锐角三角函数教案1
九年级数学锐角三角函数教案
![九年级数学锐角三角函数教案](https://img.taocdn.com/s3/m/1f86d3c5e43a580216fc700abb68a98271feacb1.png)
一、教学目标:1.知识与技能目标:(1)了解什么是锐角三角函数;(2)掌握正弦、余弦和正切在锐角范围内的性质和计算方法;(3)能够运用锐角三角函数解决相关实际问题。
2.过程与方法目标:(1)运用课堂讲解、练习、小组合作和课堂展示相结合的方式,培养学生的学习兴趣;(2)通过解决实际问题的方式,培养学生的分析和解决问题的能力;(3)通过小组合作的方式,培养学生的合作和交流能力。
3.情感、态度与价值观目标:(1)通过展示数学的应用场景,培养学生对数学的兴趣和好奇心;(2)通过小组合作和课堂展示的方式,培养学生的合作和交流能力;(3)通过解决实际问题的方式,培养学生的分析和解决问题的能力。
二、教学重点和难点1.教学重点(1)正弦、余弦和正切的定义和性质;(2)正弦、余弦和正切的计算方法;(3)运用锐角三角函数解决相关实际问题。
2.教学难点(1)运用锐角三角函数解决实际问题的能力;(2)理解正弦、余弦和正切的定义和性质。
三、教学过程安排第一课时:1.导入(10分钟)让学生回顾之前学过的角度、弧度和三角比的相关知识,引出锐角三角函数的概念,并介绍本节课的学习内容和目标。
2.讲解(20分钟)(1)通过幻灯片和板书,讲解正弦、余弦和正切的定义和性质。
(2)讲解正弦、余弦和正切的计算方法,并解答学生提出的疑问。
3.练习(15分钟)(1)在黑板上出示锐角三角函数的计算练习题,让学生在纸上计算并互相讨论答案。
(2)随机抽选几位学生上台讲解解题过程,并进行讲解和点评。
4.小组合作(10分钟)(1)将学生分成小组,每个小组由3-4人组成,让他们一起解决一个实际问题。
(2)每个小组将解决过程和结果展示给全班,并进行评价和讨论。
5.总结(5分钟)(1)对本节课的内容进行总结概括。
(2)布置课后作业,让学生复习和巩固锐角三角函数的内容。
第二课时:1.复习(10分钟)让学生回顾之前学过的锐角三角函数的知识点,并进行简单的小测验。
北师大版九年级下册1.1锐角三角函数1教案
![北师大版九年级下册1.1锐角三角函数1教案](https://img.taocdn.com/s3/m/d3ef0a9bab00b52acfc789eb172ded630b1c982c.png)
-函数在实际问题中的应用:学生可能不知道如何将学到的函数知识应用到实际问题中,需要通过案例分析来加强应用能力的培养。
-例如,提供一些实际情境,如测量树的高度、建筑物的高度等,引导学生如何构建数学模型并解决问题。
-难点角的计算:在应用锐角三角函数时,学生可能会对特殊角度的计算感到困惑,需要强化对特殊角度值的记忆和理解。
-可以通过记忆口诀、绘制表格等方式,帮助学生记忆30°、45°、60°等特殊角度的正弦、余弦、正切值。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《锐角三角函数1》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要测量物体高度或距离的情况?”(如测量篮球框的高度)这个问题与我们将要学习的锐角三角函数密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索锐角三角函数的奥秘。
-正弦函数(sin):直角三角形中对边与斜边的比值。
-余弦函数(cos):直角三角形中邻边与斜边的比值。
-正切函数(tan):直角三角形中对边与邻边的比值。
-锐角三角函数图像的识别:理解正弦、余弦、正切函数图像的特点,能够从图像中识别函数的性质。
-锐角三角函数的性质:掌握正弦、余弦、正切函数随角度变化的规律,包括周期性、奇偶性等。
3.锐角三角函数的性质:探讨正弦、余弦、正切函数随角度变化的规律,理解其周期性、奇偶性等性质。
4.锐角三角函数的简单应用:运用锐角三角函数解决实际问题,如测量物体的高度、计算角度等。
本节课旨在让学生掌握锐角三角函数的基本概念、图像、性质及应用,为后续学习打下基础。
二、核心素养目标
北师大版数学九年级下册1.1《锐角三角函数》教案1
![北师大版数学九年级下册1.1《锐角三角函数》教案1](https://img.taocdn.com/s3/m/f5ee8ad303d276a20029bd64783e0912a3167c7e.png)
北师大版数学九年级下册1.1《锐角三角函数》教案1一. 教材分析北师大版数学九年级下册1.1《锐角三角函数》是学生在初中阶段学习三角函数的起点,起着承前启后的作用。
本节课主要介绍了锐角三角函数的定义及概念,通过生活中的实例让学生感受锐角三角函数在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。
教材以实例引入,引导学生探究锐角三角函数的定义,并通过自主学习、合作交流的方式,让学生掌握锐角三角函数的基本概念和性质。
二. 学情分析九年级的学生已经具备了一定的函数知识,对函数的概念有一定的理解。
但是,对于锐角三角函数的理解还需要通过具体的实例和生活情境来引导学生。
学生在学习过程中,需要通过合作交流、自主探究的方式,掌握锐角三角函数的定义和性质。
此外,学生还需要在学习过程中,培养运用数学知识解决实际问题的能力。
三. 教学目标1.理解锐角三角函数的定义,掌握锐角三角函数的基本概念和性质。
2.能够运用锐角三角函数解决实际问题,提高运用数学知识解决实际问题的能力。
3.培养学生的合作交流、自主探究能力,提高学生的数学素养。
四. 教学重难点1.教学重点:锐角三角函数的定义及概念。
2.教学难点:锐角三角函数的性质和运用。
五. 教学方法1.实例引入:通过生活中的实例,引导学生感受锐角三角函数在实际生活中的应用。
2.自主学习:引导学生通过自主学习,掌握锐角三角函数的定义和性质。
3.合作交流:学生进行合作交流,分享学习心得和解决问题的方法。
4.实践操作:让学生通过实际操作,加深对锐角三角函数的理解。
六. 教学准备1.教学课件:制作精美的教学课件,辅助讲解和展示。
2.实例素材:收集生活中的实例,用于引导学生感受锐角三角函数的应用。
3.练习题库:准备一定数量的练习题,用于巩固所学知识。
七. 教学过程导入(5分钟)1.利用实例引入:展示一些生活中的实例,如测量国旗的高度、计算房屋的面积等,引导学生感受锐角三角函数在实际生活中的应用。
锐角三角函数教案设计
![锐角三角函数教案设计](https://img.taocdn.com/s3/m/d5ab0d256fdb6f1aff00bed5b9f3f90f76c64d81.png)
锐角三角函数教案设计锐角三角函数教案设计锐角三角函数教案设计篇1知识目的:1.理解锐角的正弦函数、余弦函数、正切函数、余切函数的意义。
2.会由直角三角形的边长求锐角的正、余弦,正、余切函数值。
才能、情感目的:1.经历由情境引出问题,探究掌握数学知识,再运用于理论过程,培养学生学数学、用数学的意识与才能。
2.体会数形结合的数学思想方法。
3.培养学生自主探究的精神,进步合作交流才能。
重点、难点:1.直角三角形锐角三角函数的意义。
2.由直角三角形的边长求锐角三角函数值。
教学过程:一、创设情境前面我们利用相似和勾股定理解决一些实际问题中求一些线段的长度问题。
但有些问题单靠相似与勾股定理是无法解决的。
同学们放过风筝吗?你能测出风筝离地面的高度吗?学生讨论、答复各种方法。
老师加以评论。
总结:前面我们学习了勾股定理,对于以上的问题中,我们求的是BC的长,而的AB的长是可知的,只要知道AC的长就可要求BC了,但实际上要测量AC是很难的。
因此,我们换个角度,假如可测量出风筝的线与地面的夹角,能不能解决这个问题呢?学了今天这节课的内容,我们就可以很好地解决这个问题了。
〔由一个学生比拟熟悉的事例入手,引起学生的学习兴趣,调动起学生的学习热情。
由此导入新课〕二、新课讲述在Rt△ABC中与Rt△A1B1C1中∠C=90°,C1=90°∠A=∠A1,∠A的对边、斜边分别是BC、AB,∠A1的对边、斜边分别是B1C1、A1B2 〔学生探究,引导学生积极考虑,利用相似发现比值相等〕〔〕假设在Rt△A2B2C2中,∠A2=∠A,那么问题1:从以上的探究问题的过程,你发现了什么?〔学生讨论〕结论:这说明在直角三角形中,只要一个锐角的大小不变,那么无论这个直角三角形的大小如何,该锐角的对边与斜边的比值是一个固定值。
在一个直角三角形中,只要角的大小一定,它的对边与斜边的比值也就确定了,与这个角所在的三角形的大小无关,我们把这个比值叫做这个角的正弦,即∠A的正弦= ,记作sin A,也就是:sin A=几个注意点:①sin A是整体符号,不能所把看成sinA;②在一个直角三角形中,∠A正弦值是固定的,与∠A的两边长短无关,当∠A发生变化时,正弦值也发生变化;③sin A 表示用一个大写字母表示的一个角的正弦,对于用三个大写字母表示的角的正弦时,不能省略角的符号“∠”;例如表示“∠ABC”的正弦时,应该写成“sin∠ABC”;④ Sin A= 可看成一个等式。
《锐角三角函数》第一课时参考教案
![《锐角三角函数》第一课时参考教案](https://img.taocdn.com/s3/m/e106a87bf5335a8102d22043.png)
课题《直角三角形的边角关系》第一课锐角三角函数(一) 一、教学目标1.经历探索直角三角形中边角关系的过程,理解锐角三角函数的意义及与现实生活的联系。
2.发展学生观察、分析、合作、解决问题的能力。
3.经历对日常生活中与正切有关的实例进行观察、分析动手实验发现规律等过程,体会数形结合的思想及数学与现实世界的联系,通过利用正切知识解决生活中的实际问题,增强学生学数学用数学的信心。
二、教材分析本章旨在探索直角三角形的边角关系,理解锐角三角函数的概念,解决与直角三角形有关的实际问题,培养学生分析问题、解决问题的能力。
本章的知识广泛应用于测量、建筑、工程技术及物理学中,其中正切与生活的联系最为密切。
因此在第一节中教材首先提供了梯子倾斜程度比较的问题,从学生身边常见的例子引入,提出引发学生思考的问题。
这样做既激发了学生的好奇心与求知欲,又充分体现了数学与现实世界的紧密联系。
通过“想一想”三个小问题得出“梯子倾斜角确定对边与邻边的比也确定”,并概括出正切的概念。
最后通过“议一议”又回到了梯子的倾斜角度问题。
这样编排,知识由易到难、层层递进,符合学生的认知规律,使学生经历了数学知识的形成全过程,满足了不同学生发展的需求。
得出正切的概念后,教材又编排了相应的例题与练习,培养学生应用知识的能力,还补充了山坡坡度的例子,使知识进一步扩充与延伸。
三、教学设计(一)情境导入师:一天下午的课外活动时间,小明、小亮、小颖三位同学在操场上一起讨论这样一个数学问题:如何测量操场上的国旗杆的高度?小明说:可以在操场上立一根与地面垂直的标杆,测得标杆的长度和标杆的影子长,再测得旗杆的影子长,它们的比值相等,就可以求得旗杆的高度。
小亮说:拿一块等腰直角三角板,调节人与旗杆的距离,使三角板的一直角边与旗杆平行,视线沿着斜边的方向刚好经过旗杆的顶端,只要测得人到旗杆的距离和眼睛到地面的高度相加,就是旗杆的高度。
小颖这段时间正在自学刚发到的数学九(下),她说:站在操场上的任一位置,用测角仪测得看旗杆顶端的仰角,比如为700,再测得人与旗杆的距离,就可以求得旗杆的高度。
新人教版九年级数学锐角三角函数教案
![新人教版九年级数学锐角三角函数教案](https://img.taocdn.com/s3/m/0c1202f90875f46527d3240c844769eae009a3cc.png)
新人教版九年级数学锐角三角函数教案新人教版九年级数学锐角三角函数教案1一、复习巩固:1、在△ABC中,∠C=90°,∠A=45°,则BC:AC:AB = 。
2、在△ABC中,∠C=90°。
(1)已知∠A=30°,BC=8cm, (2)已知∠A=60°,AC= cm,求:AB与AC的长; 求:AB与BC的长。
二、例题学习:问题1:“五一”节,小明和同学一起到游乐场游玩,游乐场的大型摩天轮的半径为20m,旋转1周需要12min。
小明乘坐最底部的车厢(离地面约0.5m)开始1周的观光,2min后小明离地面的高度是多少(精确到0.1m)?拓展延伸:1、摩天轮启动多长时间后,小明离地面的高度将首次到达10m?2、小明将有多长时间连续保持在离地面20m以上的空中?思考与探索1:如图,东西两炮台A、B相距2000米,同时发现敌舰C,炮台A测得敌舰C在它的南偏东60°的方向,炮台B测得敌舰C在它的正南方,试求敌舰与两炮台的距离。
概念:仰角、俯角的定义如右图,从下往上看,视线与水平线的夹角叫仰角,从上往下看,视线与水平线的夹角叫做俯角。
右图中的∠1就是仰角,∠2就是俯角。
问题2:为了测量停留在空中的气球的高度,小明先站在地面上某点观测气球,测得仰角为30°,然后他向气球方向前进了50m,此时观测气球,测得仰角为45°。
若小明的眼睛离地面1.6m ,小明如何计算气球的高度呢?思考与探索(2):大海中某小岛的周围10km范围内有暗礁。
一艘海轮在该岛的南偏西55°方向的某处,由西向东行驶了20km后到达该岛的南偏西25°方向的另一处。
如果该海轮继续向东行驶,会有触礁的危险吗?三、板演练习1、如图,单摆的摆长AB为90cm,当它摆动到∠BAB'的位置时,∠BAB'=30°。
问这时摆球B'较最低点B升高了多少?2、飞机在一定高度上飞行,先测得正前方某小岛的俯角为30°,飞行10km后,测得该小岛的俯角为60°,求飞机的高度。
锐角三角函数教案导入
![锐角三角函数教案导入](https://img.taocdn.com/s3/m/c934fb2649649b6649d747a2.png)
锐角三角函数教案导入这是锐角三角函数教案导入,是优秀的数学教案文章,供老师家长们参考学习。
锐角三角函数教案导入第1篇一、情境导入如图是两个自动扶梯,甲、乙两人分别从1、2号自动扶梯上楼,谁先到达楼顶?如果AB和A′B′相等而∠α和∠ β大小不同,那么它们的高度AC 和A′C′相等吗?AB、 AC、BC与∠α,A′B′、A′C′、B′C′与∠β之间有什么关系呢? --- ---导出新课二、新课教学1、合作探究见课本2、三角函数的定义在Rt△ABC中,如果锐角A确定,那么∠A的对边与斜边的比、邻边与斜边的比也随之确定.∠A 的对边与邻边的比叫做∠A的正弦(sine),记作s inA,即s in A=∠A的邻边与斜边的比叫做∠A的余弦(cosine),记作cosA,即cosA=∠A的对边与∠A的邻边的比叫做∠A的正切(tangent) ,记作tanA,即锐角A的正弦、余弦和正切统称∠A的三角函数.注意:sinA,cosA, tanA都是一个完整的符号,单独的“sin”没有意义,其中A前面的“∠”一般省略不写。
师:根据上面的三角函数定义,你知道正弦与余弦三角函数值的取值范围吗?师:(点拨)直角三角形中,斜边大于直角边.生:独立思考,尝试回答,交流结果.明确:0<sina<1,0 <cosa<1.巩固练习:课内练习T1、作业题T1、23、如图,在Rt△ABC中,∠C=90°,AB=5,BC=3, 求∠A, ∠B的正弦,余弦和正切.分析:由勾股定理求出AC的长度,再根据直角三角形中锐角三角函数值与三边之间的关系求出各函数值。
师:观察以上计算结果,你发现了什么?明确:sinA=cosB,cosA=sinB,tanA•ta nB=14 、课堂练习:课本课内练习T2、3,作业题T3、4、5、6三、课堂小结:谈谈今天的收获1、内容总结(1)在RtΔA BC中,设∠C= 900,∠α为RtΔABC的一个锐角,则∠α的正弦,∠α的余弦,∠α的正切(2)一般地,在Rt△ ABC中, 当∠C=90°时,sinA=cosB,cosA=sinB,tanA•tanB=12、方法归纳在涉及直角三角形边角关系时,常借助三角函数定义来解锐角三角函数教案导入第2篇教学目标1.经历探索直角三角形中边角关系的过程,理解正切的意义。
1.1锐角三角函数(1)教学设计
![1.1锐角三角函数(1)教学设计](https://img.taocdn.com/s3/m/6b5e8c0403d8ce2f006623db.png)
1.1锐角三角函数(1)教学设计一、教学内容分析本节课是三角函数的起始课,是在学生学习了正比例函数、一次函数、反比例函数以及二次函数后已对函数有了一定的理解的基础上来学习,但是三角函数与以前学习过的函数有着较在区别,函数值随角度变化而变化,函数值是关于角度的函数与所在三角形无关很难理解,课本把它放在直角三角形中来进行定义及进行简单计算,可以降低难度,学生能更好地理解学习,本课时主要内容是三角函数的概念及进行简单的计算应用,而其中三角函数的概念应是本节课的难点。
二、学习类型与任务分析(一)学习类型1、学习结果(1)三角函数的概念是数学概念(2)在直角三角形中函数值恰好等于边长之比是数学原理(3)利用利用三角函数的定义进行简单计算是数学技能,数形结合思想是数学思想方法。
(4)利用各种方法进行因式分解,因式分解的应用是数学问题解决。
(5)通过让学生体验三角函数来源于生活;通过构造直角三角形来计算锐角三角函数值的过程是数学认识策略。
2、学习形式锐角三角函数(1)是三角函数的起始课,属上位学习;三角函数的概念形成很抽象,宜通过实例、生活情境入手引入,让学生从实例中探究,体验概念的形成过程,宜采用探究与合作相结合的启发式教与学。
(二)学生的起点能力1.函数概念,一些特殊简单函数及其性质的学习。
2.线段比例及相似三角形(图形)的学习。
三、教学目标知识技能目标:了解三角函数的概念,学会在直角三角形中进行一些简单的计算。
过程方法目标:(1)通过体验三角函数概念的形成过程增进学生的数学经验(2)渗透数形结合的数学思想方法。
(3)培养学生主动探索,敢于实践,勇于发现,合作交流的精神。
情感态度目标(1)让学生感受数学来源于生活又应用于生活,体验数学的生活化经历。
(2)通过实际问题情境的经历探究性的学习培养学生学习数学的兴趣,培养学生热爱数学、热爱生活的情感。
四、教学重、难点重点:锐角三角函数的概念及其简单的计算难点:三角函数概念的形成五、教学流程教师活动;(一)实例引入,问题提出:生活中处处有数学,数学就在我们身边,每次新知识的学习都与生活问题的解决相关,下面我们说说生活中的又一例:生活中有很多的“陡峭”与“平坦”的问题,如我们常见的各色梯子、商场里的电动扶梯、大城市里的过街天桥等,在生活中我们经常讲这个坡太“陡”那个坡比较“平”,那么,我们又是用哪些量来衡量“陡”与“平”的呢?(幻灯片1)上图是我们把天桥改“平”的示意图,我们这次次改造过程中有哪些量保持不变,哪些量发生了变化?它们的变化有联系吗?(幻灯片2和3)如果进行上图的另两种改法呢?由此看来坡改“平”之中这些改变的量之间到底有何必然联系有待我们去探索。
28.1锐角三角函数(第一课时)教学设计
![28.1锐角三角函数(第一课时)教学设计](https://img.taocdn.com/s3/m/d9323845844769eae109ed2e.png)
《28.1 锐角三角函数(第一课时)》教学设计一、教材分析“锐角三角函数”属于三角学,是《数学课程标准(2011版)》中“图形与几何”领域的重要内容。
本章在已经研究了直角三角形的三边之间关系——勾股定理、两个锐角之间关系的基础上,利用相似三角形的性质进一步讨论直角三角形边角之间的关系。
本节内容主要研究三种锐角三角函数:锐角的的正弦、余弦、正切。
第一课时的是锐角的正弦。
二、学情分析九年级学生思维活跃,接受能力强,具有较强的推理能力,但是正弦函数是角度与数值之间的函数关系,学生第一次遇见,思维上需要做个突破。
三、学习目标1.理解锐角正弦的意义,了解锐角与锐角正弦值之间的对应关系,进一步体会函数的变化与对应的思想;会根据锐角正弦的意义解决直角三角形中已知边长求锐角正弦,以及已知正弦值和一边长求其它边长的问题.2.经历锐角正弦意义的探索过程,体会从特殊到一般的研究问题的思路和数形结合的思想方法培养学生观察问题、发现问题、研究问题的能力.3.经历多样化的学习方式与过程,培养学生主动探究、合作交流、自我反思等学习习惯.四、重点难点重点:理解正弦的概念并能根据正弦的定义求锐角的正弦值。
难点:对正弦的定义的理解.五、教学过程(一)新课导入情景:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡的仰角为30°,为使出水口的高度为35m,需要准备多长的水管?这个问题转化为数学问题即为:在Rt△ABC中,∠C=90°,∠A=30°,BC=35 m,求A B.问题1:怎样求AB?问题2:如果要使出水口的高度为50 m,那么需要准备多长的水管?出水口的高度为10 m,20 m,30 m,a m呢?这些问题用锐角三角函数的知识解决会非常简单,这节课我们学习正弦.(板书课题)把直角三角形某锐角和它的对边与斜边的比作为两个变量,探索它们的变化关系.(二)自学指导在Rt△ABC中,∠C=90°,∠A的对边斜边与∠A有何对应关系?①∠A=30°时,∠A的对边斜边=12,与三角形的大小有关系吗?(无关)当∠A=45°时,∠A的对边斜边=22,与三角形的大小有关系吗?(无关)②任意画Rt△ABC和Rt△A′B′C′,使得∠C=∠C′=90°,∠A=∠A′=α,则BCAB与''''B CA B有什么关系?BC AB ='''' B C A B③证明:④归纳:∠A是任一个确定的锐角时,∠A的对边斜边的值固定(填“固定”或“不固定”), 与三角形的大小无关(填“有关”或“无关”).⑤在Rt△ABC中,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sin A,即sin A=∠A的对边斜边=ac.⑥在Rt△ABC中,∠C=90°,∠A=60°,求sin A的值.(sin A=32)(三)例题讲解教材P63例1:①求sin A,就是求∠A的对边与斜边的比.②sin B,就是求∠B的对边与斜边的比.③据下图,求sin A和sin B的值.如图1,sin A=33434,sin B=53434;如图2,sin A=255,sin B=55.④如图,在Rt△ABC中,∠C=90°,sin A=513,AC=24 cm,求AB,BC的长.AB=26 cm,BC=10 cm.(四)当堂训练①在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c;∠A的对边与斜边的比叫做∠A的,即sinA= .②在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,若a=3、b=4,则sinB= .③在Rt△ABC中,∠C=90°,∠A=30°,则sinA=()()= .④在Rt△ABC中,∠C=90°,∠A=60°,则sinA=()()= .⑤在Rt△ABC中,∠C=90°,∠A=45°,则sinA=()()= .(五)课堂评价1.学生自我评价:这节课你学到了哪些知识?还有什么疑惑?2.教师对学生的评价:从学生的学习态度、参与状况、小组协作研讨积极性等方面进行评价.六、作业布置1.在Rt△ABC中,∠C=90°,若AC=2BC,则sinA的值是.2.在Rt△ABC中,各边的长度都扩大为原来的3倍,那么锐角A的正弦值.3.在Rt△ABC中,∠C=90°,BC=2,sinA=23,则求AC的长.七、教学反思本课时教学时主要是通过让学生画图、动手操作获得相关的结论.正弦的概念是全章知识的基础,对学生今后的学习与工作都十分重要,教学中应十分重视.在教学过程中教师应注意调动学生的积极性与主动性,争取让学生自己发现规律并用自己的语言进行归纳,教师引导学生比较、分析,最后得出结论.同时正弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,在教学中应作为难点处理.。
24.3 锐角三角函数 华师大版数学九年级上册教案
![24.3 锐角三角函数 华师大版数学九年级上册教案](https://img.taocdn.com/s3/m/4bd993716fdb6f1aff00bed5b9f3f90f77c64d1f.png)
24.3 锐角三角函数1.锐角三角函数第1课时锐角三角函数的定义※教学目标※【知识与技能】了解锐角三角函数的概念,能够正确应用sinA、cosA、tanA表示直角三角形中两边的比.【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,体会数学在解决实际问题中的作用.【情感态度】1.通过学习培养学生的合作意识.2.通过探究提高学生学习数学的兴趣.【教学重点】锐角三角函数的概念.【教学难点】锐角三角函数的概念的理解.※教学过程※一、情境导入如图(1),图(2)都可以用来测量物体的高度.这两个问题的解决,将涉及直角三角形中的边角关系.直角三角形中,它的边与角有什么关系?通过本节的学习,你就会明白其中的道理,并能应用所学知识解决相关的问题.二、探索新知1.某个角的对边、邻边的概念.在Rt△ABC中,直角∠C所对的边AB称为斜边,用c表示,另两边直角边为∠A的对边与邻边,分别用a、b表示(如图).2.做一做.(1)画一个Rt△ABC,使∠C=90°,∠A=30°,那么∠A的对边与斜边的比值是多少?量一量、算一算.(2)你画的三角形与你同伴画的三角形全等吗?不全等时,比值有什么关系?和你的同伴交流一下.(3)若∠A=45°、60°时,则∠A对边与斜边之比是多少?结论:在Rt△ABC中,只要一个锐角的大小不变(如∠A=30°),那么不管这个直角三角形大小如何,该锐角的对边与邻边的比值是一个固定的值.经过验证,在Rt△ABC中,当锐角A取其他固定值时,∠A的对边与邻边的比值还是一个固定值,与Rt△ABC的大小无关.说明:观察图中的Rt△AB 1C1、Rt△AB2C2和Rt△AB3C3,易知Rt△AB1C1Rt△AB2C2∽Rt△AB3C3.∴==可见,在Rt△ABC中,对于锐角A的每一个确定的值,其对边与邻边的比值是唯一确定的.同样,其对边与斜边,邻边与斜边的比值也是唯一确定的.3.锐角三角形函数的定义∠A的正弦:sinA=∠A的余弦:cosA=∠A的正切:tanA=∠A的正弦、余弦、正切统称为锐角∠A的三角函数.4.知识拓展(1)正弦与余弦三角函数值的取值范围.∵直角三角形中,斜边大于直角边.∴0<sinA<1,0<cosA<1.(2)同角三角函数关系sin2α+cos2α=1;tanα=.(3)互余两角的三角函数值若α、β都是锐角,且α+β=90°,那么:sinα=cosβ,cosα=sinβ.三、巩固练习【例1】如图,在Rt△ABC中,∠C=90°,AC=15,BC=8.试求出∠A的三个三角函数值.解:AB==17,sinA=,cosA=,tanA=.【练习】1.如图,在Rt△MNP中,∠N=90°,则:∠P的对边是,∠P的邻边是;∠M的对边是,∠M的邻边是.第1题图第2题图2.如图,在Rt△DEC中,∠E=90°,CD=10,DE=6.试求出∠D的三个三角函数值.3.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.根据下列所给条件,分别求出∠B的三个三角函数值:(1)a=3,b=4;(2)a=5,c=13.答案:1.MN PN PN MN2.由勾股定理,得CE=8,所以sinD=,cosD=,tanD=.3.(1)sinB=,cosB=,tanB=.(2)sinB=,cosB=,tanB=.四、应用拓展【例2】已知:Rt△ABC中,∠C=90°,sinA=,BC=3,求AB、AC的值.解:∵sinA=,∴AB=,∴AC=.【例3】如图,已知α为锐角,sinα=,求cosα、tanα的值.解:方法一:用定义法求解∵sinα=,∴设BC=3x,则AB=5x.由勾股定理,得AC=4x.∴cosα=,tanα=.方法二:用公式求解∵α为锐角,∴cosα==,tanα=.五、归纳小结1.正弦、余弦、正切的定义是在直角三角形中相对其锐角而定义的,其本质是两条线段长度之比,理解好这三个概念是学好本章的关键;2.正弦、余弦、正切实际上都是比值,没有单位,它们只与锐角α的大小有关,与三角形的边长无关;3.对于每一个锐角α的确定的值,它的正弦、余弦和正切都有唯一确定的值与之对应;反之,对于每一个确定的正弦、余弦和正切值,都有唯一的锐角与之对应.※课后作业※1.教材第111页习题24.3第1、2题.2.如图,在Rt△ABC中,∠CAB=90°,AD是∠CAB的平分线,tanB=,求的值.第2课时特殊角的三角函数值※教学目标※【知识与技能】1.熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应的锐角度数.2.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【过程与方法】培养学生观察、比较、分析、概括的思维能力.【情感态度】经历观察、操作、归纳等学习数学过程,感受数学思考过程的合理性,感受数学说理的必要性,说理过程的严谨性,养成科学的、严谨的学习态度.【教学重点】特殊角的三角函数值.【教学难点】与特殊角的三角函数值有关的计算.※教学过程※一、复习引入在Rt△ABC中,∠C=90°,AC=1,AB=2,求∠A、∠B的三个三角函数值.回顾锐角三角函数的定义;直角三角形的性质.二、探索新知在Rt△ABC中,∠A=30°,∠C=90°,如图,试求两个锐角的三个三角函数值.解:在直角三角形中,30°角所对的直角边是斜边的一半.所以,若设30°角所对的直角边为1,即BC=1,则AB=2,由勾股定理得:AC=.由三角函数定义,得sin30°=.cos30°=.tan30°=.同理可得sin60°=,cos60°=,tan60°=.2.在Rt△ABC中,∠C=90°,∠A=∠B=45°,如图,试求45°角的三角函数值.若设AC=BC=1.则AB=.易得sin45°=,cos45°=,tan45°=1.【例1】求值:sin30°·tan30°+cos60°·tan60°.解:原式=.【例2】在Rt△ABC中,若sinA=,则cos的值是多少?解:由sinA=知A=60°.∴cos=cos30°=.三、巩固练习1.在△ABC中,若cosA=,tanB=,则此三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形2.用特殊角的三角函数填空:= = ;= = ;1= ;= .3.化简= .4.点M(-sin60°,cos60°)关于x轴对称的点的坐标是.5.求下列各式的值:(1)sin260°+cos260°;(2)2cos60°+2sin30°+4tan45°;(3).6.如图,在Rt△ABC中,∠C=90°,AB=,BC=.求∠A的大小.答案:1.A 2.sin60° cos30° sin45° cos45°tan45° tan60° 3. 4.5.(1)1 (2)6 (3)6.∠A=45°四、应用拓展1.你能求出tan15°的值吗?如图,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至D,使BD=AB,则∠D=15°.设AC=k,则AB=2k,BC=k,所以CD=BC+BD=BC+AB=(2+)k,所以tan15°===2-.2.仿上面的解题方法,易求tan22.5°=-1.※课后作业※1.教材第111页习题24.3的第3题.2.若∠A、∠B是△ABC的两个内角且满足关系式=0,求∠C的度数.3.若α为锐角,且tan2α-(1+)tanα+1=0.求α的度数.2.用计算器求锐角三角函数值※教学目标※【知识与技能】1.会使用计算器求锐角三角函数的值.2.会使用计算器根据锐角三角函数的值求对应的锐角.【过程与方法】在做题、计算的过程中,逐步熟练计算器的使用.【情感态度】经历计算器的使用过程,熟悉其按键顺序.【教学重点】利用计算器求锐角三角函数的值.【教学难点】计算器的按键顺序. ※教学过程※一、复习引入填表:由上表我们可以直接写出30°,45°,60°角的三角函数值及由特殊值写出相应的锐角.对一些非特殊的角,怎样求它的三个三角函数值呢?二、探索新知1.求锐角三角函数值【例1】求sin63°52′41″的值(精确到0.0001).解:如下方法将角度单位状态设定为“度”:再按下列顺序依次按键:显示结果为0.897859012.∴sin63°52′41″≈0.8979.【例2】求tan19°15′的值(精确到0.0001).解:在角度单位状态为“度”的情况下(屏幕显示出),按下列顺序依次按键:显示结果为0.3492156334.∴tan19°15′≈0.3492.2.由锐角三角函数值求锐角.【例3】若tanx=0.7410,求锐角x.(精确到1′)解:在角度单位状态为“度”的情况下(屏幕显示出),按下列顺序依次按键:显示结果为36.53844577.再按键,显示结果为36°32′18.4″.所以x≈36°32′.三、巩固练习1.利用计算器求下列三角函数值:(精确到0.0001)(1)sin24°;(2)cos51°42′20″;(3)tan70°21′.2.已知下列锐角α的各三角函数值,利用计算器求锐角α:(精确到1′)(1)sinα=0.2476;(2)cosα=0.4174;(3)tanα=0.1890.答案:1.(1)0.4067 (2)0.6197 (3)2.8006 2.(1)14°20′(2)65°20′(3)10°42′※课后作业※1.教材第111页习题24.3的第4、5题.2.比较大小.cos25° cos32°,tan29° tan39°.3.在Rt△ABC中,∠C=90°,AB=29,AC=25,求∠A的度数.。
1.1 锐角三角函数 第1课时(教案)-北师大版数学九下
![1.1 锐角三角函数 第1课时(教案)-北师大版数学九下](https://img.taocdn.com/s3/m/ad665bd880c758f5f61fb7360b4c2e3f572725b4.png)
第1节锐角三角函数第1课时正切1.经历探索直角三角形中边角之间关系的过程.2.理解锐角三角函数(正切、正弦、余弦)的意义,并能够举例说明.3.能够运用tan A,sin A,cos A表示直角三角形中两边的比.4.能够根据直角三角形中的边角关系进行简单的计算.1.经历三个锐角三角函数的探索过程,确信三角函数的合理性,体会数形结合的数学思想.2.在探索锐角三角函数的过程中,初步体验探索、讨论、验证对学习数学的重要性.1.通过锐角三角函数概念的建立,使学生经历从特殊到一般的认识过程.2.让学生在探索、分析、论证、总结获取新知识的过程中体验成功的喜悦,从解决实际问题中感悟数学的实用性,培养学生学习数学的兴趣.【重点】1.理解锐角三角函数的意义.2.能利用三角函数解三角形的边角关系.【难点】能根据直角三角形的边角关系进行简单的计算1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系.2.能够用tan A表示直角三角形中两直角边的比,表示生活中物体的倾斜程度、坡度等,能够用正切进行简单的计算.3.理解正切、倾斜程度、坡度的数学意义,加强数学与生活的联系.1.体验数形之间的联系,逐步学习利用数形结合思想分析问题和解决问题.提高解决实际问题的能力.2.体会解决问题的策略多样性,发展实践能力和创新精神.1.积极参与数学活动,对数学产生好奇心和求知欲.2.形成实事求是的态度以及独立思考的习惯.【重点】1.从现实情境中探索直角三角形的边角关系.2.理解正切、倾斜程度、坡度的数学意义,加强数学与生活的联系.【难点】理解正切的意义,并用它来表示生活中物体的倾斜程度、坡度等.【教师准备】多媒体课件.【学生准备】1.自制4个直角三角形纸板.2.复习直角三角形相似的判定和直角三角形的性质.导入一:课件出示:你知道图中建筑物的名字吗?是的,它就是意大利著名的比萨斜塔,是世界著名建筑奇观,位于意大利托斯卡纳省比萨城北面的奇迹广场上,是奇迹广场三大建筑之一,也是意大利著名的标志之一,它从建成之日起便由于土层松软而倾斜.【引入】应该如何来描述它的倾斜程度呢?学完本节课的知识我们就能解决这个问题了.[设计意图]创设新颖、有趣的问题情境,以比萨斜塔的倾斜程度激发学生的学习兴趣,从而自然引出课题,并且为学生探究梯子的倾斜程度埋下伏笔.导入二:课件出示:四个规模不同的滑梯A,B,C,D,它们的滑板长(平直的)分别为300cm,250cm,200cm,200cm;滑板与地面所成的角度分别为30°,45°,45°,60°.【问题】四个滑梯中哪个滑梯的高度最高[设计意图]利用学生所熟悉的滑梯进行引导,使学生有亲切感,滑梯与课本中引用梯子比较类似,学生的探究思路会比较顺畅.(一)探究新知请同学们看下图,并回答问题.探究一:问题1课件出示:在下图中,梯子AB和EF哪个更陡?你是怎样判断的?你有几种判断方法?小组讨论后展示结果:1组:梯子AB较陡.我们组是借助量角器量倾斜角,发现∠ABC>∠EFD,根据倾斜角越大,梯子就越陡,可以得到梯子AB较陡.师:哪组还有不同的判定方法?2组:我们也是认为梯子AB较陡.我们组是分别计算AC与BC的比,ED与FD的比,发现前者的比值大,根据铅直高度与水平宽度的比越大,梯子就越陡,可以得到梯子AB较陡.3组:我们组的方法和1组的大致相同,借助倾斜角来判断,不过不是测量,我们是过E作EG∥AB 交FD于G,就可以清晰比较∠ABC与∠EFD的大小了.4组:我们组发现这两架梯子的高度相同,水平宽度越小,梯子就越陡,所以我们也认为梯子AB较陡.探究二:问题2课件出示:在下图中,梯子AB和EF哪个更陡?你是怎样判断的?学生会类比问题1给出的四种判断方法,只要说得合理即可.问题3课件出示:在下图中,梯子AB和EF哪个更陡?你是怎么判断的?多给学生思考和讨论的时间.代表发言:AB和EF的倾斜度一样.由于两个直角三角形的两直角边的比值相等,再加上夹角相等,可以判定两个直角三角形相似,根据相似三角形的对应角相等,可以证明两个倾斜角相等,所以AB和EF的倾斜度一样.教师引导:我们发现当直角三角形的两直角边的比值相等时,梯子的倾斜度一样,请大家判断一下在问题2与问题3中,两直角边的比值与倾斜度有什么关系?请继续探究下面的问题.问题4课件出示:在下图中,梯子AB和EF哪个更陡?你是怎样判断的?教师引导:我们观察上图直观判断梯子的倾斜程度,即哪一个更陡,可能就比较困难了.能不能从上面的探究中得到什么启示呢生讨论后得出:思路1:梯子EF较陡,因为∠EFD>∠ABC,根据倾斜角越大,梯子就越陡.思路2:梯子EF较陡,因为>,根据铅直高度与水平宽度的比越大,梯子就越陡.师生共同总结:在日常的生活中,我们判断哪个梯子更陡,应该从梯子AB 和EF 的倾斜角大小,或垂直高度和水平宽度的比的大小来判断.做一做:请通过计算说明梯子AB 和EF 哪一个更陡呢?生独立解答,代表展示:∵==,==,<,∴梯子EF 比梯子AB 更陡.[设计意图]通过探究逐层深入的问题,让学生经历由简单到复杂、由特殊到一般的探究过程,既对已学知识和生活经验进行了回味和运用,也让学生的思想逐步向本节课的中心“两直角边之比”靠近.[知识拓展]梯子的倾斜程度的判定方法:(1)梯子的倾斜程度和倾斜角有关系,倾斜角越大,梯子就越陡.(2)梯子的倾斜程度和铅直高度与水平宽度的比有关系,铅直高度与水平宽度的比越大,梯子就越陡.(二)再探新知课件出示:【想一想】如图所示,小明想通过测量B 1C 1及AC 1,算出它们的比,来说明梯子的倾斜程度;而小亮则认为,通过测量B 2C 2及AC 2,算出它们的比,也能说明梯子的倾斜程度.你同意小亮的看法吗?(1)直角三角形AB 1C 1和直角三角形AB 2C 2有什么关系生很容易得出两个三角形相似.由生说明理由:∵∠B 2AC 2=∠B 1AC 1,∠B 2C 2A =∠B 1C 1A =90°,∴Rt△AB 1C 1∽Rt△AB 2C 2.(2)和有什么关系?由于Rt△AB 1C 1∽Rt△AB 2C 2,所以有=.(3)如果改变B 2在梯子上的位置呢?由此你得出什么结论?生先独立思考后分组讨论.生得出结论:改变B 2在梯子上的位置,铅直高度与水平宽度的比始终相等.想一想:现在如果改变∠A 的大小,∠A 的对边与邻边的比值会改变吗?生讨论得出:∠A 的大小改变,∠A 的对边与邻边的比值会改变.∠A 的对边与邻边的比只与∠A 的大小有关系,而与它所在直角三角形的大小无关.【总结提升】由于直角三角形中的锐角A 确定以后,它的对边与邻边的比也随之确定,因此我们有如下定义:如图所示,在Rt△ABC 中,如果锐角A 确定,那么∠A 的对边与邻边之比便随之确定,这个比叫做∠A 的正切(tangent ),记作tan A ,即tan A =.当锐角A变化时,tan A的值也随之变化.能力提升:如果∠A+∠B=90°,那么tan A与tan B有什么关系?生讨论得出结论:tan A=,即任意锐角的正切值与它的余角的正切值互为倒数.【议一议】前面我们讨论了梯子的倾斜程度,在课本图1-3中,梯子的倾斜程度与tan A有关系吗?学生思考后,统一答案:tan A的值越大,梯子越陡.(反之,梯子越陡,tan A的值越大)[设计意图]此环节的设计是为了突出概念的形成过程,帮助学生理解概念.通过让学生参与、动手操作,让学生学会由特殊到一般、数形结合及函数的思想方法,提高学生分析问题和解决问题的能力.[知识拓展]正切的注意事项:(1)tan A是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号“∠”.(2)tan A没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比.(3)tan A不表示“tan”乘以“A”.(4)初中阶段,我们只学习直角三角形中锐角的正切.(教材例1)如图所示表示甲、乙两个自动扶梯,哪一个自动扶梯比较陡?想一想:要判断哪个自动扶梯比较陡,只需求出什么即可?生思考后得出:比较甲、乙两个自动扶梯哪一个陡,只需分别求出tanα,tanβ的值进行比较大小即可,正切值越大,扶梯就越陡.要求学生独立解答,代表展示:解:甲梯中,tanα==.乙梯中,tanβ==.因为tanα>tanβ,所以甲梯更陡.[设计意图]通过对例题的解答让学生初步学会运用“正切”这一数学工具判断梯子的倾斜程度,同时规范学生的解题步骤,培养良好的解题习惯.课件出示:如图所示,有一山坡在水平方向上每前进100m就升高60m,那么山坡的坡度(即tanα)就是: i=tanα==.结论:坡面与水平面的夹角(α)称为坡角,坡面的铅直高度与水平宽度的比称为坡度(或坡比),tanα=,即坡度等于坡角的正切.[设计意图]正切在日常生活中的应用很广泛,通过正切刻画梯子的倾斜程度及坡度的数学意义,密切数学与生活的联系,使学生明白学习数学就是为了更好地应用数学,为生活服务.[知识拓展]坡度与坡面的关系:坡度越大,坡面越陡.(1)正切的定义:tan A=.(2)梯子的倾斜程度与tan A的关系(∠A和tan A之间的关系):tan A的值越大,梯子越陡.(3)坡度(或坡比)的定义:i=tanα=.1.在Rt△ABC中,∠C=90°,AB=13,AC=12,则tan A等于()A.B. C. D.解析:∵在Rt△ABC中,∠C=90°,AB=13,AC=12,∴BC=5,∴tan A=.故选B.2.如图所示,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是()A.B.C.D.解析:认真读图,在以∠AOB的O为顶点的直角三角形里求tan∠AOB的值,由图可得tan∠AOB=.故选B.3.(2014·温州中考)如图所示,在△ABC中,∠C=90°,AC=2,BC=1,则tan A的值是.解析:tan A==.故填.4.河堤横断面如图所示,堤高BC=5m,迎水坡AB的坡度是1∶(坡度是坡面的铅直高度BC与水平宽度AC之比),则AB的长是.解析:在Rt△ABC中,BC=5,tan A=1∶,∴AC=5,∴AB==10(m).故填10m.第1课时(1)正切的定义:tan A=.(2)梯子的倾斜程度与tan A的关系(∠A和tan A之间的关系):tan A的值越大,梯子越陡.(3)坡度(或坡比)的定义:i=tanα=.一、教材作业【必做题】1.教材第4页随堂练习第1,2题.2.教材第4页习题1.1第1,2题.【选做题】教材第4页习题1.1第3,4题.二、课后作业【基础巩固】1.如图所示,在Rt△ABC中,∠C=90°,AC=6,BC=8,则tan A的值为()A. B. C. D.2.小明沿着坡度为1∶2的山坡向上走了1000m,则他升高了()A.500mB.200mC.500mD.1000m3.已知斜坡的坡度为i=1∶5,如果这一斜坡的高度为2m,那么这一斜坡的水平距离为m.【能力提升】4.(2015·山西中考)如图所示,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2B.C.D.5.如图所示,将以A为直角顶点的等腰直角三角形ABC沿直线BC平移得到△A'B'C',使点B'与C重合,连接A'B,则tan∠A'BC'的值为.6.如图所示,在锐角三角形ABC中,AB=10cm,BC=9cm,△ABC的面积为27cm2.求tan B的值.7.某商场为方便顾客使用购物车,准备将滚动电梯的坡面坡度由1∶1.8改为1∶2.4(如图所示).如果改动后电梯的坡面长为13m,求改动后电梯水平宽度增加部分BC的长.【拓展探究】8.如图所示,在△ABC中,AB=AC,BD是AC边上的中线,若AB=13,BC=10,试求tan∠DBC的值.【答案与解析】1.D(解析:∵在Rt△ABC中,∠C=90°,AC=6,BC=8,∴tan A===.故选D.)2.B(解析:设铅直高度为x m,∵坡度为1∶2,∴水平宽度为2x m,由勾股定理得x2+(2x)2=10002,解得x=200.∴他升高了200m.故选B.)3.10(解析:∵斜坡的坡比是1∶5,∴=.∴=,∴斜坡的水平距离为=10m.故填10.)4.D(解析:如图所示,连接AC,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan B==.故选D.)5.(解析:如图所示,过A'作A'D⊥BC',垂足为D.在等腰直角三角形A'B'C'中,易知A'D是底边上的中线,∴A'D=B'D=.∵BC=B'C',∴tan∠A'BC'===.故填.)6.解:如图所示,过点A作AH⊥BC于H,∵S=27,∴×9×AH=27,∴AH=6.∵AB=10,∴BH===8,∴tan△ABCB===.7.解:在Rt△ADC中,AD∶DC=1∶2.4,AC=13,由AD2+DC2=AC2,得AD2+(2.4AD)2=132,∴AD=±5(负值不合题意,舍去),∴DC=12.在Rt△ABD中,∵AD∶BD=1∶1.8,∴BD=5×1.8=9,∴BC=DC-BD=12-9=3(m).答:改动后电梯水平宽度增加部分BC的长为3m.8.解:如图所示,过点A,D分别作AH⊥BC,DF⊥BC,垂足分别为点H,F.∵BC=10,AH⊥BC,AB=AC,∴BH=5.∵AB=13,∴AH==12,在Rt△ACH中,AH=12,易知AH∥DF,且D为AC中点,∴DF=AH=6,∴BF=BC=,∴在Rt△DBF中,tan∠DBC==.本节课是三角函数部分的第一节概念教学,教学内容比较抽象,学生不易理解.为此结合初中学生身心发展的特点,运用实验教学、直观教学,唤起和加深学生对教学内容的体会和了解,并培养和发展学生的观察、思维能力,这是贯彻“从生动的直观到抽象的思维,并从抽象的思维到实践”的认识规律,能使学生学习数学的过程成为积极的、愉快的和富有想象的过程,使学习数学的过程不再是令人生畏的过程.概念教学由学生熟悉的实例入手,引导学生观察、分析、动手、动脑、动口多种感官参与,并组织学生积极参与小组成员间合作交流.通过由特殊到一般、具体到抽象的探索过程,紧紧围绕着函数概念,引出正切概念,再通过相应的典型题组练习巩固概念.并且在教学过程中,注重了阶段性的反思小结,使学生能够及时总结知识和方法.本节课的开放性还不够,探究梯子倾斜程度时,学生的一些奇思妙想没有给予展示机会.第一个环节内容设计多了一些,所以导致后面的教学处理上稍显仓促.对第一个环节的处理力求更加简洁,并大胆放手让学生去探索、去发现,真正让学生成为学习的主人.随堂练习(教材第4页)1.解:能.tan C====.2.解:根据题意,得AB=200,BC=55,则AC===5,所以山的坡度为=≈0.286.习题1.1(教材第4页)1.解:∵BC===12,∴tan A==,tan B==.2.解:∵tan A==,BC=3,∴AC=BC=.4.tan A=.学生学习时首先通过情境题了解本节课学习的主要任务,做到有的放矢,然后利用“由一般到特殊”的数学思想,通过三个探究活动逐步得出梯子的倾斜程度与tan A的关系(∠A和tan A之间的关系),在探究的过程中可以通过自主探究与合作交流的方式抓住重点,突破难点.学生在运用正切解决问题时,一定要注意其前提条件——在直角三角形中,找准直角是解题的关键.而有些题目需要作辅助线构造直角三角形,也可以通过角度的转化进行求解,同时还要注意数形结合思想的运用.如图所示,设计建造一条道路,路基的横断面为梯形ABCD,设路基高为h,两侧的坡角分别为α,β.已知h=2m,α=45°,tanβ=,CD=10m.求路基底部AB的宽.〔解析〕如图所示,过D,C分别作下底AB的垂线,垂足分别为E,F.在Rt△ADE和Rt△BCF中,可根据h的长以及坡角的度数或坡比的值,求出AE,BF的长,进而可求得AB的值.解:如图所示,过D作DE⊥AB于E,过C作CF⊥AB于F,∴DE∥CF.∵四边形ABCD为梯形,∴AB∥CD,∴EF=CD=10m.∴四边形DCFE为矩形.在Rt△ADE中,α=45°,DE=h=2m,∴CF=DE=h=2m.在Rt△BCF中,tanβ=,CF=2m,∴BF=2CF=4(m).故AB=AE+EF+BF=AE+CD+BF=2+10+4=16(m).答:路基底部AB的宽为16m.[解题策略]此题主要考查了坡度问题的应用,求坡度、坡角问题通常要转换为解直角三角形的问题,必要时应添加辅助线,构造出直角三角形.。
锐角三角函数教案
![锐角三角函数教案](https://img.taocdn.com/s3/m/f45865acccbff121dc368382.png)
【锐角三角函数全章教案】 锐角三角函数(第一课时)教学三维目标:一.知识目标:初步了解正弦、余弦、正切概念;能较正确地用siaA 、cosA 、tanA 表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。
二.能力目标:逐步培养学生观察、比较、分析,概括的思维能力。
三.情感目标:提高学生对几何图形美的认识。
教材分析:1.教学重点: 正弦,余弦,正切概念2.教学难点:用含有几个字母的符号组siaA 、cosA 、tanA 表示正弦,余弦,正切 教学程序: 一.探究活动1.课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。
2.归纳三角函数定义。
siaA=斜边的对边A ∠,cosA=斜边的邻边A ∠,tanA=的邻边的对边A A ∠∠3例1.求如图所示的Rt ⊿ABC 中的siaA,cosA,tanA 的值。
4.学生练习P21练习1,2,3 二.探究活动二1.让学生画30°45°60°的直角三角形,分别求sia 30°cos45° tan60°2. 求下列各式的值(1)sia 30°+cos30°(2)2sia 45°-21cos30°(3)004530cos sia +ta60°-tan30°三.拓展提高P82例4.(略) 1. 如图在⊿ABC 中,∠A=30°,tanB=23,AC=23,求AB 四.小结五.作业课本p85-86 2,3,6,7,8,10解直角三角形应用(一)一.教学三维目标 (一)知识目标使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形. (二)能力训练点通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力. (三)情感目标渗透数形结合的数学思想,培养学生良好的学习习惯. 二、教学重点、难点和疑点 1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边. 三、教学过程 (一)知识回顾1.在三角形中共有几个元素?2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)边角之间关系 sinA=c a cosA=c b tanA=ba(2)三边之间关系a 2 +b 2 =c 2 (勾股定理) (3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用. (二) 探究活动1.我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形). 3.例题评析例1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b= 2 a=6,解这个三角形.例2在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b= 20 ∠=350,解这个三角形(精确到0.1).B解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例3在Rt△ABC中,a=104.0,b=20.49,解这个三角形.(三) 巩固练习∠的平分线AD=43,解此直角三角形。
(优质课)锐角三角函数教案
![(优质课)锐角三角函数教案](https://img.taocdn.com/s3/m/0d8e3557a300a6c30d229f34.png)
教学设计:§28.1 锐角三角函数授课人:和金平编号: 48号§28.1 锐角三角函数(一)一、教学目标:1、理解直角三角形中锐角正弦函数的意义,并会求锐角的正弦值;2、掌握根据锐角的正弦值及直角三角形的一边,求直角三角形其他边长的方法;3、经历锐角正弦的意义探索的过程,培养学生观察分析、类比归纳的探究能力。
教学重点:理解正弦(sinA )概念,掌握当直角三角形的锐角固定时,它的对边与斜边的比值是固定值. 教学难点:在直角三角形中当锐角固定时,它的对边与斜边的比值是固定值的事实。
二、教学过程:1、创设情景,提出问题:(PPT 演示)在唐僧师徒取经的路上,遇到了一座山,这座山有多高呢?这可难住了唐僧。
大徒弟孙悟空目测山的顶部,视线与水平线的夹角为30度,然后从地面飞到山顶,路程是1000米。
你能帮孙悟空计算出山的高度吗?1000米B AC 情境探究:分析:这个问题可以归结为,在Rt△ABC 中,∠C =90°,∠A =30°,AB =1000m ,求BC 根据“在直角三角形中,30°角所对的边等于斜边的一半”,即可得BC = AB =500m ,也就是说,这座山的高度是500m思考1:在上面的问题中,如果孙悟空从山底部飞到山顶1500米,那么山的高度是多少?可得B ’C = AB ’ =750m 仍有 结论:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形的大小如何,这个角''1,'2A B C AB ∠ ==的对边斜边12B B 的对边与斜边的比值都等于思考2:在Rt △ABC 中,∠C=90°,∠A=45°,∠A 对边与斜边的比值是一个定值吗?如果是,是多少?在Rt△ABC 中,∠C =90°,由于∠A =45°,所以 Rt△ABC 是等腰直角三角形,假设BC=,由勾股定理得: A 因此 C B即在直角三角形中,当一个锐角等于45°时,不管这个直角三角形的大小如何,这个角的对边与斜边的比都等于 从上面这两个问题的结论中可知,在一个Rt △ABC 中,∠C=90°当∠A=30°时,∠A 的对边与斜边的比都等于12,是个固定值; 当∠A=45°时,∠A 的对边与斜边的比都等于22,也是一个固定值. 2、【探究】当∠A 取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值? 任意画Rt△ABC 和Rt△A’B’C ,使得∠C =∠C ’=90°,∠A =∠A’= , 那么与 有什么关系.你能解释一下吗? 由于∠C =∠C ’=90°, ∠A =∠A ’=所以Rt△ABC ∽ Rt△A’B’C’【为了更直观地验证这一结论,教师几何画板演示:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A 的对边与斜边的比不变;当锐角A 的度数增大时,不管三∠A 的对边与斜边的比值变大。
锐角三角函数全章教案
![锐角三角函数全章教案](https://img.taocdn.com/s3/m/fd33aae40c22590102029d5f.png)
锐角三角函数全章教案【篇一:人教版九年级锐角三角函数全章教案】第二十八章锐角三角函数教材分析:本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。
锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。
研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。
本章内容与已学相似三角形勾股定理等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。
学情分析:锐角三角函数的概念既是本章的难点,也是学习本章的关键。
难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号 sina 、cosa 、 tana 表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。
至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。
28.1 锐角三角函数(1)第一课时教学目标:知识与技能:1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。
2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。
过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.重难点:1.重点:理解认识正弦(sina)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.2.难点与关键:难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实.教学过程:一、复习旧知、引入新课【引入】操场里有一个旗杆,老师让小明去测量旗杆高度。
25.2.1《锐角三角函数》教学案(1)
![25.2.1《锐角三角函数》教学案(1)](https://img.taocdn.com/s3/m/caab840b16fc700abb68fc9e.png)
1 图25.2.2 图25.2.125.2.1《锐角三角函数》教学案(1)学习目标1、 正弦、余弦、正切、余切的定义。
2、 会根据条件求一个锐角的四个三角函数值重、难点:重点:正弦、余弦、正切、余切。
难点:会根据条件求一个锐角的四个三角函数值课前复习导入1、勾股定理的内容是什么?2、如何测量某一大楼的高度?说说你的办法。
课堂学习研讨(一)、在§25.1中,我们曾经使用两种方法求出操场旗杆的高度,其中都出现了两个相似的直角三角形,即△ABC ∽△A ′B ′C ′. 按5001的比例,就一定有 5001=''=''AC C A BC C B , 5001就是它们的相似比.当然也有ACBC C A C B =''''. 我们已经知道,直角三角形ABC 可以简记为Rt △ABC ,直角∠C 所对的边AB 称为斜边,用c 表示,另两条直角边分别为∠A 的对边与邻边,用a 、b 表示(如图25.2.1).前面的结论告诉我们,在Rt △ABC 中,只要一个锐角的大小不变(如∠A =34°),那么不管这个直角三角形大小如何,该锐角的对边与邻边的比值是一个 的值.(二)思考一般情况下,在Rt △ABC 中,当锐角A 取其他固定值时,∠A 的对边与邻边的比值还会是一个固定值吗?1、请同学们快速算一下等腰直角三角形的一个锐角的对边与邻边的比值是 ,然后再利用有一个锐角是30°的直角三角形计算出锐角30°的对边与邻边的比值是 。
想一想:这两个值也是固定值吗?2、观察图25.2.2中的Rt △11C AB 、Rt △22C AB 和Rt △33C AB ,易知 Rt △11C AB ∽Rt △______∽Rt △ ,所以111AC C B =_______=________.2 图25.2.3图25.2.1(第2题) 可见,在Rt △ABC 中,对于锐角A 的每一个确定的值,其对边与邻边的比值是唯一确定的.我们同样可以发现,对于锐角A 的每一个确定的值,其对边与斜边、邻边与斜边、邻边与对边的比值也是 的.因此这几个比值都是锐角A 的函数,记作sinA 、cosA 、tanA 、cotA , 即sinA =斜边的对边A ∠,cosA =斜边的邻边A ∠,tanA =的邻边的对边A A ∠∠,cotA =的对边的邻边A A ∠∠. 分别叫做锐角∠A 的正弦、余弦、正切、余切,统称为锐角∠A 的三角函数.(三) 师生探究,合作交流:1. 锐角三角函数值都是正实数,并且 <sinA < , <cosA < .2.根据三角函数的定义,你会证明以下两个结论吗?(1)A A 22cos sin +=1,(2)tanA ·cotA =1.3.例1求出图25.2.3所示的Rt △ABC 中∠A 的四个三角函数值.课堂达标练习1.求出如图所示的Rt △DEC (∠E =90°)中∠D 的四个三角函数值.2.设Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,根据下列所给条件求∠B 的四个三角函数值:(1) a =3,b =4; (2) a =5,c =13.3、.已知在Rt △ABC 中,∠C =90°,直角边AC 是直角边BC 的2倍,求∠B 的四个三角函数值.课堂小结:教学反思:。
锐角三角函数教案
![锐角三角函数教案](https://img.taocdn.com/s3/m/7689c82f53d380eb6294dd88d0d233d4b04e3f70.png)
锐角三角函数教案教学目标:1. 理解锐角三角函数的定义及其在三角恒等式中的应用。
2. 学会根据给定角度的数值计算其相对应的锐角三角函数值。
3. 掌握使用锐角三角函数求解三角方程和解三角形问题的方法。
教学重点:1. 锐角三角函数的定义及其性质。
2. 使用锐角三角函数求解三角方程和解三角形问题。
教学难点:1. 理解锐角三角函数与三角恒等式之间的关系,能够在解题中正确应用锐角三角函数的性质。
2. 学会使用锐角三角函数解决实际问题。
教学过程:Step 1: 导入新知识引入锐角三角函数的概念,并与直角三角函数进行对比,引出锐角三角函数的定义。
Step 2: 锐角三角函数的定义及其性质1. 引导学生理解正弦、余弦和正切函数的定义。
2. 解释锐角三角函数的定义域和值域。
3. 介绍锐角三角函数的基本性质,例如正弦函数的周期性和对称性等。
Step 3: 锐角三角函数的计算1. 给出一个角度的数值,让学生计算其相对应的锐角三角函数值。
2. 引导学生根据定义和性质解决一些简单的计算问题。
Step 4: 三角恒等式1. 介绍三角恒等式的概念。
2. 使用锐角三角函数的定义和性质推导一些常见的三角恒等式,例如正弦函数、余弦函数和正切函数的平方和差恒等式等。
3. 引导学生通过三角恒等式简化复杂的三角表达式。
Step 5: 解三角方程1. 介绍三角方程的概念。
2. 引导学生通过应用锐角三角函数的定义和性质解决一些简单的三角方程。
3. 给出一些较复杂的三角方程,让学生尝试解决。
Step 6: 解三角形问题1. 引导学生理解解三角形问题的思路和方法。
2. 通过实例引导学生解决一些简单的解三角形问题。
Step 7: 拓展应用1. 引导学生通过锐角三角函数解决一些实际问题,例如测量不可到达的高度和距离等。
2. 让学生自主寻找和锐角三角函数相关的应用实例,并进行讨论。
Step 8: 总结归纳总结锐角三角函数的定义、性质和使用方法,并强调锐角三角函数在解决实际问题中的重要性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锐角三角函数(2)
课标对本节课的教学要求
进一步理解锐角三角函数的概念,会求锐角的余弦和正切值。
教学目标
1.知识与技能
(1)了解锐角三角函数的概念,能够正确应用cosA、tanA表示直角三角形中两边的比;记忆30°、45°、60°的余弦和正切的函数值,并会由一个特殊角的三角函数值说出这个角;
(2)能够正确地使用计算器,由已知锐角求出它的三角函数值,由已知三角函数值求出相应的锐角.
弦,记作cosA,把∠A的对边与斜边的比
叫做∠A的正切,记作tanA.
课本练习
做课本第85页习题28.1复习巩固第1题、
第2题.(只做与余弦、正切函数有关的部分)
学生在学习了正弦函数后类比学习余弦和正切函数,自然过渡。
教师引导学生自主探索余弦函数和正切函数。
通过逐步设计探索问题,训练学生的思维能力
作业安排
2.难点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.用含有几个字母的符号组sinA、cosA表示正弦、余弦;正弦、余弦概念.
教学准备
课件、三角板
教学时间
1课时
教学过程
第(1)课时
教学环节
教师活动预设
学生活动预设
设计意图
备注
复习旧知
复习引入
教师提问:我们是怎样定
义直角三角形中一个锐角的正弦的?为什么可以这样定义它.学生回答后教师提出新问题:在上一节课中我们知道,如课本图28.1-6所示,在Rt△ABC中,∠C=90°,当锐角A确定时,∠A的对边与斜边的比就随之确定了.
函数.同样地,cosA,tanA也是A的函数.
二)余弦正切概念的应用
教师解释课本第80页例2题意:如课本图28.1-7,在Rt△ABC中,∠C=90°,BC= 6,sinA= ,求cosA、tanB的值.
教师对解题方法进行分析:我们已经知道了直角三角形中一条边的值,要求ห้องสมุดไป่ตู้弦,
正切值,就要求斜边与另一个直角边的值.
我们可以通过已知角的正弦值与对边值及勾股定理来求.教师分析完后要求学生自己
解题.学生解后教师总结并板书.
解:sinA= ,
∴AB= =6× =10,
又∵AC= =8,
∴cosA= = ,tanB= = .
随堂练习
学生做课本第81页练习1、2、3题.
课时总结:在直角三角形中,当锐角A的大小确定
时,∠A的邻边与斜边的比叫做∠A的余
69页3题
课堂小
小结:
掌握余弦函数和正切函数的概念,并且会应用它们进行证明和计算。
板书设计
锐角三角函数(2)
余弦函数: 例2
正切函数:
课后记
学生观察并思考仿照学习正弦函数的方法来学习余弦和正切函数。
新课讲授
我们把∠A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosA= = ;把∠A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA= = .
教师讲解并板书:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.对于锐角A的每一个确定的值,sinA有唯一确定的值与它对应,所以sinA是A的
2.过程与方法
通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.
3.情感、态度与价值观
引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.
教学重点
难点
重点与难点
1.重点:正弦、余弦;正切三个三角函数概念及其应用.
现在我们要问:其他边之间的比是
否也确定了呢?为什么?
学生思考并回答老师的问题。
学生回忆正弦函数的学习过程。
情境导入
探究新知
(一)余弦、正切概念的引入
教师引导学生自己作出结论,其证明方法与上一节课证明对边比斜边为定值的方法相同,都是通过两个三角形相似来证明.学生证明过后教师进行总结:类似于正弦的情况,在课本图28.1-6中,当锐角A的大小确定时,∠A的斜边与邻边的比、∠A的对边与邻边的比也分别是确定的.