂家的光纤传感器如:白光法布里-珀罗(Fabry-Perot)干涉仪型光纤传感器产品,布拉格(Bragg)光栅型分布式和荧光式光纤传感器等相关产品来满足国内相应行业的应用.
产品主要有以下特点:
不受电磁干扰(EMI)/无线电频率干扰(RFI)、抗腐蚀
适用于航天航空、兵器,电力,石油开发,航海,核工业,医疗,等领域
微型和坚固结实的传感器
体积小
耐高温
高精度
本质安全
按客户要求进行包装
光纤声学压力传感器其特点在于即使在最不利的条件下仍具有高频率响应(30KHz)和探测微小压力变化的高敏感度。
专门为声学、麦克风,机动车辆,航天航空,空气动力学应用或当需要非常敏感的压力传感器时而设计的,方面的测试。
应变传感器具有体积小、精度高,抗电磁干扰和*干扰,耐腐蚀和工作温度范围大的特点,同时具有静态/动态响应,高敏感度和高分辨率(0.01%满量程),可不受光纤弯曲的影响远距离传输信号,实现工程单位绝对量度适合用到航天航空、建筑工程、桥梁建造和维护等力学工程方面。
光纤陀螺仪由于它具有带宽较大、分辨率高、偏差稳定性好和抗冲击振动性能好等一系列优点,因而它被广泛应用于国民经济建设和国防装备建设各领域。