秩和检验

合集下载

秩和检验

秩和检验
验统计量,即
T Tmin( n1orn2 )
3.确定P值范围并作推断
(1)当n1 ≤ 10且n2-n1≤10时,
查附表7的T界值表(P269)
(2)当n1>10或n2-n1>10时,按正态 近似公式(7.3)
相同秩次较多时,校正公式(7.4)
其中 为第j个相同秩次的个数。
二、等级资料的两样本比较(例7.4)
3. 编秩次 (1)d=0 舍去不计,用以检验的有效对子
数n相应减少。
(2)│d│同,取平均秩
4. 求秩和,并定检验统计量
T=T+ orT- (核对:T++T-=(n+1)n/2 )
5.确定P值范围并作推断
(1)当有效对子数n≤50,查附表6的
T界值表(P268)
(2)当n>50时,按正态近似公式(7.1) 相同秩次较多时,校正公式(7.2)
1. 建立检验假设,确定检验水准
H0:总体M1=M2,
即两总体分布位置相同;
H1:总体M1≠M2,
即两总体分布位置不同; α=0.05
2.计算检验统计量u 值
(1)编秩:本例为等级资料,先 按组段计算各等级的合计人数,再 确定秩次范围及平均秩次。
(2)计算秩和,确定T 并求检验统 计量u 值:
以各组段的平均秩次分别与各等级例
在实际应用中,秩和检验法有多种具体化: 配对设计的两样本比较 成组设计两样本比较的秩和检验 成组设计多样本比较的秩和检验 多个样本两两比较的秩和检验
符号检验法
检验目标:X与Y是两个连续型总体,各有分布函数
F1(x)与 F2(x) ,现从中分别抽取两个独立样本 ( X1, X 2 , , X n )与 (Y1,Y2,...,Yn ) ,要在显著性水平

秩和检验【医学统计学】

秩和检验【医学统计学】

568.4
14.0
384.6
3.0
556.2
13.0
369.1
1.0
435.7
7.0
377.8
2.0
574.8
15.0
436.7
8.0
468.7
12.0
662.9
19.5
433.4
6.0
582.8
16.5
442.3
10.0
438.1
9.0
426.1
5.0
n1 10
T1 101
n2 12
T2 152
2.求检验统计量T 值
①省略所有差值为0的对子数,观察单位数减去0对子数 的个数 ②按差值的绝对值从小到大编秩,绝对值相等的差值若 符号不同取平均值,并保持原差值的正负号;
③任取正秩和或负秩和为T,本例取T-=3。
3. 确定P 值,作出推断结论
2020/8/8
15
检验步骤
查附表12 • 本例T=3,n=10,
3 9 6 8 7 -1 10 4 -2 5
T 52 T 3
2020/8/8
10
配对符号秩检验基本思想
• 当H0(差值的总体中位数Md=0)成立,任一配对差值出现正号、负号的 机会均等,秩和T-与T+的理论数也应相等为n(n+1)/4
• 可以证明:
• H0为真时,秩统计量T是对称分布 • H0非真时,T呈偏态分布
单纯⑴虚寒型 ⑵3 ⑶6 ⑷25 ⑸26 13 ⑻ 73
喘息虚寒型
1
3 10
9
3 26
虚寒阻塞型 16 28 61 27 ⑹9 141
2020/8/8
21

秩和检验零值编秩原则

秩和检验零值编秩原则

秩和检验零值编秩原则摘要:1.秩和检验概述2.零值编秩原则的定义3.零值编秩原则的应用4.零值编秩原则的优点与局限性正文:一、秩和检验概述秩和检验(Wilcoxon signed-rank test)是一种非参数检验方法,用于检验两个样本之间是否存在显著差异。

该方法由美国统计学家Wilcoxon 于1945 年提出,适用于总体分布不明、分布不对称以及组间方差不齐的情况下进行比较。

二、零值编秩原则的定义零值编秩原则是秩和检验中一种重要的编秩方法,其主要思想是将所有零值替换为最小的非零值,然后再进行排序。

具体操作步骤如下:1.对两个样本的数据进行合并,并按从小到大的顺序进行排序;2.将合并后的数据中所有零值替换为最小的非零值;3.根据替换后的数据,计算各数据点的秩次;4.根据秩次计算检验统计量,进而判断两组样本之间是否存在显著差异。

三、零值编秩原则的应用零值编秩原则在秩和检验中具有广泛的应用,尤其在处理数据中含有大量零值的情况时,可以有效地提高检验效能。

例如,在医学研究中,对两组治疗方法的效果进行比较时,可能会遇到一些患者未出现明显疗效的情况,这时采用零值编秩原则可以更好地分析数据。

四、零值编秩原则的优点与局限性1.优点:(1)适用于各种分布类型的数据;(2)对数据中的零值处理更加合理;(3)能有效提高检验效能,尤其适用于数据中含有大量零值的情况。

2.局限性:(1)零值编秩原则依赖于非零值的分布,当非零值分布严重偏态时,可能影响检验结果的准确性;(2)当样本量较小时,零值编秩原则可能无法充分发挥作用。

在这种情况下,可以考虑使用其他非参数检验方法,如Mann-Whitney U 检验等。

总之,零值编秩原则为秩和检验提供了一种有效的编秩方法,尤其在处理含有大量零值的数据时具有较高的实用价值。

秩和检验

秩和检验
结果: W检验:W1=0.865,P=0.019<0.05; W2=0.891,P=0.014<0.05; W3=0.937, P=0.232>0.05 其中两组独立样本资料均不符合正态分布
三、建立假设检验,确定检验水准
H0: 三组总体分布相同,即三组吞噬指数的总体 分布相同
H1: 三组总体分布不全相同,即三组吞噬指数的 总体分布不全相同
787.47
880.83
差值
10
27.88
1.15
154.72
结果展示: 根据样本数据分布类型,选择合适的表示方法 正态分布时,用均数和标准差表示(mean±SD) 偏态分布时,用中位数和四分位间距表示
两样本比较的秩和检验
例2、在河流监测断面优化研究中,研究者从某河流甲乙两个
断面分别随机抽取10和15个样本,测得其亚硝酸盐氮(mg/L)
表1 不同剂量组小鼠肝糖原含量(mg/100g)
小鼠对号 1 2 3 4 5 6 7 8 9 10
中剂量组 620.16 866.50 641.22 812.91 738.96 899.38 760.78 694.95 749.92 793.94
高剂量组 958.47 838.42 788.90 815.20 783.17 910.92 758.49 870.80 862.26 805.48
要求掌握内容
计算机操作
配对比较的秩和检验 两样本比较的秩和检验 多个独立样本比较的秩和检验
结果的表达
配对比较的秩和检验
例1、某研究者欲研究保健食品对小鼠抗疲劳作用,将同种属的小鼠按性 别和年龄相同、体重相近配成对子,共10对,并将每对中的两只小鼠随 机分到保健食品两个不同的剂量组,过一定时期将小鼠处死,测得其肝 糖原含量(mg/100g),结果见表1,问不同剂量组的小鼠肝糖原含量有 无差别?

第十一讲 秩和检验

第十一讲 秩和检验

适用范围
1、成组设计的两样本计量数据,不符合 t 检 验的条件(方差相等,且服从正态分布); 2、两组等级资料或两端无确切值的资料。
一、原始数据的两样本比较
基本思想: • 假定:两组样本的总体分布形式相同(即 H0成立),则两样本来自同一总体,且任 一组秩和不应太大或太小 。即T 与平均秩 和 n1(N+1)/2应相差不大。 N = n1+n2
• 前面介绍的检验方法首先假定分析变量 服从特定的已知分布(如正态分布), 然后对分布参数(如均数)作检验。这 类 检 验 方 法 称 参 数 检 验 ( parametric test)。 • 今天介绍的检验方法不对变量的分布作 严格假定,这类检验称非参数检验 (nonparametric test)。
非参数统计
(nonparametric statistics)
对总体的分布类型不 作特殊要求 ,统计 推断时不涉及参数 不受总体参数的影响,比 较的是分布或分布位置
依赖于特定分布类 型,比较的是参数
非参数统计的适用情况
• • • • • 等级资料 偏态分布资料 分布不明资料 个别数据偏离过大的资料 各组方差明显不齐的资料
• 确定P值: 以较小绝对值的秩和为T值。 本例T=3.5 以n=11查附表6(P268,单侧) p<0.005, • 判定结果: 按α=0.05水准,拒绝H0,接受H1,故可以 认为该厂工人尿氟含量高于当地健康人。
第二节 成组设计两样本比较 的秩和检验
Wilcoxon rank sum test
这下面一行(记为Ri)就是上面一行数 据Xi的秩。
秩和检验原理
• 秩和检验(rank sum test):是通过对数 据依小到大排列的秩次,以求秩次之和来 进行假设检验的方法。

秩和检验

秩和检验
结论:可以认为该保健食品的不同 剂量对小鼠肝糖原含量的作用不同
12
五、统计结果表达
表2 比较不同剂量的保健食品对小鼠抗疲劳作用的秩和检验
分组
例数 中位数 25百分位数 75百分位数 Z 统计量 P值
中剂量组 10 755.35
681.52
826.31 -2.193 0.028
高剂量组 10 826.81
秩和检验
(Rank Sum Test)
1
秩和检验(rank sum test)
秩和检验是一种非参数检验(non-parametric test)。它不依赖于总体分布的具体形式,应 用时可以不考虑被研究对象为何种分布以及分 布是否已知,因而适用性较强。
秩和检验是总体分布之间而不是参数(参数检 验,如t检验、方差分析)之间的检验。
787.47
880.83
差值
10
27.88
1.15
154.72
结果展示: 根据样本数据分布类型,选择合适的表示方法 正态分布时,用均数和标准差表示(mean±SD) 偏态分布时,用中位数和四分位间距表示
13
两样本比较的秩和检验
例2、在河流监测断面优化研究中,研究者从某河流甲乙两个
断面分别随机抽取10和15个样本,测得其亚硝酸盐氮(mg/L)
4
要求掌握内容 计算机操作
配对比较的秩和检验 两样本比较的秩和检验 多个独立样本比较的秩和检验
结果的表达
5
配对比较的秩和检验
例1、某研究者欲研究保健食品对小鼠抗疲劳作用,将同种属的小鼠按性 别和年龄相同、体重相近配成对子,共10对,并将每对中的两只小鼠随 机分到保健食品两个不同的剂量组,过一定时期将小鼠处死,测得其肝 糖原含量(mg/100g),结果见表1,问不同剂量组的小鼠肝糖原含量有 无差别?

秩和检验

秩和检验

某药对两种病情的老年慢性支气管炎患者的疗效
合 计 秩次范围 平均秩 次 秩 单纯性 和 肺气肿
控 制 显 效 有 效 无 效 合 计
65 42 107 1~107 18 6
54
3510 2151 4740
2268 717 3634
24 108~131 119.5 53 132~184 158
30 23 13 11
(2)大样本时,正态近似法:
| T n( n 1 ) / 4 | 0.5 u n( n 1 )( 2n 1 ) / 24
校正公式:(当相持个数较多时)
u | T n( n 1 ) / 4 | 0.5 ( t3 tj ) n( n 1 )( 2n 1 ) j 24 48
12 342 602 262 H 3(15 1) 6.32 15(15 1) 5 5 5
2 i
Hc H C
分子为H值,分母C为校正数,
tj C 1 N N 校正后,Hc>H,P值减小。
3 j 3
t
HC 1
H ( t3 tj ) j N3 N
此例n1=82,n2=126,n2-n1=44, 用正态分布法。求u值
计算校正的uc值,即:
8780.5 82 208 1 / 2 0.5 u 0.4974 82 126 208 1) 12 ( /
tj ( 3 107 243 24 533 53 243 24 107 )( )( )( ) C 1 1 0.8443 3 N N 208 208
3 j 3
t
0.4974 uc 0.541 0.8443

秩和检验

秩和检验

1、建立假设及确定检验水准 H0:差值总体水平为0。 H1:差值总体水平不为0。 α =0.05 2、计算T值 (1)求差:算出每对差值 (2)编秩:按差值绝对值大小从小到大编秩,并冠以 原差值的正负号。 A 若差值为0,可删去不计,不编秩。 B 若差值的绝对值相等,符号相反,则以平均秩 次作为每一个差值的秩次,保留原差值符号。 C 若差值完全相等,则按原秩号,不必平均。 (3)求秩和:将正负秩次分别相加,以秩和绝对值小 则为T。本例T=8。
3、确定值,判断结果。 (1)查表法:当n 50 时
得: T0.05,

11
= 10~56,( T0.01,
11
=
5~61)
T+ 或 T- :
落在范围内,则P>0.05; 落在范围外, 则P<0.05; 等于界值, 则P=0.05。
现T=8或58,故 0.01 < P<0.05
基本思想
注意:配对的对子数不能少于6。 本法的基本思想:若H0成立,则样本的正负秩和应较接近于T值的均数n(n+1 )/4,T值不会很小。若正负秩和相差悬殊,则T值特别小,则在H0成立的情况下, 由于抽样误差所至的可能性很小,当P<α 时,拒绝H0。 随着n增大,T的分布逐渐逼近均数为n(n+1)/4,方差为n(n+1)(2n+1) /24的正态分布。N>50时,可用u-T代替秩和检验。
本例 T = 170 查表得: T0.05,
(10,2) (10,2)
= 84~146
T0.01,
所以 P < 0.01
= 79~151
(2)正态近似法:
当超过附表的范围时(n1>10, n2 - n1 >10)

医学统计学等级资料的秩和检验

医学统计学等级资料的秩和检验
排除异常值
在某些情况下,可以排除异常值以提高检验的稳定性。但应谨慎处理,确保不会排除对 总体分布有重要影响的值。
稳健统计方法
采用稳健统计方法可以在一定程度上减少异常值对检验结果的影响,如使用中位数、众 数等稳健统计量进行秩和检验。
06
秩和检验的展望
秩和检验的发展趋势
广泛应用
秩和检验作为一种非参数统计方法,在医 学、生物学、环境科学等秩和,判断 两组数据的优劣或差异性,从而 进行假设检验。
适用范围
适用于等级资料和连续变量资料, 尤其适用于小样本和不服从正态 分布的数据。
秩和检验的步骤
01
数据整理
对等级资料进行排序,并赋予相应 的秩。
确定检验统计量
根据秩和计算出检验统计量,如Z值、 H值等。
03
02
计算秩和
在蛋白质组学研究中,秩和检验 用于分析蛋白质表达水平在不同 样本之间的差异。
在其他领域的应用
环境卫生研究
在环境卫生研究中,秩和检验用于评估不同暴露水平对健康的影响。
心理学研究
在心理学研究中,秩和检验用于比较不同干预或实验条件下的心理状态或行为差异。
05
秩和检验的注意事项
样本量的问题
样本量过小
当样本量过小时,无法充分反映总体分布情况,可能导致 检验结果不准确。
等级资料
按照事物的属性特征进行等级划分所得的数据,如 疗效评价中的治愈、显效、好转、无效等。
计量资料
通过度量衡等方法获得的数据,如身高、体重等。
等级资料的特点
有序性
等级资料具有有序性,不同等级之间存在一定的顺序 关系。
差异性
不同等级之间存在差异,同一等级内的数据具有相似 性。
相对性

秩和检验

秩和检验

秩和检验秩和检验方法最早是由维尔克松提出,叫维尔克松两样本检验法。

后来曼—惠特尼将其应用到两不等()的情况,因而又称为曼—惠特尼U检验。

这种方法主要用于比较两个独立样本的差异。

1、假设中的等价问题设有两个连续型总体, 它们的概率密度函数分别为:f1(x),f2(x)(均为未知)已知f1(x) = f2(x?a),a为末知常数,要检验的各假设为:H0:A = 0,H1:a < 0.H0:A = 0,H1:a > 0..设两个总体的均值存在,分别记为μ1,μ2,由于f1,f2最多只差一平移,则有μ2 = μ1?a。

此时, 上述各假设分别等价于:H0:μ1 = μ2,H1:μ1 < μ2H0:μ1 = μ2,H1:μ1 > μ22、秩的定义设X为一总体,将容量为n的样本观察值按自小到大的次序编号排列成x(1)< x(2)< Λ < x(n),称x(i)的足标i为x(i)的秩,i = 1,2,Λ,n。

例如:某施行团人员的行李重量数据如表:重量(kg)3439412833写出重量33的秩。

因为28<33<34<39<41,故33的秩为2。

特殊情况:如果在排列大小时出现了相同大小的观察值, 则其秩的定义为足标的平均值。

例如: 抽得的样本观察值按次序排成0,1,1,1,2,3,3,则3个1的秩均为,两个3的秩均为.3、秩和的定义现设1,2两总体分别抽取容量为n1,n2的样本,且设两样本独立。

这里总假定。

我们将这n1 + n2个观察值放在一起,按自小到大的次序排列,求出每个观察值的秩,然后将属于第1个总体的样本观察值的秩相加,其和记为R1,称为第1样本的秩和,其余观察值的秩的总和记作R2,称为第2样本的秩和。

显然,R1和R2是,且有4、秩和检验法的定义秩和检验是一种非参数检验法, 它是一种用样本秩来代替样本值的检验法。

用秩和检验可以检验两个总体的分布函数是否相等的问题秩和检验的适用范围如果两个样本来自两个独立的但非正态获形态不清的两总体,要检验两样本之间的差异是否显着,不应运用参数检验中的,而需采用秩和检验。

秩和检验graphpad步骤

秩和检验graphpad步骤

秩和检验(Wilcoxon秩和检验)1. 什么是秩和检验?秩和检验是一种非参数统计方法,用于比较两个相关样本或配对样本的差异。

它的原假设是两个样本的总体没有差异,而备择假设是两个样本的总体存在差异。

秩和检验是Wilcoxon秩和检验的简称,由Frank Wilcoxon于1945年提出。

秩和检验适用于以下情况: - 样本数据不满足正态分布假设; - 样本数据为顺序数据或等距数据,而非连续数据。

2. 秩和检验的基本原理秩和检验的基本原理是将两个相关样本(或配对样本)的观测值按大小排序,然后计算它们的秩次。

秩次是指将样本数据按从小到大排列后,每个数据所对应的位置。

对于配对样本,先计算每对观测值的差异,然后对差异的绝对值进行排序,得到秩次。

对于相关样本,将两个样本合并后进行排序,然后计算秩次。

计算完秩次后,根据秩次之和与期望秩次之和的差异,判断两个样本的总体是否存在显著差异。

3. 秩和检验的步骤步骤1:建立假设设定原假设(H0)和备择假设(H1)。

原假设通常是两个样本的总体没有差异,备择假设则是两个样本的总体存在差异。

步骤2:计算秩次对于配对样本,计算每对观测值的差异,并对差异的绝对值进行排序,得到秩次。

对于相关样本,将两个样本的观测值合并,并进行排序,得到秩次。

步骤3:计算秩次和计算两个样本的秩次和,即将步骤2中得到的秩次相加。

步骤4:计算期望秩次和根据样本容量,计算期望秩次和,即将1到n的秩次相加,其中n为样本容量。

步骤5:计算秩和统计量计算秩次和与期望秩次和的差异,得到秩和统计量(W)。

步骤6:判断显著性根据秩和统计量(W)和样本容量,查找秩和检验的临界值。

如果秩和统计量大于临界值,则拒绝原假设,认为两个样本的总体存在差异;如果秩和统计量小于等于临界值,则接受原假设,认为两个样本的总体没有差异。

4. 使用GraphPad进行秩和检验的步骤GraphPad是一款常用的统计分析软件,提供了方便的秩和检验功能。

成组两样本资料的秩和检验

成组两样本资料的秩和检验
将数据转换为标准化的形式,便于比较和分析。
数据转换
根据研究目的,对数据进行适当的转换,如对数转换或平方根转换。
秩次的计算与比较
计算秩次
比较秩次
根据数据的大小,为每个数据分配一个秩次。
比较两组数据的秩次分布,观察是否存在显 著差异。
结果解释与结论
要点一
结果解读
根据秩次比较结果,判断两组数据是否存在统计学上的显 著差异。
它利用了每个样本中观察值的秩次( 即观察值的相对位置)来进行统计分 析,而不是直接使用观察值本身。
特点
1
无需假设数据符合正态分布,因此对非正态分布 的数据具有较好的稳健性。
2
不受异常值影响,对数据异常值的处理较为稳健。
3
适用于小样本数据或总体分布未知的情况。
应用场景
比较两组独立样本的总体分布是否存在显著差异,例如比较不同治疗方法 的效果。
假设前提
F检验要求数据来自正态分布的总 体;秩和检验对数据的分布没有 严格要求,可以处理非正态分布 或非参数数据。
秩和检验的注意事项
06
与建议
注意事项
异常值处理
在计算秩次之前,应识别并处 理可能的异常值,以避免对整 体数据造成过大影响。
数据分布
尽量避免数据过于集中或离散, 以减少误差。
数据类型
确保两样本数据均为连续变量 或等级变量,不适用于分类数 据。
数据处理方式
t检验通过计算均数和标准差来比较两组数据的均值;秩和检验依据数据的大小顺序排 列,然后计算秩次。
与卡方检验的频数与期望频数之间的差 异;秩和检验用于比较两组数据的整体分布是否一致。
数据类型
卡方检验通常用于处理分类数据;秩和检验适用于连续或 等级数据。

秩和检验方差公式推导

秩和检验方差公式推导

秩和检验方差公式推导一、秩和检验简介。

秩和检验(rank sum test)是一种非参数检验方法,用于比较两个独立样本或配对样本的分布情况,它不依赖于总体分布的具体形式,对总体分布的形状不做严格假设。

二、秩和检验方差公式的推导。

(一)两独立样本秩和检验(Mann - Whitney U检验)中方差的推导。

设两组样本量分别为n_1和n_2,且n = n_1 + n_2。

1. 定义秩次。

- 将两组数据混合后从小到大排序,每个数据对应的序号就是秩次。

设第一组样本的秩和为T_1。

2. 计算期望。

- 根据概率原理,在所有可能的排列下,第一组样本的每个数据取到每个秩次的概率是相等的。

- 混合后所有数据秩次之和为∑_i = 1^ni=(n(n + 1))/(2)。

- 第一组样本秩和T_1的期望E(T_1)=(n_1(n+1))/(2)。

3. 推导方差。

- 设R_ij表示第i组(i = 1,2)中第j个数据的秩次。

- 对于第一组样本,T_1=∑_j = 1^n_1R_1j。

- 根据方差的性质D(T_1)=∑_j = 1^n_1D(R_1j)+2∑_1≤slan t j。

- 计算D(R_ij):- 对于单个秩次R_ij,它在1,2,·s,n中取值是等可能的。

- E(R_ij)=(n + 1)/(2)。

- D(R_ij)=(n(n + 1))/(12)。

- 计算Cov(R_1j,R_1k)(j≠ k):- 由于Cov(R_1j,R_1k)=(-n(n + 1))/(12(n-1))。

- 代入上述方差公式可得:- D(T_1)=(n_1n_2(n + 1))/(12)(二)配对样本秩和检验(Wilcoxon符号秩和检验)中方差的推导。

设配对样本的对子数为n。

1. 计算差值并编秩。

- 先计算每对数据的差值d_i,然后对| d_i|从小到大编秩,若d_i = 0,则舍去该对数据,对子数n相应减少。

设正差值的秩和为T^+。

秩和检验

秩和检验

2
1
3
2
4
3
5
4
6
5
7
6
8
7
9
8
10
9.5
11
11
12
12.5
13
14
83
步骤:
1、建立假设
H0 :生存日数分布相同 H1 :生存日数分布不相同
指定检验水平,α=0.05
2、选择统计学方法 编秩
分别求两组的秩和 T1=170, T2=83 计算检验统计量 取样本量小的秩和T=170 3、确定概率值 查表(两样本比较的秩和检验)
指定检验水平,α=0.05
2、选择统计学方法
编秩
分别求正负秩和 T+=26.5, T-=18.5 计算检验统计量 取T=18.5
3、确定概率值
由于n<=25,n=9,所以查T界值表双侧(配对 比较的符号秩和检验)0.10为8-37,由于 T=18.5,所以P值>0.10
做出专业结论:离子法和蒸馏法测定值的差别无 统计学意义。
第一节 配对两样本:符号秩和检验
离子交换法
蒸馏法

秩次
0.5
0
0.5
2
2.2
1.1
1.1
7
0
0
0
-
2.3
1.3
1
6
6.2
3.4
2.8
8
1
4.6
-3.6
-9
1.8
1.1
0.7
3.5
4.4
4.6
-0.2
-1
2.7
3.4
-0.7
-3.5
1.3
2.1

秩 和 检 验

秩 和 检 验



(2)计算检验统计量 T 1求差值d,见表12.1(4) 2编秩
编秩原则:
依差值的绝对值从小到大编秩。 编秩时遇差值等于零,舍去不计,同时样本例数减1。 遇绝对值相等差值,取平均秩次。若符号相同,既可以 顺次编秩,也可以求平均秩次,并将各 秩次冠以原差值 的正负号。
3求秩和并确定检验统计量:分别求出正 负秩之和,任取正或负秩和作为统计量。 本例T=21.5或23.5。
切数据的资料
• 计算简便

缺点
• 对于符合参数检验条件的资料其检验效能较低,
因而,对这类资料应首选参数检验
秩及秩和的概念
秩(假设按年龄大小) f m f f f m m f f m m m 15 18 25 26 29 31 32 37 41 48 51 55 1 2 3 4 5 6 7 8 9 10 11 12 秩:对数据从小到大排序,顺序号即为秩
查附表 2(t 界值表, 时)得单侧P 0.0005 , 按 0.05 水准拒绝H 0 ,接受H1 ,可认为吸烟工人的 HbCO(%)含量高于不吸烟工人的 HbCO(%)含量。
完全随机设计多个样本比较的 Kruskal-Wallis H 检验
一、多个独立样本比较的 Kruskal-Wallis H 检验
Kruskal-Wallis H 检验,用于推断计量资料 或等级资料的多个独立样本所来自的多个总体 分布是否有差别。在理论上检验假设 H 0 应为多 个总体分布相同,即多个样本来自同一总体。由 于 H 检验对多个总体分布的形状差别不敏感, 故
在实际应用中检验假设 H 0 可写作多个总体分布 位置相同。 对立的备择假设 H1 为多个总体分布位 置不全相同。
表8-10 小白鼠接种三种不同菌型伤寒杆菌的存活日数比较

秩和检验

秩和检验
① 总体分布形式未知或分布类型不明(n<30); ② 偏态分布的资料(非正态分布的资料): ③ 等级资料:不能精确测定,只能以严重程度、优 劣等级、次序先后等表示 ——单向有序R*C资料 ④ 不满足参数检验条件的资料:各组方差明显不齐。
⑤ 个别数据偏大或数据一端或两端是不确定数值, (必选)
如“>50kg”等。
表 9-5 两组人痰液嗜酸性粒细胞的秩和计算 嗜酸性 粒细胞 ( 1) + ++ +++ 合计 健康人 ( 2) 5 18 16 5 44 例数 病人 (3) 11 10 3 0 24 合计 (4) 16 28 19 5 84 统一编秩 秩次范围 (5) 1—16 17—44 45—63 64—88 平均秩次 ( 6) 8.5 30.5 54.0 66.0 秩和 (病人组) ⑺=(3)×⑹ 93.5 305.0 162.0 0.0 T1=560.5
12
(1)建立检验假设,确定检验水准
• H0:两法测得结果相同,即差值的总体中位数Md=0 • H1:两法测得结果不相同,即差值的总体中位数Md≠0 α=0.05
单侧检验呢?
13
(2)求差值、编秩、求秩和并确定检验统计量:
①省略所有差值为0的对子数,并从观察单位数中减去0个数 ②按差值的绝对值从小到大编秩,若相同秩的符号不同则取平 均秩,符号相同可依次编秩。 ③任取正秩和或负秩和为T,本例取T+=15.5。
上表中:
单侧 1行 2行 3行 4行
2014-2-18
双侧 P=0.1 P=0.05 P=0.02 P=0.01
25
P=0.05 P=0.025 P=0.1 n1≥10则可用正态近似法:
| T n1 ( N 1) / 2 | 0.5 u n1n2 ( N 1) /12

秩和检验(SPSS)分析

秩和检验(SPSS)分析

其他相关信息
此外,还会提供其他相关信 息,如可信区间、P值等, 帮助用户更全面地理解检验 结果。
03
秩和检验的优缺点
秩和检验的优点
无假设限制
秩和检验不需要严格的假设条件,如正态分布、方差 齐性等,因此应用范围较广。
适用于小样本
在样本量较小的情况下,秩和检验能够提供较为准确 的结果。
避免数据异常值影响
应用价值。
未来研究可以进一步探讨秩和 检验与其他统计方法的结合使 用,以更好地满足研究需求。
在实际应用中,研究者应充分 了解秩和检验的适用范围和限 制条件,根据具体情况选择合 适的统计方法。
随着大数据时代的到来,秩和 检验在处理大规模数据方面的 应用将更加广泛,有助于推动 各领域研究的深入发展。
THANKS
运行检验
点击“运行”按钮,SPSS将自动进 行秩和检验,并输出检验结果。
SPSS中秩和检验的结果解读
描述性统计结果
检验统计量
在检验结果中,首先会给出 各个组别的描述性统计结果, 包括各组的频数、百分比、 中位数等。
接着会给出检验的统计量, 包括秩次、秩次之和、平均 秩次等。
检验结论
根据统计量的大小和分布情 况,SPSS会给出检验结论, 判断各组之间是否存在显著 差异。
04
秩和检验的案例分析
案例一:配对设计资料的秩和检验
总结词
配对设计资料的秩和检验适用于对同一观察对象在不同条件下进行观察或测量的情况,例如同一批受 试者在不同时间点的观察值。
详细描述
配对设计资料的秩和检验首先需要对配对数据进行分析,确定配对数据是否具有相关性,然后采用适 当的统计方法进行检验。在SPSS中,可以使用Wilcoxon匹配对符号秩检验或Wilcoxon符号秩检验等 方法进行配对设计资料的秩和检验。

医学统计学之秩和检验

医学统计学之秩和检验

医学统计学之秩和检验什么是秩和检验?秩和检验(Wilcoxon rank-sum test),又称为Mann-Whitney U检验,是非参数假设检验的一种常用方法,用于比较两个独立样本的位置差异。

这个方法基于样本的秩次,而不依赖于数据的具体分布。

秩和检验的适用场景秩和检验通常用于以下情况:1.样本数据不满足正态分布假设;2.无法满足方差齐性假设;3.样本容量较小。

秩和检验是一种非常灵活的方法,适用于大部分类型的数据分布,甚至可以包括极端的离群值。

秩和检验的原理秩和检验的原理是将两个样本的观察值合并后,按照大小重新排列,并赋予秩次。

然后利用秩次之和来比较两个样本的位置差异。

1.对于两个独立样本,将两组数据合并为一个整体的样本。

2.对于每个观察值,分别计算出在整体样本中的秩次。

3.计算两组样本的秩和,比较其大小。

4.根据秩和的大小以及样本容量,查表或计算检验统计量的p-value。

秩和检验的步骤秩和检验的具体步骤如下:1.将两个样本合并为一个整体样本,并标记属于哪个样本。

2.对整体样本中的观察值进行排序,得到秩次。

3.计算秩和,并比较两个样本的秩和大小。

4.根据秩和大小以及样本容量,查找临界值。

5.根据临界值判断是否拒绝原假设,或者计算统计量的p-value。

6.根据p-value判断是否拒绝原假设。

秩和检验的示例假设我们有两个医学治疗方法A和B,想要比较其对病人治疗效果的差异。

我们随机选择了两组病人,分别给予方法A和B进行治疗,然后观察他们的疗效。

以下是我们观察到的结果:组A:8, 10, 12, 10, 14 组B:9, 11, 14, 12, 13我们可以按照秩次将两组数据合并,并计算秩和:组A:8(1), 10(3), 12(4), 10(3), 14(5) 组B:9(2), 11(4), 14(5), 12(4), 13(2)组A的秩和为16,组B的秩和为17。

然后,我们根据秩和的大小以及样本容量,在秩和表中查找临界值。

第十二章 秩和检验

第十二章 秩和检验

第十二章秩和检验假设检验通常可划分为参数检验(parametric test)和非参数检验(nonparametri c test)两大类。

以特定的总体分布为前提,对未知的总体参数作推断的假设检验方法统称为参数检验。

前面章节介绍的t检验和方差分析均要求样本来自正态总体,属于参数检验。

非参数检验不以特定的总体分布为前提,也不对总体参数作推断,故也称为任意分布检验(distribution-free test)。

非参数检验具有广泛的适用性。

由于总体不必服从特定分布,无论资料总体分布形式如何,一端或两端无界,甚至分布未知,都能适用。

在非参数检验中,一般不直接用样本观察值做分析,统计量的计算是基于原始数据在整个样本中按大小所占的位次。

由于非参数检验没有利用观察值的具体数值,而只利用了其大小次序的信息,信息利用不够充分,故凡适合参数检验的资料,应首选参数检验。

但当总体分布不明确时,则应采用非参数检验。

尤其对于那些难以确定分布又出现少量离群值的小样本数据,非参数检验在剔除这些数据前后所得结论显示出了较好的稳健性。

非参数检验方法很多,有秩和检验(rank sum test)、符号检验、游程检验、等级相关分析等。

本章介绍在非参数检验中占有重要地位且检验功效相对较高的秩和检验。

第一节Wilcoxon符号秩和检验1945年Wilcoxon提出的Wilcoxon符号秩和检验(Wilcoxon singned-rank tes t),亦称符号秩和检验,可用于配对设计计量差值的比较,还可用于单一样本与总体中位数的比较。

一、配对设计的两样本比较(一) 本法的基本思想与步骤配对设计资料主要是对差值进行分析。

通过检验配对样本的差值是否来自中位数为0的总体,来推断两个总体中位数有无差别,即推断两种处理的效应是否不同。

现以例12.1说明其基本思想与步骤。

例12.1 某研究用甲、乙两种方法对某地方性砷中毒地区水源中砷含量(mg/L)进行测定,检测10处,测量值如表12.1的(2)、(3)栏。

统计学秩和检验

统计学秩和检验

案例展示:医学研究中应用秩和检验
案例一
某医学研究比较了两种不同治疗方法对患者疼痛程度的影响。由于疼痛程度为等级资料,且样本量较小,研究者 选择了Wilcoxon符号秩和检验进行分析。结果显示,两种治疗方法的疼痛程度存在统计学差异(P<0.05),表 明其中一种治疗方法在减轻患者疼痛方面更有效。
案例二
THANKS
感谢观看
适用于连续型数据,且两个样本相互独立的情况 。
多重比较与Kruskal-Wallis H检验
目的
用于比较多个独立样本所来自的总体的分布是否存在显著差异。
方法
将多个样本数据混合后按大小排序,计算每个样本的秩和,通过比较各组秩和的差异判 断多个总体分布是否存在显著差异。如果存在差异,可进一步进行两两比较。
基于模型的秩和检验
基于模型的秩和检验方法结合了参数模型和非参数检验的优点,通过建立适当的统计模型来描述数据 的分布规律,并利用模型参数进行假设检验,从而提高了检验的灵活性和准确性。
前沿动态及未来发展趋势
基于大数据的秩和检验
随着大数据时代的到来,基于大数据的秩和检验方法将具有更广阔的应用前景。这些方法 可以利用大规模数据集提供的丰富信息,通过挖掘数据间的关联性和规律性,进一步提高 秩和检验的效能和准确性。
• · 适用范围:秩和检验适用于等级资料、不满足参数检验前提的计量资料以及某些特殊情况下 的计数资料。例如,在临床医学中,常常用于评价两种治疗方法对患者生存时间的影响是否 存在差异;在生物学中,可用于比较不同基因型对某种表型的影响等。
适用范围及优缺点
优点:秩和检验的优点包 括
对异常值和离群点相对不 敏感;
03
适用范围
适用于连续型数据,且样本量较小的 情况。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 16
1
1
1、M检验(Friedman查表法) H0穿四种防护服的脉搏次数分布相同; H1穿四种防护服的脉搏次数分布不全相
同。α=0.05 (1)按区组(受试者)编秩号,按处理(防护服分组)求秩和R1,R2,R3,…,相同 秩号取平均秩
(2)求平均秩: R 1 b(k 1)
2
(3)计算各处理组的 (Ri R);
适用范围广;可用于任何类型 资料(等级资料,或“>50mg” )
对于符合参数统计分析条件者,采用 非参数统计分析,其检验效能较低
秩和检验
秩和检验(rank sum test):一类常用 的非参数统计分析方法;基于数据的秩次与 秩次之和
第一节 第二节 第三节 第四节
两独立样本差别的秩和检验 配对设计资料的秩检验 完全随机设计多组差别的秩和检验 随机单位组设计的秩和检验
11
40
32
-8
-6
12
49
57
8
6
合计
T=10(68)
Md=0
(i)小样本(5≤n≤ 50)时,查附表9
若统计量T值在上、下界值范围内, 其P值大于相应的概率水平。
本例:T=10,n=12,查附表9,双侧检验
的界值区间(13,65),T位于区间外, 得P<0.05,拒绝H0,接受H1,故认为A, B两种照射方式造成的急性皮肤损伤程度 不同,B照射的损伤程度比A照射严重。
n1
n2
N n1 n2 n0 min( n1, n2 )
⑴ H0:两样本来自相同总体; H1:两样本来自不同总体(双侧)
=0.05
或H1:样本A高于样本B(单侧)
⑵ 编秩:两样本混合编秩次,求得R1、R2、T。 相同观察值(即相同秩,ties),不同组------平均秩次。
⑶ 确定P值作结论:
(ii)大样本(n>50)时,可采用正态近似
u | R n(n 1) / 4 | 10 12(12 1) / 4 2.275 n(n 1)(2n 1) / 24 12(12 1)(2 12 1) / 24
查标准正态分布表,得 P 值 校正公式:(当相同秩次个数较多时)
| R n(n 1) / 4 |
①查表法 (n0≤10,n2n1≤10)
如果T位于检验界值区间内,P
查附表9
,不拒绝H0;否则,P
,拒绝H0
本例T =47,取α=0.05,查附表10得双侧检验界值区间(49,87),T
位于区间外,P<0.05,因此在α=0.05的水平上,拒绝H0,接受H1。
②正态近似法:
|T u
n0 (N 1) / 2 |

一般文献上使用的方法:Wilcoxon_Mann_Whitney U 检验
两种方法是独立提出的,检验结果完全等价的;
前者用 T 统计量计算 u 统计量,而后者直接计算 u 值,即:
u
min(n1
n2
n1 (n1 2
1)
R1 , n1
n2
n2 (n2 2
1)
R2 )
上例中:
u min(126 82 126 127 12955.5,126 82 82 83 8780.5)
第一节 两独立样本差别的秩和检验
Wilcoxon rank sum test
表6-1 两独立样本秩和检验计算表
对于计量数据,如果资料方差相
A样本 观察值 秩号
7
4
14
6
B样本 观察值 秩号
3
1
5
2
等,且服从正态分布,就可以用t检 验比较两样本均数。
如果此假定不成立或不能确定是 否成立,就应采用秩和检验来分析 两样本是否来自同一总体。
• 同样方法,通过对各个处理组的数据由 小到大分别编秩,计算平均秩次,推断 各区组间差别有无统计学意义。
2、 2分布近似法
• 能用于k值或b值超过M界值的情况
二、多组处理效应间的两两比较 经Friedman秩和检验得多组处理效应 间存在差别时,仍然可进一步作各组间 两两比较
不满足方差分析的条件,可采用KruskalWallis秩和检验。
此法的基本思想与Wilcoxon-MannWhitney法相近:如果各组处理效应相同, 混合编秩号后,各组的秩和应近似相等。 既可用于观察指标是定量变量但不满足方差 分析的前提条件的情形,也可应用于观察指 标是有序变量的情形。
单因素多水平设计定量资料
4. 计算统计量
H
12 993(993 1)
383352 97
4238762 838
313102 58
3(993 1)
14.3
(ti3 ti ) =(1723172)+(3423342)+(4793479)=154991382
c
9933 993
1.1881
9933 993 154991382
表 6-4 脾淋巴细胞对 HPA 刺激的增值反应(测量指标 3H 吸收量 cpm)
A 组(对照)
B 组(截肢)
C 组(截肢治疗)
3H 吸收量
秩号 3H 吸收量 秩号 3H 吸收量 秩号
3012
11
2532
8
8138
15
9458
18
4682
12
2073
6
8419
16
2025
5
1867
4
9580
19
2268
u
n(n 1)(2n 1) / 24 (ti3 ti ) / 48
10 12(12 1) / 4 2.282
12(12 1)(212 1) / 24 [(33 3) (33 3)]/ 48
第三节 完全随机设计多组差别的秩和检验
(Kruskal-Wallis法) 对于完全随机设计多组资料比较,如果
第六章
非参数统计分析方法
参数统计
(parametric statistics)
已知总体分布类型,对 未知参数(μ、π)进 行统计推断
依赖于特定分布类 型,比较的是参数
非参数统计
(nonparametric statistics)
对总体的分布类 型不作任何要求
不受总体参数的影响, 比较分布或分布位置
(4)求 M; M (Ri R)2
(5)查 M 界值表(附表 12),M 大于或等于表中数值则差别有统计
意义。 本例, R 1 5(5 1) 15
2
M (Ri R)2 34.5
当b≤15,k ≤ 15时查附表11.
• 查M界值表,b=5,k=5,M0.05=113,不 拒绝H0,穿不同防护服脉搏数差别无统 计学意义。
单因素多水平设计定性资料
属于同一组段的观察值,一律取平均秩次(组中
值),再以该组段频数加权,计算Hc值。
表 分娩时孕周与乳量的关系
乳 量
早 产
足月 产
过期 产
合计
秩次 范围
平均
秩和
秩次 早产 足月产 过期产
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
无 30 132 10 172 1~172 86.5 2595 11418 865
12682(208 1) /12
uc u c 0.5426
207 208
单纯型合并肺气肿 单纯型
有效 近控
2083 208 c 2083 208 ((1073 107) (243 24) (533 53) (243 24))
1.0883
Wilcoxon-Mann-Whitney U检
少 36 292 14 342 173~514 343.5 12366 100302 4809
多 31 414 34 479 515~993 754 23374 312156 25636
合计 97 838 58 993
38335 423876 31310
1. H0:三个总体分布相同,H1:三个总体分布不全相同 α=0.05 2. 编秩:计算各等级合计,确定秩次范围 3. 求秩和:各组频数与该组平均秩次乘积求和
n1n2 (N 1) /12
本例u 2.205 0.05/2 1.96
*校正公式(当相同秩次较多时)
N3 N
uc u c; c N 3 N (ti3 ti ) ;
i
ti为第i个相同秩号的数据个数
疗效
控制 显效 有效 近控
单纯型 (1)
65 18 30 13 126
表6-2 某药对两种不同病情的支气管炎疗效的秩和检验
7
885
2
13590
21
2775
9
6490
13
12787
20
2884
10
9003
17
6600
14
1717
3
0
1
秩和 Ri 例数 ni
平均秩和 Ri
119 7
17.000
54 7
7.714
58 7
8.826
1.
H0三组处理效应相同;
H1三组处理效应不全相同。α=0.05
2.
混合编秩号,分组求秩和R1,R2,R3,…
2
2
4954.5 0.4986
第二节 配对设计资料的秩检验
(Wilcoxon signed rank test)
表6-3 家兔皮肤损伤程度(评分)
1.H0:差值的总体中位数=0 ,
家兔号 A照射 B照射 A-B
(1)
(2) (3) (4)
1
39
55
16
2
42
54
12
秩次 (5) 10
相关文档
最新文档