中考数学几何模型能力 共顶点
中考数学必会几何模型:半角模型
中考数学必会几何模型:半角模型半角模型是指存在两个角度是一半关系,并且这两个角共顶点的模型。
通过先旋转全等再轴对称全等,一般结论是证明线段和差关系。
常见的半角模型是90°含45°,120°含60°。
例如,已知正方形ABCD中,∠MAN=45°,它的两边分别交线段CB、DC于点M、N。
要求证:BM+DN=MN,以及作AH⊥XXX于点H,求证:AH=AB。
证明过程如下:1.延长ND到E,使DE=BM。
由四边形ABCD是正方形,得AD=AB。
在△ADE和△ABM中,有AD=AB,∠ADE=∠BAM,DE=BM,因此△ADE≌△ABM。
得AE=AM,∠XXX∠BAM。
由∠MAN=45°,得∠BAM+∠NAD=45°,因此∠MAN=∠EAN=45°。
在△AMN和△AEN中,有MA=EA,∠MAN=∠EAN,AN=AN,因此△AMN≌△AEN。
得MN=EN。
因此BM+DN=DE+DN=EN=MN。
2.由(1)得△AMN≌△XXX。
因此S△AMN=S△AEN,即AH×MN=AD×EN。
又因为MN=EN,得AH=AD。
因此AH=AB。
在等边△ABC的两边AB、AC上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC。
要探究当M、N分别在线段AB、AC上移动时,BM、NC、MN之间的数量关系。
1) 当DM=DN时,BM、NC、MN之间的数量关系是BM+NC=MN。
2) 猜想:当DM≠DN时,仍有BM+NC=MN。
证明如下:延长AC至E,使CE=BM,连接DE。
因为BD=CD,且∠BDC=120°,所以△BDC是等边三角形。
因此BD=DC=CE=BM,得△BDE是等边三角形,∠BED=60°。
因此△DEN和△DME是等腰三角形,得DN=EN,DM=EM。
中考数学几何模型之共顶点模型(解析版)
中考数学几何模型:共顶点模型名师点睛 拨开云雾 开门见山共顶点模型,亦称“手拉手模型”,是指两个顶角相等的等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。
寻找共顶点旋转模型的步骤如下: (1)寻找公共的顶点(2)列出两组相等的边或者对应成比例的边(3)将两组相等的边分别分散到两个三角形中去,证明全等或相似即可。
两等边三角形 两等腰直角三角形 两任意等腰三角形 *常见结论:连接BD 、AE 交于点F ,连接CF ,则有以下结论: (1)BCD ACE ≅△△ (2)AE BD = (3)AFB DFE ∠=∠ (4)FC BFE ∠平分典题探究 启迪思维 探究重点例题1. 以点A 为顶点作等腰Rt △ABC ,等腰Rt △ADE ,其中∠BAC =∠DAE =90°,如图1所示放置,使 得一直角边重合,连接BD 、CE .(1)试判断BD 、CE 的数量关系,并说明理由; (2)延长BD 交CE 于点F 试求∠BFC 的度数;(3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由.【解答】解:(1)CE=BD,理由如下:∵等腰Rt△ABC,等腰Rt△ADE,∴AE=AD,AC=AB,在△EAC与△DAB中,,∴△EAC≌△DAB(SAS),∴CE=BD;(2)∵△EAC≌△DAB,∴∠ECA=∠DBA,∴∠ECA+∠CBF=∠DBA+∠CBF=45°,∴∠ECA+∠CBF+∠DCB=45°+45°=90°,∴∠BFC=180°﹣90°=90°;(3)成立,∵等腰Rt△ABC,等腰Rt△ADE,∴AE=AD,AC=AB,在△EAC与△DAB中,,∴△EAC≌△DAB(SAS),∴CE=BD;∵△EAC≌△DAB,∴∠ECA=∠DBA,∴∠ECA+∠CBF=∠DBA+∠CBF=45°,∴∠ECA+∠CBF+∠DCB=45°+45°=90°,∴∠BFC=180°﹣90°=90°.变式练习>>>1. 已知:如图,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°.(1)求证:BD=AE.(2)若∠ABD=∠DAE,AB=8,AD=6,求四边形ABED的面积.【解答】解:(1)∵△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE.∵∠ACB=∠DCE=90°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE.在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴BD=AE;(2)由(1)得:△BCD≌△ACE,∴∠CBD=∠CAE,∵∠CBP+∠BPC=90°,∠BPC=∠APD,∴∠EAC+∠APD=90°,∴∠AHB=90°,∴∠BAH+∠ABD=90°,∵∠DAE=∠ABD,∴∠BAH+∠DAE=90°,即∠BAD=90°,∵AB=8,AD=6,∴BD=AE=10,∴S四边形ABED=10×10÷2=50.例题2. 如图,等边△ABC,等边△ADE,等边△DBF分别有公共顶点A,D,且△ADE,△DBF都在△ADB内,求证:CD与EF互相平分.变式练习>>>2. 已如图,已知等边三角形ABC,在AB上取点D,在AC上取点E,使得AD=AE,作等边三角形PCD,QAE和RAB,求证:P、Q、R是等边三角形的三个顶点.【解答】解:连接BP,∵△ABC和△PCD都为等边三角形,∴AC=BC,DC=PC,∠ACB=∠DCP=60°,∴∠ACB﹣∠DCB=∠DCP﹣∠DCB,即∠ACD=∠BCP,∴△ACD≌△BCP(SAS),∴AD=BP,又∠RAB+∠BAC+∠QAE=180°,∴R,A,Q三点共线,又∠CBP=∠CAD=60°,∠RBA+∠ABC+∠CBP=180°,∴R,B,P三点共线,又AQ=AE=AD=BP,∴RQ=RA+AQ=RB+BP=RP,又∠R=60°,∴△PQR是等边三角形,则P、Q、R是等边三角形的三个顶点.例题3. 在等边△ABC与等边△DCE中,B,C,E三点共线,连接BD,AE交于点F,连接CF.(1)如图1,求证:BF=AF+FC,EF=DF+FC;(2)如图2,若△ABC,△DCE为等腰直角三角形,∠ACB=∠DCE=90°,则(1)的结论是否成立?若不成立,写出正确结论并证明.例题4. 【问题探究】(1)如图①已知锐角△ABC,分别以AB、AC为腰,在△ABC的外部作等腰Rt△ABD 和Rt△ACE,连接CD、BE,试猜想CD、BE的大小关系CD=BE;(不必证明)【深入探究】(2)如图②△ABC、△ADE都是等腰直角三角形,点D在边BC上(不与B、C重合),连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=CE+CD;(不必证明)线段AD2,BD2,CD2之间满足的等量关系,并证明你的结论;【拓展应用】(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD 的长.【解答】解:(1)∵△ABD和△ACE是等腰直角三角形,∴AB=AD,AE=AC,且∠DAB=∠EAC=90°,∴∠DAB+∠BAC=∠EAC+∠BAC,即∠BAE=∠DAC,在△DAC和△BAE中,∵,∴△DAC≌△BAE(SAS),∴CD=BE,故答案为:CD=BE.(2)∵△ABC、△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,∵,∴△BAD≌△CAE(SAS),∴CE=BD,∠ACE=∠B=45°,又∵BC=BD+CD,∠ACE=45°,∴BC=CE+CD,∠DCE=90°,∴CD2+CE2=DE2,∵BD=CE,DE=AD,∴CD2+BD2=2AD2.故答案为:BC=CE+CD.例题5. 如图1,在△ABC中,BC=4,以线段AB为边作△ABD,使得AD=BD,连接DC,再以DC为边作△CDE,使得DC=DE,∠CDE=∠ADB=α.(1)如图2,当∠ABC=45°且α=90°时,用等式表示线段AD,DE之间的数量关系;(2)将线段CB沿着射线CE的方向平移,得到线段EF,连接BF,AF.①若α=90°,依题意补全图3,求线段AF的长;②请直接写出线段AF的长(用含α的式子表示).【解答】解:(1)AD+DE=4,理由是:如图1,∵∠ADB=∠EDC=∠α=90°,AD=BD,DC=DE,∴AD+DE=BC=4;(2)①补全图形,如图2,设DE与BC相交于点H,连接AE,交BC于点G,∵∠ADB=∠CDE=90°,∴∠ADE=∠BDC,在△ADE与△BDC中,,∴△ADE≌△BDC,∴AE=BC,∠AED=∠BCD.∵DE与BC相交于点H,∴∠GHE=∠DHC,∴∠EGH=∠EDC=90°,∵线段CB沿着射线CE的方向平移,得到线段EF,∴EF=CB=4,EF∥CB,∴AE=EF,∵CB∥EF,∴∠AEF=∠EGH=90°,∵AE=EF,∠AEF=90°,∴∠AFE=45°,∴AF==4;达标检测领悟提升强化落实1. 如图,在等边△ABC与等边△DCE中,B,C,E三点共线,BD交AC于点G,AE交DC于点H,连接GH. 求证:GH∥BE.2. 如图,在正方形ABCD内取一点E,连接AE,BE,在△ABE外分别以AE,BE为边作正方形AEMN和EBFG,连接NC,AF,求证:NC∥AF.3.如图,在等腰Rt△ABC与等腰Rt△DCE中,∠ABC=∠DCE=90°,连接AD,BE,求证:AB2+DE2=AD2+BE2.4. 如图,在△ABC中,AB=AC=10,∠BAC=45°,以BC为腰在△ABC外部作等腰Rt△BCD,∠BCD=90°,连接AD,求AD的长.5. 【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.【解答】【发现问题】解:延长CA到M,作∠MAC的平分线AN,在AN上截取AD=AC,连接CD,即可得到等腰直角△ACD;连接BD、CE,如图1所示:∵△ABE与△ACD都是等腰直角三角形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE,故答案为:BD=CE;【拓展探究】解:BD=CE;理由如下:∵四边形AEFB与四边形ACGD都是正方形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;【解决问题】解:以AB为边向外作等边三角形ABE,连接CE,如图3所示:则∠BAE=60°,BE=AB=AE=8,∵AD=CD,∠ADC=60°,∴△ACD是等边三角形,∴∠CAD=60°,AC=AD,∴∠CAD+∠BAC=∠BAE+∠BAC,即∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;当C、B、E三点共线时,CE最大=BC+BE=15+8=23,∴BD的最大值为23.6. 已知线段AB⊥直线l于点B,点D在直线l上,分别以AB、AD为边作等边三角形ABC和等边三角形ADE,直线CE交直线l于点F.(1)当点F在线段BD上时,如图①,求证:DF=CE﹣CF;(2)当点F在线段BD的延长线上时,如图②;当点F在线段DB的延长线上时,如图③,请分别写出线段DF、CE、CF之间的数量关系,在图②、图③中选一个进行证明;(3)在(1)、(2)的条件下,若BD=2BF,EF=6,则CF=2或6.【解答】(1)证明:如图①中,设AD交EF于O.∵△ABC,△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴CE=BD,∴∠AEO=∠FDO,∵∠AOE=∠FOD,∴∠OFD=∠OAE=60°,∵AB⊥BC,∴∠ABD=90°,∵∠ABC=60°,∴∠CBF=30°,∵∠OFD=∠CBF+∠BCF,∴∠FBC=∠FCB=30°,∴CF=BF,∴DF=CE﹣CF(2)如图图②中,结论:DF=CF﹣CE.图③中,结论:DF=CE+CF;如图②中,∵△ABD≌△ACE,∴BD=EC,∠ADB=∠AEC,∵∠ADB+∠ADF=180°,∴∠AEF+∠ADF=180°,∴∠DAE+∠DFE=180°,∴∠DFE=120°,∴∠FBC=∠FCB=30°,∴FB=FC,∴DF=BF﹣BD=CF﹣CE.(3)①如图1中,∵BD=2DF,设BF=DF=CF=x,∵EF=6,BD=EC,∴3x=6,∴x=2∴CF=2.②如图③中,设BF=CF=x,则BD=2x,∵BD=EC,EF=6,∴6+x=2x,∴x=6,∴CF=6,综上所述,CF=2或6.故答案为2或6.。
模型11 手拉手模型(解析版)-2023年中考数学重难点解题大招复习讲义-几何模型篇
模型介绍共顶点模型,亦称“手拉手模型”,是指两个顶角相等的等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。
寻找共顶点旋转模型的步骤如下: (1)寻找公共的顶点(2)列出两组相等的边或者对应成比例的边(3)将两组相等的边分别分散到两个三角形中去,证明全等或相似即可。
两等边三角形两等腰直角三角形两任意等腰三角形*常见结论:连接BD 、AE 交于点F ,连接CF ,则有以下结论:(1)BCD ACE≅△△(2)AE BD=(3)AFB DFE∠=∠(4)FC BFE∠平分【专题说明】两个具有公共顶点的相似多边形,在绕着公共顶点旋转的过程中,产生伴随的全等或相似三角形,这样的图形称作共点旋转模型;为了更加直观,我们形象的称其为“手拉手”模型。
【知识总结】【基本模型】一、等边三角形手拉手-出全等图1图2图3图4二、等腰直角三角形手拉手-出全等两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有:①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE;图1图2图3图4手拉手模型的定义:两个顶角相等且有共顶点的等腰三角形形成的图形。
手拉手模型特点:“两等腰,共顶点”模型探究:例题精讲考点一:等边三角形中的手拉手模型【例1】.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.有下列结论:①AD=BE;②AP=BQ;③∠AOB=60°;④DC=DP;⑤△CPQ为正三角形.其中正确的结论有_____________.解:∵△ABC和△DCE是正三角形,∴AC=BC,DC=CE,∠BCA=∠DCE=60°,∴∠BCA+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中∴△ACD≌△BCE(SAS),∴AD=BE,∴①正确;∵△ACD≌△BCE,∴∠CBE=∠CAD,∵∠ACB=∠DCE=60°,∴∠BCD=60°=∠ACB,在△ACP和△BCQ中∴△ACP≌△BCQ(ASA),∴AP=BQ,∴②正确;PC=QC,∴△CPQ为正三角形∴⑤正确∵△ACD≌△BCE,∴∠ADC=∠BEC,∠DCE=60°=∠CAD+∠ADC,∴∠CAD+∠BEC=60°,∴∠AOB=∠CAD+∠BEC=60°,∴③正确;∵△DCE是正三角形,∴DE=DC,∵∠AOB=60°,∠DCP=60°,∠DPC>∠AOB,∴∠DPC>∠DCP,∴DP<DC,即DP<DE,∴④错误;所以正确的有①②③⑤变式训练【变式1-1】.如图,ABD∆,AEC∆都是等边三角形,则BOC∠的度数是()A.135︒B.125︒C.120︒D.110︒解:ABD,AEC∆∆都是等边三角形,∴=,AE ACAD AB∠=∠=︒,60∠==︒,ADB DBADAB CAE=,60∴∠=∠,DAB BAC CAE BAC∴∠+∠=∠+∠,DAC BAE∴∆≅∆,ADC ABE()DAC BAE SAS∴∠=∠,∴∠=∠+∠+∠BOC BDO DBA ABE=∠+∠BDO DBA ADC=∠+∠+∠ADB DBA∴∠的度数是120︒=︒,BOC=︒+︒1206060故选:C.【变式1-2】.如图,△DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN;④∠DAE=∠DBC.其中正确的有()A.②④B.①②③C.①②④D.①②③④解:∵△DAC和△EBC均是等边三角形,∴AC=DC,BC=CE,∠ACE=∠BCD,∴△ACE≌△DCB,①正确由①得∠AEC=∠CBD,∴△BCN≌△ECM,∴CM=CN,②正确假使AC=DN,即CD=CN,△CDN为等边三角形,∠CDB=60°,又∵∠ACD=∠CDB+∠DBC=60°,∴假设不成立,③错误;∵∠DBC+∠CDB=60°∠DAE+∠EAC=60°,而∠EAC=∠CDB,∴∠DAE=∠DBC,④正确,∴正确答案①②④故选:C.【变式1-3】.如图,△ABC和△ADE都是等边三角形,点D在BC上,DE与AC交于点F,若AB=5,BD=3,则=.解:连接CE,过点F作FM⊥BC于点M,FN⊥CE于点N,∵△ABC和△ADE为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=CE=3,∠ABD=∠ACE=60°,∵AB=BC=5,∴DC=2,∵∠ACB=∠ACE=60°,FM⊥BC,FN⊥CE,∴FM=FN,=DC•FM,S△FCE=CE•FN,∵S△DFC∴,∴,故答案为:.考点二:等腰直角三角形中的手拉手模型【例2】.如图,ACB ∆和ECD ∆都是等腰直角三角形,90ACB ECD ∠=∠=︒,D 为AB 边上一点,若5AD =,12BD =,则DE 的长为__________解:ACB ∆ 和ECD ∆都是等腰直角三角形,CD CE ∴=,AC BC =,90ECD ACB ∠=∠=︒,ACE BCD ∴∠=∠,在ACE ∆和BCD ∆中,CE CD ACE BCD AC BC =⎧⎪∠=∠⎨⎪=⎩,()ACE BCD SAS ∴∆≅∆,12BD AE ∴==,45CAE CBD ∠=∠=︒,90EAD ∴∠=︒,222212513DE AE AD ∴=+=+=.变式训练【变式2-1】.如图,3AB =,2AC =,连结BC ,分别以AC 、BC 为直角边作等腰Rt ACD ∆和等腰Rt BCE ∆,连结AE 、BD ,当AE 最长时,BC 的长为()A .22B .3C .11D .17解:90ACD BCE ∠=∠=︒ ,ACD ACB BCE ACB ∴∠+∠=∠+∠,即ACE DCB ∠=∠,在ACE ∆和DCB ∆中,AC DC ACE DCB CE CB =⎧⎪∠=∠⎨⎪=⎩,()ACE DCB SAS ∴∆≅∆,AE BD ∴=,AC CD == ,90ACD ∠=︒,2AD ∴==,3AB = ,∴当点A 在BD 上时,BD 最大,最大值为325+=,如图,过C 作CE AD ⊥于E ,由等腰三角形“三线合一”得1DE AE ==,314BE AB AE ∴=+=+=,再由直角三角形斜边中线等于斜边一半得1DE =,BC ∴=.故选:D .【变式2-2】.如图,在Rt ABC ∆中,AB AC =,点D 为BC 中点,点E 在AB 边上,连接DE ,过点D 作DE 的垂线,交AC 于点F .下列结论:①AED CFD ∆≅∆;②EF AD =;③BE CF AC +=;④212AEDF S AD =四边形,其中正确的结论是(填序号).解:AB AC = ,90BAC ∠=︒,点D 为BC 中点,12BD CD AD BC ∴===,45BAD CAD C ∠=∠=∠=︒,AD BC ⊥,BC =,DF DE ⊥ ,90EDF ADC ∴∠=∠=︒,ADE CDF ∴∠=∠,AD CD = ,BAD C ∠=∠,()AED CFD ASA ∴∆≅∆,故①正确;当E 、F 分别为AB 、AC 中点时,12EF BC AD ==,故②不一定正确;ADE CDF ∆≅∆ ,AE CF ∴=,BE AE AB += ,BE CF AC ∴+=,故③正确;ADE CDF ∆≅∆ ,ADE CDF S S ∆∆∴=,212ADF CDF ADC AEDF S S S S AD ∆∆∆∴=+==⨯四边形,故④正确;故答案为:①③④.【变式2-3】.如图,△ABC 和△CEF 均为等腰直角三角形,E 在△ABC 内,∠CAE +∠CBE =90°,连接BF .(1)求证:△CAE ∽△CBF .(2)若BE =1,AE =2,求CE 的长.(1)证明:∵△ABC和△CEF均为等腰直角三角形,∴==,∴∠ACB=∠ECF=45°,∴∠ACE=∠BCF,∴△CAE∽△CBF;(2)解:∵△CAE∽△CBF,∴∠CAE=∠CBF,==,又∵==,AE=2∴=,∴BF=,又∵∠CAE+∠CBE=90°,∴∠CBF+∠CBE=90°,∴∠EBF=90°,∴EF2=BE2+BF2=12+()2=3,∴EF=,∵CE2=2EF2=6,∴CE=.考点三:任意等腰三角形中的手拉手模型【例3】.如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD =36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论是_____.解:∵∠AOB=∠COD=36°,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,故②正确;∵∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OBD=∠OAC+∠AOB,∴∠AMB=∠AOB=36°,故①正确;法一:作OG⊥AM于G,OH⊥DM于H,如图所示,则∠OGA=∠OHB=90°,∵△AOC≌△BOD,∴OG=OH,∴MO平分∠AMD,故④正确;法二:∵△AOC≌△BOD,∴∠OAC=∠OBD,∴A、B、M、O四点共圆,∴∠AMO=∠ABO=72°,同理可得:D、C、M、O四点共圆,∴∠DMO=∠DCO=72°=∠AMO,∴MO平分∠AMD,故④正确;假设MO平分∠AOD,则∠DOM=∠AOM,在△AMO与△DMO中,,∴△AMO≌△DMO(ASA),∴AO=OD,∵OC =OD ,∴OA =OC ,而OA <OC ,故③错误;变式训练【变式3-1】.如图,等腰ABC ∆中,120ACB ∠=︒,4AC =,点D 为直线AB 上一动点,以线段CD 为腰在右侧作等腰CDE ∆,且120DCE ∠=︒,连接AE ,则AE 的最小值为()A .23B .4C .6D .8解:连接BE 并延长交AC 延长线于F ,120ACB ∠=︒ ,AC BC =,30CAB CBA ∴∠=∠=︒,120DCE ACB ∠=︒=∠ ,ACD BCE ∴∠=∠,AC BC = ,CD CE =,()ACD BCE SAS ∴∆≅∆,30CBE CAD ∴∠=∠=︒,CB 为定直线,30CBE ∠=︒为定值,∴当D 在直线AB 上运动时,E 也在定直线上运动,当AE BE ⊥时,AE 最小,30CAB ABC CBE ∠=︒=∠=∠ ,90AFB ∴∠=︒,∴当E 与F 重合时,AE 最小,在Rt CBF ∆中,90CFB ∠=︒,30CBF ∠=︒,122CF CB ∴==,6AF AC CF ∴=+=,AE ∴的最小值为6AF =,故选:C .【变式3-2】.如图,在△ABC 中,AB =AC =5,∠BAC =120°,以CA 为边在∠ACB 的另一侧作∠ACM =∠ACB ,点D 为边BC (不含端点)上的任意一点,在射线CM 上截取CE =BD ,连接AD ,DE ,AE .设AC 与DE 交于点F ,则线段CF 的最大值为.解:∵∠BAC=120°,AB=AC,∴∠B=∠ACB=30°.∵∠ACM=∠ACB,∴∠B=∠ACM=30°.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).∴AD=AE,∠BAD=∠CAE.∴∠CAE+∠DAC=∠BAD+∠DAC=∠BAC=120°.即∠DAE=120°.∵AD=AE,∴∠ADE=∠AED=30°;∵∠ADE=∠ACB=30°且∠DAF=∠CAD,∴△ADF∽△ACD.∴=.∴AD2=AF•AC.∴AD2=5AF.∴AF=.∴当AD最短时,AF最短、CF最长.∵当AD⊥BC时,AF最短、CF最长,此时AD=AB=.∴AF最短==.∴CF最长=AC﹣AF最短=5﹣=.故答案为:.【变式3-3】.【问题背景】(1)如图1,等腰ABC ∆中,AB AC =,120BAC ∠=︒,AQ BC ⊥于点Q ,则BC AB =;【知识应用】(2)如图2,ABC ∆和ADE ∆都是等腰三角形,120BAC DAE ∠=∠=︒,D 、E 、C 三点在同一条直线上,连接BD .求证:ADB AEC ∆≅∆.(3)请写出线段AD ,BD ,CD之间的等量关系,并说明理由.(1)解:AB AC = ,120BAC ∠=︒,AQ BC ⊥,30B C ∴∠=∠=︒,BQ QC =,12AQ AB ∴=,由勾股定理得:2BQ AB ===,BC ∴=,∴BC AB ==(2)证明:BAC DAE ∠=∠ ,BAC BAE DAE BAE ∴∠-∠=∠-∠,即DAB EAC ∠=∠,在ADB ∆和AEC ∆中,AD AE DAB EAC AB AC =⎧⎪∠=∠⎨⎪=⎩,()ADB AEC SAS ∴∆≅∆;(3)解:CD BD =+,理由如下:由(1)可知:DE =,ADB AEC ∆≅∆ ,EC BD ∴=,CD DE EC BD ∴=+=+.实战演练1.风筝为中国人发明,相传墨翟以木头制成木鸟,研制三年有成,是人类最早的风筝起源.如图,小飞在设计的“风筝”图案中,已知AB AD =,B D ∠=∠,BAE DAC ∠=∠,那么AC 与AE 相等.小飞直接证明ABC ADE ∆≅∆,他的证明依据是()A .SSSB .SASC .ASAD .AAS证明:BAE DAC ∠=∠ ,BAE EAC DAC EAC ∴∠+∠=∠+∠,BAC DAE ∴∠=∠,AB AD = ,B D ∠=∠,()ABC ADE ASA ∴∆≅∆,AC AE ∴=,故选:C .2.如图,ABD ∆,AEC ∆都是等边三角形,则BOC ∠的度数是()A .135︒B .125︒C .120︒D .110︒解:ABD ∆ ,AEC ∆都是等边三角形,AD AB ∴=,AE AC =,60DAB CAE ∠=∠=︒,60ADB DBA ∠==︒,DAB BAC CAE BAC ∴∠+∠=∠+∠,DAC BAE ∴∠=∠,()DAC BAE SAS ∴∆≅∆,ADC ABE ∴∠=∠,BOC BDO DBA ABE∴∠=∠+∠+∠BDO DBA ADC =∠+∠+∠ADB DBA=∠+∠6060=︒+︒120=︒,BOC ∴∠的度数是120︒,故选:C .3.如图,点A 是x 轴上一个定点,点B 从原点O 出发沿y 轴的正方向移动,以线段OB 为边在y 轴右侧作等边三角形,以线段AB 为边在AB 上方作等边三角形,连接CD ,随点B 的移动,下列说法错误的是()A .BOA BDC∆≅∆B .150ODC ∠=︒C .直线CD 与x 轴所夹的锐角恒为60︒D .随点B 的移动,线段CD 的值逐渐增大解:A .OBD ∆ 和ABC ∆都是等边三角形,60ABC OBD ODB BOD ∴∠=∠=∠=∠=︒,BO BD =,BC AB =,ABC DBA OBD DBA ∴∠-∠=∠-∠,CBD ABO ∴∠=∠,()BOA BDC SAS ∴∆≅∆,故A 不符合题意;B .BOA BDC ∆≅∆ ,90BDC BOA ∴∠=∠=︒,6090150ODC BDO BDC ∴∠=∠+∠=︒+︒=︒,故B 不符合题意;C .延长CD 交x 轴于点E ,150ODC ∠=︒ ,18030ODE ODC ∴∠=︒-∠=︒,90BOA ∠=︒ ,60BOD ∠=︒,30DOA BOA BOD ∴∠=∠-∠=︒,60DEA DOA ODE ∴∠=∠+∠=︒,∴直线CD 与x 轴所夹的锐角恒为60︒,故C 不符合题意;D .BOA BDC ∆≅∆ ,CD OA ∴=,点A 是x 轴上一个定点,OA ∴的值是一个定值,∴随点B 的移动,线段CD 的值不变,故D 符合题意;故选:D .4.如图,3AB =,2AC =BC ,分别以AC 、BC 为直角边作等腰Rt ACD ∆和等腰Rt BCE ∆,连结AE 、BD ,当AE 最长时,BC 的长为()A .22B .3C .11D .17解:90ACD BCE ∠=∠=︒ ,ACD ACB BCE ACB ∴∠+∠=∠+∠,即ACE DCB ∠=∠,在ACE ∆和DCB ∆中,AC DC ACE DCB CE CB =⎧⎪∠=∠⎨⎪=⎩,()ACE DCB SAS ∴∆≅∆,AE BD ∴=,2AC CD == ,90ACD ∠=︒,222AD AC CD ∴=+=,3AB = ,∴当点A 在BD 上时,BD 最大,最大值为325+=,如图,过C 作CE AD ⊥于E ,由等腰三角形“三线合一”得1DE AE ==,314BE AB AE ∴=+=+=,再由直角三角形斜边中线等于斜边一半得1DE =,2217BC CE BE ∴=+=.故选:D .5.如图,线段OA 绕点O 旋转,线段OB 的位置保持不变,在AB 的上方作等边PAB ∆,若1OA =,3OB =,则在线段OA 旋转过程中,线段OP 的最大值是()A 10B .4C .5D .5解:如图,以AO 为边,在AO 的左侧作等边AOH ∆,连接BH ,AOH ∆ ,ABP ∆是等边三角形,1AO AH OH ∴===,AB AP =,60OAH BAP ∠=∠=︒,OAP HAB ∴∠=∠,在OAP ∆和HAB ∆中,AO AH OAP HAB AP AB =⎧⎪∠=∠⎨⎪=⎩,()OAP HAB SAS ∴∆≅∆,OP BH ∴=,在OPH ∆中,BH OH OB <+,∴当点H 在BO 的延长线上时,BH 的最大值4OH OB =+=,OP ∴的最大值为4,故选:B .6.如图,O 是等边△ABC 内一点,OA =3,OB =4,OC =5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,则∠AOB =150°.解:连接OO ′,如图,∵线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,∴BO ′=BO =4,∠O ′BO =60°,∴△BOO ′为等边三角形,∴∠BOO ′=60°,∵△ABC 为等边三角形,∴BA =BC ,∠ABC =60°,∴∠O ′BO ﹣∠ABO =∠ABC ﹣∠ABO ,即∠O ′BA =∠OBC ,在△O ′BA 和△OBC中,∴△O ′BA ≌△OBC (SAS ),∴O ′A =OC =5,在△AOO ′中,∵OA ′=5,OO ′=4,OA =3,∴OA 2+OO ′2=O ′A 2,∴∠AOO ′=90°,∴∠AOB =60°+90°=150°,故答案为:150°.7.如图,△ABC与△ADE均是等腰直角三角形,点B,C,D在同一直线上,AB=AC=2,AD=AE=3,∠BAC=∠DAE=90°,则CD=﹣.解:∵AB=AC=2,AD=AE=3,∠BAC=∠DAE=90°,∴BC=AB=2,DE=AE=3,∠BAD=∠CAE,∠ABC=45°=∠ACB,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴EC=BD,∠ABD=∠ACE=45°,∴∠ECB=∠ECD=90°,∴DE2=EC2+CD2,∴18=(2+CD)2+CD2,解得:CD=﹣,CD=﹣﹣(不合题意舍去),故答案为:﹣.8.如图,△ABC和△ADE均为等腰直角三角形,连接CD、BE,点F、G分别为DE、BE 的中点,连接FG.在△ADE旋转的过程中,当D、E、C三点共线时,若AB=3,AD=2,则线段FG的长为.解:连接BD,∠BAD=90°﹣∠BAE,∠CAE=90°﹣∠BAE,∴∠BAD=∠CAE.又AD=AE,AB=AC,∴△ADB≌△AEC(SAS).∴BD=CE,∠ADB=∠AEC=135°,∴∠BDC=135°﹣45°=90°.∵△ABC和△ADE均为等腰直角三角形,AB=3,AD=2,∴DE=2,BC=3.设BD=x,则DC=2+x,在Rt△BDC中,利用勾股定理BD2+DC2=BC2,所以x2+(2+x)2=18,解得x1=﹣﹣(舍去),x2=﹣+.∵点F、G分别为DE、BE的中点,∴FG=BD=.故答案为.9.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交CD于点F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的数量和位置关系,并说明理由.解:猜测AE=BD,AE⊥BD;理由如下:∵∠ACD=∠BCE=90°,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB,又∵△ACD和△BCE都是等腰直角三角形,∴AC=CD,CE=CB,在△ACE与△DCB中,∴△ACE≌△DCB(SAS),∴AE=BD,∠CAE=∠CDB;∵∠AFC=∠DFH,∠FAC+∠AFC=90°,∴∠DHF=∠ACD=90°,∴AE⊥BD.故线段AE和BD的数量相等,位置是垂直关系.10.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.11.已知△ABC和△ADE都是等边三角形,点D在射线BF上,连接CE.(1)如图1,BD与CE是否相等?请说明理由;(2)如图1,求∠BCE的度数;(3)如图2,当D在BC延长线上时,连接BE,△ABE、△CDE与△ADE的面积有怎样的关系?并说明理由.解:(1)BD=CE,理由如下:∵△ABC和△ADE是都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∠ABC=∠ACB=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;(2)∵△ABD≌△ACE,∴∠ABD=∠ACE=60°,∴∠BCE=120°;+S△CDE=S△ADE,理由如下:(3)S△ABE∵△ABC和△ADE是都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∠ABC=∠ACB=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),=S△ACE,∠ABC=∠ACE=60°,∴S△ABD∴∠ECD=180°﹣∠ACB﹣∠ACE=60°,∴∠ABC=∠ECD,∴AB∥CE,=S△ABC,∴S△ABE+S△CDE=S△ADE+S△ACD,∵S△ACE+S△CDE=S△ADE+S△ACD,∴S△ABD+S△ACD+S△CDE=S△ADE+S△ACD,∴S△ABC+S△CDE=S△ADE.∴S△ABE12.如图,在△ABC中,分别以AB、AC为腰向外侧作等腰Rt△ADB与等腰Rt△AEC,∠DAB=∠EAC=90°,连接DC、EB相交于点O.(1)求证:BE⊥DC;(2)若BE=BC.①如图1,G、F分别是DB、EC中点,求的值.②如图2,连接OA,若OA=2,求△DOE的面积.(1)证明:∵∠DAB=∠EAC=90°,∴∠EAB=∠CAD,在△BAE和△DAC中,,∴△BAE≌△DAC(SAS),∴∠ABE=∠ADC,∵∠BAD=90°,∴∠DOB=90°,即BE⊥DC;(2)解:①取DE的中点H,连接GH、FH,∵点G是BD的中点,∴GH∥BE,GH=BE,同理,FH∥CD,FH=CD,∵BE=CD.BE⊥DC,∴GH=FH,GH⊥FH,∴△HGF为等腰直角三角形,∴GF=GH,∵GH=BE,∴GF=BE,∵BE=BC,∴=;②作AM⊥BE于M,AN⊥CD于N,在△BAE和△BAC中,,∴△BAE≌△BAC(SSS),∴∠BAE=∠BAC=135°,∴∠DAE=135°﹣90°=45°,即∠OAD+∠OAE=45°,∵△BAE≌△DAC,∴AM=AN,又AM⊥BE,AN⊥CD,∴OA平分∠BOC,∴∠BOA=∠COA=45°,∴∠DOA=∠EOA=135°,∴∠ODA+∠OAD=45°,∴∠OAE=∠ODA,∴△ODA∽△OAE,∴=,即OD•OE=OA2=4,∴△DOE的面积=×OD•OE=2.13.如图(1),在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD 为一边在AD的右侧作等腰直角△ADF,∠ADE=∠AED=45°,∠DAE=90°,AD=AE,解答下列问题:(1)如果AB=AC,∠BAC=90°,∠ABC=∠ACB=45°.①当点D在线段BC上时(与点B不重合),如图(2),线段CE、BD之间的数量关系为CE=BD;位置关系为CE⊥BD;(不用证明)②当点D在线段BC的延长线上时,如图(3),①中的结论是否仍然成立,请写出结论并说明理由.(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CE⊥BD(点C、E重合除外)?请写出条件,并借助图(4)简述CE⊥BD成立的理由.解:(1)①CE与BD位置关系是CE⊥BD,数量关系是CE=BD.理由:如图(2),∵∠BAD=90°﹣∠DAC,∠CAE=90°﹣∠DAC,∴∠BAD=∠CAE.又BA=CA,AD=AE,∴△ABD≌△ACE(SAS),∴∠ACE=∠B=45°且CE=BD.∵∠ACB=∠B=45°,∴∠ECB=45°+45°=90°,即CE⊥BD.故答案为:CE=BD;CE⊥BD.②当点D在BC的延长线上时,①的结论仍成立.如图(3),∵∠DAE=90°,∠BAC=90°,∴∠DAE=∠BAC,∴∠DAB=∠EAC,又AB=AC,AD=AE,∴△DAB≌△EAC(SAS),∴CE=BD,且∠ACE=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,即CE⊥BD;(2)如图(4)所示,当∠BCA=45°时,CE⊥BD.理由:过点A作AG⊥AC交BC于点G,∴AC=AG,∠AGC=45°,即△ACG是等腰直角三角形,∵∠GAD+∠DAC=90°=∠CAE+∠DAC,∴∠GAD=∠CAE,又∵DA=EA,∴△GAD≌△CAE(SAS),∴∠ACE=∠AGD=45°,∴∠BCE=∠ACB+∠ACE=90°,即CE⊥BD.14.(注意:本题中的说理过程中的每一步必须注明理由,否则不得分)如图1,在△ABC 中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°;①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为CF⊥BD,线段CF、BD的数量关系为CF=BD;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立?并说明理由;(2)如图4,如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.解:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,又∵AB=AC,∴△DAB≌△FAC(SAS),∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.故答案为:CF⊥BD,CF=BD;②当点D在BC的延长线上时①的结论仍成立.理由如下:由正方形ADEF得AD=AF,∠DAF=90°.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠FAC,又∵AB=AC,∴△DAB≌△FAC(SAS),∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD;(2)当∠ACB=45°时,CF⊥BD.理由如下:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,∵∠DAG=∠FAC(同角的余角相等),AD=AF,∴△GAD≌△CAF(SAS),∴∠ACF=∠AGC=45°,∴∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.15.背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.(1)证明:∵四边形AEFG为正方形,∴AE=AG,∠EAG=90°,又∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠EAB=∠GAD,∴△AEB≌△AGD(SAS),∴BE=DG;(2)当∠EAG=∠BAD时,BE=DG,理由如下:∵∠EAG=∠BAD,∴∠EAB=∠GAD,又∵四边形AEFG和四边形ABCD为菱形,∴AE=AG,AB=AD,∴△AEB≌△AGD(SAS),∴BE=DG;(3)解:方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB交AB于点N,由题意知,AE=4,AB=8,∵=,∴AG=6,AD=12,∵∠EMA=∠ANG,∠MAE=∠GAN,∴△AME∽△ANG,设EM=2a,AM=2b,则GN=3a,AN=3b,则BN=8﹣3b,∴ED2=(2a)2+(12+2b)2=4a2+144+48b+4b2,GB2=(3a)2+(8﹣3b)2=9a2+64﹣48b+9b2,∴ED2+GB2=13(a2+b2)+208=13×4+208=260.方法二:如图2,设BE与DG交于Q,BE与AG交于点P,∵,AE=4,AB=8∴AG=6,AD=12.∵四边形AEFG和四边形ABCD为矩形,∴∠EAG=∠BAD,∴∠EAB=∠GAD,∵,∴△EAB∽△GAD,∴∠BEA=∠AGD,∴A,E,G,Q四点共圆,∴∠GQP=∠PAE=90°,∴GD⊥EB,连接EG,BD,∴ED2+GB2=EQ2+QD2+GQ2+QB2=EG2+BD2,∴EG2+BD2=42+62+82+122=260.。
中考数学几何模型能力 共顶点
中考数学几何模型 共顶点模型共顶点模型,亦称“手拉手模型”,是指两个顶角相等的等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。
寻找共顶点旋转模型的步骤如下: (1)寻找公共的顶点(2)列出两组相等的边或者对应成比例的边(3)将两组相等的边分别分散到两个三角形中去,证明全等或相似即可。
两等边三角形 两等腰直角三角形 两任意等腰三角形 *常见结论:连接BD 、AE 交于点F ,连接CF ,则有以下结论: (1)BCD ACE ≅△△ (2)AE BD = (3)AFB DFE ∠=∠ (4)FC BFE ∠平分例题1. 以点A 为顶点作等腰Rt △ABC ,等腰Rt △ADE ,其中∠BAC =∠DAE =90°,如图1所示放置,使 得一直角边重合,连接BD 、CE .(1)试判断BD 、CE 的数量关系,并说明理由; (2)延长BD 交CE 于点F 试求∠BFC 的度数;(3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由.变式练习>>>1. 已知:如图,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°.(1)求证:BD=AE.(2)若∠ABD=∠DAE,AB=8,AD=6,求四边形ABED的面积.例题2. 如图,等边△ABC,等边△ADE,等边△DBF分别有公共顶点A,D,且△ADE,△DBF都在△ADB内,求证:CD与EF互相平分.变式练习>>>2. 已如图,已知等边三角形ABC,在AB上取点D,在AC上取点E,使得AD=AE,作等边三角形PCD,QAE和RAB,求证:P、Q、R是等边三角形的三个顶点.例题3. 在等边△ABC与等边△DCE中,B,C,E三点共线,连接BD,AE交于点F,连接CF.(1)如图1,求证:BF=AF+FC,EF=DF+FC;(2)如图2,若△ABC,△DCE为等腰直角三角形,∠ACB=∠DCE=90°,则(1)的结论是否成立?若不成立,写出正确结论并证明.例题4. 【问题探究】(1)如图①已知锐角△ABC,分别以AB、AC为腰,在△ABC的外部作等腰Rt△ABD 和Rt△ACE,连接CD、BE,试猜想CD、BE的大小关系;(不必证明)【深入探究】(2)如图②△ABC、△ADE都是等腰直角三角形,点D在边BC上(不与B、C重合),连接EC,则线段BC,DC,EC之间满足的等量关系式为;(不必证明)线段AD2,BD2,CD2之间满足的等量关系,并证明你的结论;【拓展应用】(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.例题5. 如图1,在△ABC中,BC=4,以线段AB为边作△ABD,使得AD=BD,连接DC,再以DC为边作△CDE,使得DC=DE,∠CDE=∠ADB=α.(1)如图2,当∠ABC=45°且α=90°时,用等式表示线段AD,DE之间的数量关系;(2)将线段CB沿着射线CE的方向平移,得到线段EF,连接BF,AF.①若α=90°,依题意补全图3,求线段AF的长;②请直接写出线段AF的长(用含α的式子表示).达标检测领悟提升强化落实1. 如图,在等边△ABC与等边△DCE中,B,C,E三点共线,BD交AC于点G,AE交DC于点H,连接GH. 求证:GH∥BE.2. 如图,在正方形ABCD内取一点E,连接AE,BE,在△ABE外分别以AE,BE为边作正方形AEMN和EBFG,连接NC,AF,求证:NC∥AF.3. 如图,在等腰Rt△ABC与等腰Rt△DCE中,∠ABC=∠DCE=90°,连接AD,BE,求证:AB2+DE2=AD2+BE2.4. 如图,在△ABC中,AB=AC=10,∠BAC=45°,以BC为腰在△ABC外部作等腰Rt△BCD,∠BCD=90°,连接AD,求AD的长.5. 【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那BD与CE的数量关系是.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.6. 已知线段AB⊥直线l于点B,点D在直线l上,分别以AB、AD为边作等边三角形ABC和等边三角形ADE,直线CE交直线l于点F.(1)当点F在线段BD上时,如图①,求证:DF=CE﹣CF;(2)当点F在线段BD的延长线上时,如图②;当点F在线段DB的延长线上时,如图③,请分别写出线段DF、CE、CF之间的数量关系,在图②、图③中选一个进行证明;(3)在(1)、(2)的条件下,若BD=2BF,EF=6,则CF= .答案例题1. 以点A为顶点作等腰Rt△ABC,等腰Rt△ADE,其中∠BAC=∠DAE=90°,如图1所示放置,使得一直角边重合,连接BD、CE.(1)试判断BD、CE的数量关系,并说明理由;(2)延长BD交CE于点F试求∠BFC的度数;(3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由.【解答】解:(1)CE=BD,理由如下:∵等腰Rt△ABC,等腰Rt△ADE,∴AE=AD,AC=AB,在△EAC与△DAB中,,∴△EAC≌△DAB(SAS),∴CE=BD;(2)∵△EAC≌△DAB,∴∠ECA=∠DBA,∴∠ECA+∠CBF=∠DBA+∠CBF=45°,∴∠ECA+∠CBF+∠DCB=45°+45°=90°,∴∠BFC=180°﹣90°=90°;(3)成立,∵等腰Rt△ABC,等腰Rt△ADE,∴AE=AD,AC=AB,在△EAC与△DAB中,,∴△EAC≌△DAB(SAS),∴CE=BD;∵△EAC≌△DAB,∴∠ECA=∠DBA,∴∠ECA+∠CBF=∠DBA+∠CBF=45°,∴∠ECA+∠CBF+∠DCB=45°+45°=90°,∴∠BFC=180°﹣90°=90°.变式练习>>>1. 已知:如图,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°.(1)求证:BD=AE.(2)若∠ABD=∠DAE,AB=8,AD=6,求四边形ABED的面积.【解答】解:(1)∵△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE.∵∠ACB=∠DCE=90°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE.在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴BD=AE;(2)由(1)得:△BCD≌△ACE,∴∠CBD=∠CAE,∵∠CBP+∠BPC=90°,∠BPC=∠APD,∴∠EAC+∠APD=90°,∴∠AHB=90°,∴∠BAH+∠ABD=90°,∵∠DAE=∠ABD,∴∠BAH+∠DAE=90°,即∠BAD=90°,∵AB=8,AD=6,∴BD=AE=10,∴S四边形ABED=10×10÷2=50.例题2. 如图,等边△ABC,等边△ADE,等边△DBF分别有公共顶点A,D,且△ADE,△DBF都在△ADB内,求证:CD与EF互相平分.变式练习>>>2. 已如图,已知等边三角形ABC,在AB上取点D,在AC上取点E,使得AD=AE,作等边三角形PCD,QAE和RAB,求证:P、Q、R是等边三角形的三个顶点.【解答】解:连接BP,∵△ABC和△PCD都为等边三角形,∴AC=BC,DC=PC,∠ACB=∠DCP=60°,∴∠ACB﹣∠DCB=∠DCP﹣∠DCB,即∠ACD=∠BCP,∴△ACD≌△BCP(SAS),∴AD=BP,又∠RAB+∠BAC+∠QAE=180°,∴R,A,Q三点共线,又∠CBP=∠CAD=60°,∠RBA+∠ABC+∠CBP=180°,∴R,B,P三点共线,又AQ=AE=AD=BP,∴RQ=RA+AQ=RB+BP=RP,又∠R=60°,∴△PQR是等边三角形,则P、Q、R是等边三角形的三个顶点.例题3. 在等边△ABC与等边△DCE中,B,C,E三点共线,连接BD,AE交于点F,连接CF.(1)如图1,求证:BF=AF+FC,EF=DF+FC;(2)如图2,若△ABC,△DCE为等腰直角三角形,∠ACB=∠DCE=90°,则(1)的结论是否成立?若不成立,写出正确结论并证明.例题4. 【问题探究】(1)如图①已知锐角△ABC,分别以AB、AC为腰,在△ABC的外部作等腰Rt△ABD 和Rt△ACE,连接CD、BE,试猜想CD、BE的大小关系CD=BE;(不必证明)【深入探究】(2)如图②△ABC、△ADE都是等腰直角三角形,点D在边BC上(不与B、C重合),连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=CE+CD;(不必证明)线段AD2,BD2,CD2之间满足的等量关系,并证明你的结论;【拓展应用】(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【解答】解:(1)∵△ABD和△ACE是等腰直角三角形,∴AB=AD,AE=AC,且∠DAB=∠EAC=90°,∴∠DAB+∠BAC=∠EAC+∠BAC,即∠BAE=∠DAC,在△DAC和△BAE中,∵,∴△DAC≌△BAE(SAS),∴CD=BE,故答案为:CD=BE.(2)∵△ABC、△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,∵,∴△BAD≌△CAE(SAS),∴CE=BD,∠ACE=∠B=45°,又∵BC=BD+CD,∠ACE=45°,∴BC=CE+CD,∠DCE=90°,∴CD2+CE2=DE2,∵BD=CE,DE=AD,∴CD2+BD2=2AD2.故答案为:BC=CE+CD.例题5. 如图1,在△ABC中,BC=4,以线段AB为边作△ABD,使得AD=BD,连接DC,再以DC为边作△CDE,使得DC=DE,∠CDE=∠ADB=α.(1)如图2,当∠ABC=45°且α=90°时,用等式表示线段AD,DE之间的数量关系;(2)将线段CB沿着射线CE的方向平移,得到线段EF,连接BF,AF.①若α=90°,依题意补全图3,求线段AF的长;②请直接写出线段AF的长(用含α的式子表示).【解答】解:(1)AD+DE=4,理由是:如图1,∵∠ADB=∠EDC=∠α=90°,AD=BD,DC=DE,∴AD+DE=BC=4;(2)①补全图形,如图2,设DE与BC相交于点H,连接AE,交BC于点G,∵∠ADB=∠CDE=90°,∴∠ADE=∠BDC,在△ADE与△BDC中,,∴△ADE≌△BDC,∴AE=BC,∠AED=∠BCD.∵DE与BC相交于点H,∴∠GHE=∠DHC,∴∠EGH=∠EDC=90°,∵线段CB沿着射线CE的方向平移,得到线段EF,∴EF=CB=4,EF∥CB,∴AE=EF,∵CB∥EF,∴∠AEF=∠EGH=90°,∵AE=EF,∠AEF=90°,∴∠AFE=45°,∴AF==4;达标检测领悟提升强化落实1. 如图,在等边△ABC与等边△DCE中,B,C,E三点共线,BD交AC于点G,AE交DC于点H,连接GH. 求证:GH∥BE.2. 如图,在正方形ABCD内取一点E,连接AE,BE,在△ABE外分别以AE,BE为边作正方形AEMN和EBFG,连接NC,AF,求证:NC∥AF.3. 如图,在等腰Rt△ABC与等腰Rt△DCE中,∠ABC=∠DCE=90°,连接AD,BE,求证:AB2+DE2=AD2+BE2.4. 如图,在△ABC中,AB=AC=10,∠BAC=45°,以BC为腰在△ABC外部作等腰Rt△BCD,∠BCD=90°,连接AD,求AD的长.5. 【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.【解答】【发现问题】解:延长CA到M,作∠MAC的平分线AN,在AN上截取AD=AC,连接CD,即可得到等腰直角△ACD;连接BD、CE,如图1所示:∵△ABE与△ACD都是等腰直角三角形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE,故答案为:BD=CE;【拓展探究】解:BD=CE;理由如下:∵四边形AEFB与四边形ACGD都是正方形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;【解决问题】解:以AB为边向外作等边三角形ABE,连接CE,如图3所示:则∠BAE=60°,BE=AB=AE=8,∵AD=CD,∠ADC=60°,∴△ACD是等边三角形,∴∠CAD=60°,AC=AD,∴∠CAD+∠BAC=∠BAE+∠BAC,即∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;当C、B、E三点共线时,CE最大=BC+BE=15+8=23,∴BD的最大值为23.6. 已知线段AB⊥直线l于点B,点D在直线l上,分别以AB、AD为边作等边三角形ABC和等边三角形ADE,直线CE交直线l于点F.(1)当点F在线段BD上时,如图①,求证:DF=CE﹣CF;(2)当点F在线段BD的延长线上时,如图②;当点F在线段DB的延长线上时,如图③,请分别写出线段DF、CE、CF之间的数量关系,在图②、图③中选一个进行证明;(3)在(1)、(2)的条件下,若BD=2BF,EF=6,则CF=2或6 .【解答】(1)证明:如图①中,设AD交EF于O.∵△ABC,△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴CE=BD,∴∠AEO=∠FDO,∵∠AOE=∠FOD,∴∠OFD=∠OAE=60°,∵AB⊥BC,∴∠ABD=90°,∵∠ABC=60°,∴∠CBF=30°,∵∠OFD=∠CBF+∠BCF,∴∠FBC=∠FCB=30°,∴CF=BF,∴DF=CE﹣CF(2)如图图②中,结论:DF=CF﹣CE.图③中,结论:DF=CE+CF;如图②中,∵△ABD≌△ACE,∴BD=EC,∠ADB=∠AEC,∵∠ADB+∠ADF=180°,∴∠AEF+∠ADF=180°,∴∠DAE+∠DFE=180°,∴∠DFE=120°,∴∠FBC=∠FCB=30°,∴FB=FC,∴DF=BF﹣BD=CF﹣CE.(3)①如图1中,∵BD=2DF,设BF=DF=CF=x,∵EF=6,BD=EC,∴3x=6,∴x=2∴CF=2.②如图③中,设BF=CF=x,则BD=2x,∵BD=EC,EF=6,∴6+x=2x,∴x=6,∴CF=6,综上所述,CF=2或6.故答案为2或6.。
中考数学专题复习教案:共顶点的等腰三角形与全等
共顶点的等腰三角形与全等(专题复习)一、内容和内容解析1.内容基于全等三角形和轴对称两部分内容基础上的共顶点等腰三角形与全等的综合理解与运用.2.内容解析本节课是在学生已经学习了第十一章三角形、第十二章全等三角形和第十三章轴对称这三章内容知识的基础上,进一步综合探究具有某种特殊位置关系的等腰三角形的相关内容——共顶点的等腰三角形与全等.全等三角形的几种判定方法及全等三角形对应边、对应角的相关性质是解决本节知识的一个关键突破点,预证两条线段和两条边相等,就需要将其置于两个全等的三角形中;复杂图形中的基本图形也为求角的度数提供了简洁的思路方法;特殊的等腰三角形即等边三角形的相关概念、性质和判定方法也为本节内容的解决提供了有利条件,借助于特殊角60度构造等边三角形,将不在同一直线上的线段转化到同一线段中,这也提供了多种添加辅助线的方法;同时,根据旋转前后的两个三角形是全等三角形,为本节知识的变式提供了思路,可以从多种不同形式中让学生去探究其中变与不变的因素;将等边三角形置于平面直角坐标系的背景下,借助于直角三角形中,含30度角所对的直角边等于斜边的一半解决相关变式问题.从等边三角形到等腰三角形的相关探索与运用体现了由特殊到一般的思想.二、目标和目标解析1.目标(1)能根据共顶点的等腰三角形找出全等三角形.(2)能利用等边三角形的性质和判定进行综合运用.(3)结合全等和等腰三角形的相关知识,在具体几何题目中,总结基本图形,归纳几何结题策略.2.目标解析达成目标(1)的标志是:学生能从共顶点的两个等腰三角的复杂图形中发现三角形全等的条件.达成目标(2)的标志是:学生能借助于全等三角形的对应边、对应角和两个三角形面积求线段的等量关系、角的度数和证明两个三角形面积相等,推出对应的高也相等,利用角的内部到角的两边距离相等的点在这个角的角平分线上,证得一条线段为一个角的角平分线,同时,学生还能熟练掌握预证两条线段相等,则需将两条线段置于两个全等的三角形中解决问题.达成目标(3)的标志是:学生能在求证一条线段为一个角的角平分线时,通过向角的两边作双垂线,利用双垂线所在的两个三角形全等使问题得到解决;学生还能在求线段和差关系时,借助于60度角,构造等边三角形,将不在同一直线上的线段转化到同一线段中解决相关问题,让学生学会添加不同的辅助线,真正体会了截长补短的意义.三、教学问题诊断分析学生由于添加辅助线的经验不足,对于任何需要添加的辅助线,如何添加,添加的理由是什么,如何描述辅助线仍然没有规律性了解.例如:在“求线段和差关系”的证明中,由于题中60度角比较多,学生如果以不同的角为出发点构造等边三角形,所得到的辅助线也不尽相同,这样,有学生就会很茫然,为什么我的辅助线会和其他同学不同这样的疑问,包括作完辅助线后,我到底将哪条线段进行了平移,接下来该证明哪两条线段相等这些问题.事实上,添加辅助线、描述辅助线本身就是一项探究性活动,是获得证明所采取的一种尝试,有可能成功,有可能失败;对于变式训练,旋转前后哪些量变了,哪些量保持不变,这些都是学生存在困惑的地方.基于以上分析,确定本节课的教学难点为:线段和差关系中辅助线的添加描述和对于旋转问题,能够明确变与不变的元素.四、教学过程设计引言我们前面系统学习了三角形的全等和轴对称的相关知识,相信大家对其都有所理解和掌握.今天,让我们继续探究这两部分内容的综合应用.1. 复习巩固问题1 判定两个三角形全等的方法有哪些?等边三角形有哪些性质?等边三角形有哪些判定? 师生活动:学生回顾旧知,充分掌握判定三角形全等的五种方法、等边三角形的性质和判定.设计意图:复习三角形全等的五种方法、等边三角形的性质和判定,为本节课的学习打下基础.问题2 你能分别找出以下列图形中的全等三角形吗?(1)若△ABD 和△AEC 均为等边三角形,请找出下列各图形中的全等三角形.(2)若△ABD 和△AEC 均为等腰三角形,其中AB=AD ,AC=AE ,∠BAD=∠CAE ,请找出下列各图形中的全等三角形.师生活动:学生尝试找出以上图形当中的全等三角形,教师给与适当评价设计意图:让学生直观了解共顶点的等边或等腰三角形几种常见的摆放位置,通过寻找这些图形中的全等三角形,为下面设置的探究学习提供了有利条件.2. 探究学习问题3 如图,已知A 是线段BC 上一点,分别以AB 、AC 为边在同侧作等边△ABD 和△AEC.(1)填空:BE= ,∠ABE= ,∠DFB= °.(2)求证: AF 平分∠BFC.(3)求证: AF +DF=BF.师生活动:学生独立思考,发现问题,相互交流,小组间相互补充,派学生代表讲解思路,同学间相互补充,教师再此过程中关注学生能否从不同角度解决问题.设计意图:从特例出发,让学生经历发现结论,说明论证过程,体会相关知识的运用.追问1:还有不同方法解决(2)吗?你的理由是什么?师生活动:教师提出问题,学生独立思考,小组讨论交流,学生代表汇报交流结果,教师点拨,师生共同总结(2)的不同解法.追问2:你们解决(3)的方法一致吗?还有不同见解吗?师生活动:教师提出问题,学生思考,交流讨论,学生代表发表意见,教师点拨.追问3:想要解决(3),你思考问题的出发点在哪?师生活动: 学生独立思考,对教师提出的问题发表自己的见解,教师给与充分的肯定与鼓励.追问4:若BE 、AD 交于点M ,CD 、AE 交于点N ,链接MN ,你还能在图形中找出其他的全等三角形吗?△AMN 是什么三角形?MN 与BC 有怎样的位置关系?师生活动:教师增加新条件,并提出问题,学生独立思考并一一作答,学生间相互评价补充,教师最后点评并适当总结,给与恰当评价.问题4 如图,若将上题中的等边△AEC 绕点A 都还成立?请说明理由.师生活动:教师提出问题,学生独立思考并相互补充,给出结论,说明原因,教师给与评价与鼓励.设计意图:通过旋转变换,让学生体会几何图形的多变,在其过程中体会变与不变元素,抓住本质特征,从而形成解决问题的能力. 问题5 如图,若将上题中的等边△ABD 和△AEC 改为等腰△ABD 和△AEC ,其中AD=AB ,AE=AC , ∠BAD=∠EAC=a. 上述结论是否都还成立?请说明理由.师生活动:教师提出问题,学生思考并作答,说明其原因.设计意图:拓展问题的研究范围,将问题一般化,让学生经历3. 微课展示4. 巩固应用1. 已知△ABC 和△AEF ,AB=AC ,AE=AF ,∠BAC=∠EAF ,BE 、CF 交于M ,连接MA.(1)如图1,若∠BAC=60°,则△BAE ≌ ;∠CMB= .图1B图2图3BC (2)如图2,若∠BAC=90°,则∠CMB= .(3)如图3,若∠BAC=a, 直接写出∠AME 的度数(用含a 的式子表示).师生活动:学生独立完成,教师巡视,指导,师生共同评价.设计意图:巩固加深对探究学习中(1)-(3)问题的认识,再次体会由特殊到一般的探讨问题的过程.2. 如图,△AOB 是等边三角形,以直线OA 为x 轴建立平面直角坐标系,若B(a,b)且a 、b 满足(20b +-=,D 为y 轴上一动点,以AD 为边作等边△ADC ,CB 交y 轴于E.(1)如图1,求点A 的坐标.(2)如图2,D 为y 轴正半轴上一点,C 在第二象限,CE 的延长线交x 轴于M ,当D 点在y 轴正半轴上运动时,M 点坐标是否变化,若不变,求M 点的坐标,若变化,说明理(3)如图3,D 在y 轴负半轴上,以DA 为边向右构造等边△DAC ,CB 交y 轴于E 点,如果D 点在y 轴负半轴上运动时,仍保持△DAC 为等边三角形,连BE ,试求CE ,OD ,AE 三者的数量关系,并证明你的结论.师生活动:用平面直角坐标系中直角的特征,用 30设计意图:直角解决问题,(3)通过有梯度的练习,有利于提高学生综合运用条件推理的能力.5.小结教师与学生一起回顾本节课所学的内容,并请学生回答以下问题:(1)本节课解决共顶点的等腰三角形与全等问题关键是什么?(2)本节课解决一条线段为一个角的角平分线的方法有几种?(3)本节课解决线段之间的和差关系的方法是什么?(4)本节课的探究学习用到了什么思想方法?设计意图:让学生自由发表自己的看法,教师从知识内容、学习过程和思想方法三个方面进行引导. 归纳知识,小结方法,使学生建构自己的知识体系.培养学生合作交流的习惯。
中考数学提升讲义_共顶点旋转模型及其延伸
中考数学共顶点旋转模型一、题源分析(人教版八年级上册第55页)如图,,12CA CD BC EC =∠=∠=, ,求证AB DE =(人教版九年级上册第63页)如图,,ABD AEC 都是等边三角形,BE 与DC 有什么关系?你能用旋转的性质说明上述关系成立的理由吗?二、共顶点旋转模型简要概述共顶点模型,是指两个等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。
例如上题中的三角形ADC 和三角形ABE 。
寻找共顶点旋转模型的步骤如下:(1)寻找公共的顶点(2)列出两组相等的边或者对应成比例的边(3)将两组相等的边分别分散到两个三角形中去,证明全等或相似即可。
典例分析1:(2014年河南)(1)问题发现如图1,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE填空:(1)∠AEB 的度数为 ;(2)线段AD 、BE 之间的数量关系是 。
(2)拓展探究如图2,△ACB和△DCE均为等腰三角形,∠ACB=∠DCE=900, 点A、D、E在同一直线上,CM为△DCE 中DE边上的高,连接BE。
请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由。
思路点拨:(1)第一问,考虑到两个等边三角形有一个公共顶点C,在点C处可以找到两组相等的边,列出来即可表示为:CA CBCD CE=⎧⎨=⎩,观察边的形式,就可以得到全等的两个三角形是:CAD CBE∆≅∆.(2)类比第一问,可以得到CA CBCD CE=⎧⎨=⎩,故而全等的三角形为CAD CBE∆≅∆,之后再做计算即可。
典例分析2:(2015年安徽)如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BG C.(1)求证:AD=BC;(2)求证:△AGD∽△EGF;(3)如图2,若AD、BC所在直线互相垂直,求ADEF的值.。
初中数学几何模型——共顶三等腰初探
初中数学几何模型——共顶三等腰初探等腰三角形的组合图形----共顶三等腰,常出现在中考命题中,故专题探究此类几何模型。
一、共顶点三等腰是指有公共顶点且任意两个三角形都有一个公共腰的三角形,如图1,以公共顶点A引三条相等的线段AB、AC、AD,如果把非公共端点两两相连,可以得到三个等腰三角形,且每两个等腰三角形都有一条公共腰,二、共顶点三等腰有两种形式,一种是点A在△BCD的外部,另一种是点A在△BCD的内部,如图2,AB=AC=AD,则△ABC、△ACD,△ABD为共顶三等腰。
图图2图31三、共顶三等腰的性质:对于任意两个三角形,非公腰的夹角等于底夹角的二倍,图1中,AB=AC=AD,导角可证∠BAC=2∠BDC,∠CAD=2∠CBD,特别地,当AC为公共腰时,两腰夹角为∠BAD,结论:∠BCD=180°-∠BAD或∠BAD=2∠DCE,也可把图2看做飞镖型,图3同图1,但在证明三等腰逆命题时区别图1,但图3中结论仍然成立。
图2中,腰夹角等于2倍底夹角,即当AB=AC=AD时,可证∠CAD=2∠CBD,∠BAC=2∠BDC,∠BAD=2∠BCD。
(以上结论导角均可完成,简记为:双等腰产生二倍角)。
四、三等腰逆命题的证明(一)一点连三线时有两条线段相等且三线中两线的夹角等于三条线段的末端围成的三角形中某个特定角的二倍,则此图为一点连三等线段,这样每种图形要分三次证明(以图4为例)1 、已知:当AB=AC,∠CAD=2∠CBD,求证:AB=AC=AD证明:设∠BAC=2α,∠CBD=β,则∠CAD=2β,则∠ABC=∠ACD=90°-α,∠ABD=90°-α-β,在△ABD中,∠ADB=90°-α-β,∴AB=AD,∴AB=AC=AD,当AB=AC,∠BAD=2∠D CK,(或者∠BCD+ =180°)∠DCK=α+β,∠ACB=90°-α,∠ACD=90°-β,在△ACD中,∠ADC=90°-β,∴AB=AC=AD.2 、当AB=AC,∠BAC=2∠BDC时,不可以导角,需构形九年级方法:作∠BAC的平分线,四边形AKCD四点共圆,△ABK≌△ACK,∴∠ABD=∠ACK= ∠ADB,∴AB=AD,∴AB=AC=AD。
以简驭繁,_初中数学几何模型教学的探索——以一道广州中考题复习教学设计为例
数学学习与研究㊀2023 13以简驭繁初中数学几何模型教学的探索以简驭繁,初中数学几何模型教学的探索㊀㊀㊀ 以一道广州中考题复习教学设计为例Һ李嘉敏㊀(广州市荔湾区西关广雅实验学校,广东㊀广州㊀510160)㊀㊀ʌ摘要ɔ几何教学是初中数学教学的重点和难点,在几何教学中逐步归纳出来的几何模型是帮助学生解决几何难题的有效工具.从复杂的图形中抽离出简洁的几何模型,便能直观形象地得到图形性质,从而解决问题.文章中,笔者结合一道广州中考原题,针对其隐含的几何模型进行了分析和梳理,并提出几点反思意见,旨在为广大教育工作者提供教学参考.ʌ关键词ɔ几何模型教学;数学建模;核心素养数学教育的目标可分为显性目标与隐性目标两种,显性目标一般指具体的数学知识内容,‘义务教育数学课程标准(2022年版)“中的数学学科核心素养属于隐性目标.数学教学除了传授知识外,还要促使学生的理性思维得到良好发展.教师在教学中要引导学生在复杂的几何图形中抓住解题的关键要素,抓住问题的主要特征,忽略次要因素,找出清晰简洁的解题模型,化繁为简㊁以简驭繁.以下是笔者对一道广州中考原题隐含的几何模型的分析,以及利用该题进行专题复习的教学设计.一㊁对 共顶点㊁等线段 旋转模型的分析共顶点㊁等线段 旋转模型(也称 手拉手模型 )是指已知条件中出现两条线段有公共端点,且它们的长度相等,此时用图形变换的眼光去看,可以理解为其中一条线段绕着它们的公共端点旋转可以得到另一条线段.那么如果把其中的一条线段放在一个封闭图形(如三角形)中考虑,可看作把该线段所在封闭图形绕着线段的公共端点旋转得到另一个与之全等的封闭图形,通过旋转,既可改变线段之间相对的位置关系,也可得到新的图形性质.二㊁基于 共顶点㊁等线段 旋转模型的教学设计(一)题目呈现如图1所示,☉O为等边三角形ABC的外接圆,半径为2,点D在AB(上运动(不与点A,B重合),连接㊀图1DA,DB,DC.(1)求证:DC是øADB的平分线.(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由.(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,әDMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.(二)教学分析1.考题来源㊀图2考题的基本图形源于人教版九年级上册教材90页第14题,原题如下:如图2,A,P,B,C是☉O上的四个点,øAPC=øCPB=60ʎ,判断әABC的形状,并证明你的结论.对比分析可知,中考题的第(1)问把教材中题目的题设和结论调换了位置,把已知 角平分线 得出 等边三角形 ,改成了已知 等边三角形 求证 角平分线 ,考查层次并未明显加深.2.考点和学情分析本题考查了圆周角定理㊁等边三角形性质㊁圆内接四边形性质㊁旋转的应用㊁轴对称的应用㊁解直角三角形等知识,是一道对数学综合能力要求较高的题目.初三的学生已经系统完成了初中阶段所有新课学习,掌握了初中平面几何中常用的图形定义㊁性质和判定知识,也对常见模型有一定了解,但对几何模型的应用还不够灵活,遇到综合题时不能迅速地根据条件联想构建几何模型来解决问题.(三)教学过程1.问题展示,揭示课题课件展示本文 题目呈现 中的题目.设计意图:让学生关注中考考题动向,并认识到数学学习与研究㊀2023 13几何模型在解题中的作用.2.合作探究,解决问题问题1㊀(改编题)如图3所示,☉O为等边三角形ABC的外接圆,半径为2,点D在AB(上运动(不与点A,B重合),连接DA,DB,DC,则DC是øADB的平分线.探究DA,DB,DC三者之间的数量关系,并证明你的结论.图3思维流程图(如图4㊁图5):图4图5图6㊀图7㊀图8图9㊀图10解法分析:从题目条件分析,条件中给出等边三角形ABC,则有等边三角形的三条边相等,所以有 共顶点㊁等线段 条件出现,例如线段CB和线段CA就有公共端点C,且它们长度相等,可以认为线段CB能由线段CA绕点C逆时针旋转60ʎ得到,这给解题提供了相对明显的提示,通过构造旋转模型来转换目标线段DA与DB的相对位置,从而在新图形中得到更多的几何关系来解决问题.如解法1,将әADC绕点C逆时针旋转60ʎ,得到әBHC.由圆内接四边形ADBC可得øDAC与øDBC互补,再由旋转前后图形全等可得øHBC与øDBC互补,证得D,B,H三点共线,进而得出等边三角形DCH,最后通过线段间的等量代换得出结论.解法2 4的解题思路与解法1大致相同,但值得注意的是,解法3和解法4中图形旋转后点D的对应点在线段DC上,需要推理证明.从另一个角度分析,本题还有一个重要条件是 DC是øADB的平分线 ,可联想构造角平分线模型来解决.解法5中,易证得әDPCɸәDQC和RtәAPCɸRtәBQC,DA+DB=DP+DQ=2DP,再通过含30ʎ角的RtәDPC可得斜边DC=2DP=DA+DB.本题还可从结论入手分析.题目要求先猜想线段长度关系再求证结论,通过有目的性地测量可以猜想本题目标是求证 DA+DB=DC ,此外显然指向了截长补短模型,解法6的四种构造方法,均是解决线段和差关系的常用方法.设计意图:启发学生突破解题难点,合理猜想,构造几何模型形成解题思路,通过师生合作探究,让学生学会辨析条件与结论.与此同时,利用问题1为解决中考原题做好铺垫.3.回归考题,突破难点问题2㊀问题1中,四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由.数学学习与研究㊀2023 13思维流程图(见图11):图11解法分析:对比问题1和2,题目已知条件一样,只是待求证的结论发生了变化,求解内容层次更深.在解决问题1的基础上,若利用题目条件作为切入点,则可以通过构造 共顶点㊁等线段 的旋转模型得到图6 图10不同的辅助线添加方法.若利用线段CB与线段CA这对 共顶点㊁等线段 作为切入点,则可像解法1或解法2那样构造辅助线,此时四边形ADBC的面积可转化为等边三角形DHC或等边三角形DGC的面积,解等边三角形就可以得出边DC与面积的关系,即S=34x2,再结合 圆中最长弦是直径 这一知识点,可得S与x对应的函数关系式为S=34x2(23<xɤ4).若解题时选取的 共顶点㊁等线段 为AB和AC(或BA和BC),运用旋转模型构造辅助线后,虽然能得到DA+DB=DC,但是并不能实现一般四边形面积的转化,此时需用割补法把四边形ADBC的面积分割成两个三角形的面积.由于题目要求找出面积S与线段DC长x之间的函数关系,所以通常会利用DC把四边形ADBC分割成әADC和әBDC两部分,并以DC㊀图12为底构造两个三角形的高线,如图12,利用含30ʎ角的RtәDAL和RtәDBK可得,AL=32DA,BK=32DB,故S=12DC㊃32DA+12DC㊃32DB=34DC2.与问题1的分析角度类似,本题也可利用DC是角平分线作为解题切入点,构造角平分线模型(如图10),将四边形ADBC的面积转换成两个全等的含30ʎ角的直角三角形的面积和.设计意图:在问题1的基础上进一步引发思考,回归中考原题,引导学生从不同角度思考条件和结论,利用一题多解让学生明白题目背后隐藏的深层次问题和结论,培养学生从复杂图形中分离不同几何模型的能力,提升学生逻辑推理㊁数学建模㊁直观想象等核心素养.4.变式应用,突破自我结合上述问题解析过程中的几何模型,改变题目条件和结论,引导学生对比分析题目异同,帮助学生灵活应用.㊀图13问题3㊀如图13,点C为әABD的外接圆上的一动点(点C不在BAD(上,且不与点B,D重合),øACB=øABD=45ʎ,BD是该外接圆的直径.若әABC关于直线AB的对称图形为әABM,连接DM,试探究DM2,AM2,BM2三者之间满足的等量关系,并证明你的结论.思维流程图(见图14):图14数学学习与研究㊀202313图15㊀㊀㊀㊀图16设计意图:紧扣中考热点压轴题,从45ʎ和直径联想到等腰直角三角形,再联想到旋转模型,进行拓展训练,培养学生的审题能力,让其辨析题目中的条件和结论的特点,从而找出对应的几何模型,解决问题.5.模型总结,能力提高梳理本节课重点应用的模型以及涉及的模型(见表1):表1模型名称旋转模型角平分线模型特殊直角三角形模型图形关键条件共顶点㊁等线段角平分线特殊角30ʎ,45ʎ等作法以等线段为边找三角形,以等线段的夹角为旋转角,把三角形进行旋转得到新的三角形.过角平分线上的点作两边的垂线段.解直角三角形.作用构造全等三角形,构造等腰三角形.构造全等三角形.求得线段长和角的度数.三㊁初中几何模型教学反思(一)要注重基本几何图形的积累,运用几何模型化繁为简图形是最直观的了解知识点之间联系的中介,教师在教学过程中通过画草图㊁逐步分解,可以强化数学视觉意象之间的关联性.学生掌握几何模型越熟练,他们在解决几何问题时就越容易快速筛选关键信息.对于几何难题,教师在教学过程中可把抽离出的模型单独板书呈现,要注意从复杂图形中抽离出基础几何模型,逐个击破.(二)要关注几何模型内在数学逻辑,以简驭繁几何模型可在一定程度上帮助学生便捷地构造出关键图形来解决问题,但教师在教学过程中不能简单地套用模型,必须揭示几何模型中蕴含的图形关系,以及解决数学问题的思维过程.教师可利用几何模型串联起多道难题,实现一 解 多题,统整知识网络,以简驭繁.另外,教师还可以通过变式教学来加强知识之间的渗透和迁移,激发学生的发散性思维,培养学生的思维灵活度.(三)几何教学要开放探究,培养多角度几何模型思维在问题情境不变的条件下,几何模型的思维定式能帮助学生应用已掌握的方法迅速解决问题,但在情境发生变化时,这种定式反而会妨碍学生寻找新的方法解决问题.要想消除思维定式的负面影响,教师在教学中就要注重发散学生思维,放大学生的想象空间,利用不同几何模型对题目进行剖析,培养学生多角度的几何模型思维.(四)提高学生画图㊁用图的能力数形结合 是数学解题中重要的思想之一,图形可以给予人们丰富的信息,对于解题往往可以起到事半功倍的效果.引导学生用图形展示解题思路,能把解题过程中复杂而繁多的条件直观地表示成已知条件和待求解结论,还能加深学生对几何模型的认识,培养学生的直观想象能力.ʌ参考文献ɔ[1]原晓萍.视觉思维理论在高中数学教学中的应用研究[D].济南:山东师范大学,2012.[2]周伟萍.基于APOS理论的初中数学几何模型教学的题组设计 以长方形模型为例[J].中学数学,2021(06):17-18,21.[3]马小飞.基于几何模型的初中数学教学设计与反思 以一道中考题复习教学为例[J].中学数学研究(华南师范大学版),2020(16):31-34.[4]徐春凌.分析模型教学对于初中几何数学教学的意义[J].数理化解题研究,2021(02):25-26.[5]李强.初中几何证明教学要注重 三个关注 [J].数学通报,2021,60(03):29-32.。
中考数学几何模型专题11四点共圆模型(学生版) 知识点+例题
【压轴必刷】2023年中考数学压轴大题之经典模型培优案专题11四点共圆模型若四个点到一个定点的距离相等,则这四个点共圆.如图,若OA =OB =OC =OD ,则A ,B ,C ,D 四点在以点O 为圆心、OA 为半径的圆上.模型2:对角互补共圆模型2.若一个四边形的一组对角互补,则这个四边形的四个顶点共圆.如图,在四边形ABCD 中, 若∠A +∠C =180°(或∠B +∠D =180°)则A ,B ,C ,D 四点在同一个圆上.拓展:若一个四边形的外角等于它的内对角,则这个四边形的四个顶点共圆.如图,在四边形ABCD 中,∠CDE 为外角,若∠B =∠CDE ,则A ,B ,C ,D 四点在同一个圆上.模型3:定弦定角共圆模型若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线段的两个端点共圆如图,点A ,D 在线段BC 的同侧,若∠A =∠D ,则A ,B ,C ,D 四点在同一个圆上.12cm 的正方形ABCD 中,点E 从点D 出发,沿边DC 以1cm/s 的速度向点C 运动,同时,点F 从点C 出发,沿边CB 以1cm/s 的速度向点B 运动,当点E 达到点C 时,两点同时停止运动,连接AE 、DF 交于点P ,设点E .F DDD运动时间为t秒.回答下列问题:(1)如图1,当t为多少时,EF的长等于4√5cm?(2)如图2,在点E、F运动过程中,①求证:点A、B、F、P在同一个圆(①O)上;①是否存在这样的t值,使得问题①中的①O与正方形ABCD的一边相切?若存在,求出t值;若不存在,请说明理由;①请直接写出问题①中,圆心O的运动的路径长为_________.【例2】(2022·吉林白山·八年级期末)(1)如图①,△OAB、△OCD的顶点O重合,且∠A+∠B+∠C+∠D=180°,则①AOB+①COD=______°;(直接写出结果)(2)连接AD、BC,若AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线.①如图①,如果∠AOB=110°,那么∠COD的度数为_______;(直接写出结果)①如图①,若∠AOD=∠BOC,AB与CD平行吗?为什么?【例3】(2020·四川眉山·一模)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=12∠BAC=60°,于是BCAB=2BDAB=√3;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;①请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM 的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;①若AE=5,CE=2,求BF的长.【例4】(2022·全国·九年级课时练习)定义:有一个角是其对角一半的圆的内接四边形叫做圆美四边形,其中这个角叫做美角.已知四边形ABCD是圆美四边形.(1)求美角∠A的度数;(2)如图1,若⊙O的半径为5,求BD的长;(3)如图2,若CA平分∠BCD,求证:BC+CD=AC.一、解答题1.(2022·辽宁葫芦岛·一模)射线AB与直线CD交于点E,①AED=60°,点F在直线CD 上运动,连接AF,线段AF绕点A顺时针旋转60°得到AG,连接FG,EG,过点G作GH⊥AB 于点H.(1)如图1,点F和点G都在射线AB的同侧时,EG与GH的数量关系是______;(2)如图2,点F和点G在射线AB的两侧时,线段EF,AE,GH之间有怎么样的数量关系?并证明你的结论;(3)若点F和点G都在射线AB的同侧,AE=1,EF=2,请直接写出HG的长.2.(2022·上海宝山·九年级期末)如图,已知正方形ABCD,将AD绕点A逆时针方向旋转n°(0<n<90)到AP的位置,分别过点C、D作CE⊥BP,DF⊥BP,垂足分别为点E、F.(1)求证:CE=EF;(2)联结CF,如果DPCF =13,求∠ABP的正切值;(3)联结AF,如果AF=√22AB,求n的值.3.(2022·重庆市育才中学九年级期末)在等边△ABC中,D是边AC上一动点,连接BD,将BD绕点D顺时针旋转120°,得到DE,连接CE.。
2023年中考数学常见几何模型全归纳之模 相似模型-母子型(共角共边模型)和A(X)字型(解析版)
∴∠BCD=∠ACD=45°,∠BCE=∠ACF= 90°,∴∠DCE=∠DCF= 135°
∵在△DCE与△DCF中,
,∴ ,∴DE=DF;
(2)证明∶∵∠DCE= ∠DCF= 135°∴∠CDF+∠F=180°-135°=45°,
∵∠CDF+∠CDE=45°,∴∠F=∠CDE,
【详解】∵∠B=∠ACD,∠A=∠A,
∴△ACD∽△ABC,∴ ,
∵ ,∴ ,
∴ ,
∴△ADC与△ACB的周长比1:2,故选:B.
【点睛】本题主要考查了相似三角形的判定与性质,证明△ACD∽△ABC是解答本题的关键.
2.(2022·陕西汉中·九年级期末)如图, 是等腰直角 斜边 的中线,以点 为顶点的 绕点 旋转,角的两边分别与 、 的延长线相交,交点分别为点 、 , 与 交于点 , 与 交于点 ,且 .(1)如图1,若 ,求证: ;(2)如图2,若 ,求证: ;
1.(2022·湖南怀化·中考真题)如图,△ABC中,点D、E分别是AB、AC的中点,若S△ADE=2,则S△ABC=_____.
【答案】8
【分析】根据三角形中位线定理求得DE∥BC, ,从而求得△ADE∽△ABC,然后利用相似三角形的性质求解.
【详解】解:∵D、E分别是AB、AC的中点,则DE为中位线,
∴ ,∴ ∴ ,
∵ ,DE=BF,∴ ,
∴ ,∴ ,
∵ , ,∴ ,
∵ ,∴ ,
∴ .
【点睛】本题考查了相似三角形,熟练掌握相似三角形的面积比等于相似比的平方、灵活运用平行条件证明三角形相似并求出相似比是解题关键.
3.(2022·浙江宁波·中考真题)(1)如图1,在 中,D,E,F分别为 上的点, 交 于点G,求证: .
中考数学必考几何模型:中点四大模型
中点四大模型模型1 倍长中线或类中线(与中点有关的线段)构造全等三角形②图①图构造全等倍长类中线倍长中线DCBAFF ACABCDCA模型分析如图①,AD 是△ABC 的中线,延长AD 至点E 使DE =AD ,易证:△ADC ≌△EDB (SAS ). 如图②,D 是BC 中点,延长FD 至点E 使DE =FD ,易证:△FDB ≌△EDC (SAS )当遇见中线或者中点的时候,可以尝试倍长中线或类中线,构造全等三角形,目的是对已知条件中的线段进行转移.模型实例如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,连接BE 并延长交AC 于点F ,AF =EF ,求证:AC =BE .FECA1.如图,在△ABC 中,AB =12,AC =20,求BC 边上中线AD 的范围.BA解:延长AD到E,使AD=DE,连接BE,∵AD是△ABC的中线,∴BD=CD,在△ADC与△EDB中,⎪⎩⎪⎨⎧=∠=∠=DEADBDEADCCDBD,∴△ADC≌△EDB(SAS),∴EB=AC=20,根据三角形的三边关系定理:20-12<AE<20+12,∴4<AD<16,故AD的取值范围为4<AD<16.2.如图,在△ABC中,D是BC的中点,DM⊥DN,如果BM2+CN2=DM2+DN2.求证:AD2=41(AB2+AC2).NMD CA证明:如图,过点B作AC的平行线交ND的延长线于E,连ME.∵BD =DC , ∴ED =DN .在△BED 与△CND 中,∵⎪⎩⎪⎨⎧=∠=∠=DN ED CDN BDE DC BD ∴△BED ≌△CND (SAS ). ∴BE =NC . ∵∠MDN =90°,∴MD 为EN 的中垂线. ∴EM =MN .∴BM 2+BE 2=BM 2+NC 2=MD 2+DN 2=MN 2=EM 2, ∴△BEM 为直角三角形,∠MBE =90°. ∴∠ABC +∠ACB =∠ABC +∠EBC =90°. ∴∠BAC =90°. ∴AD 2=(21BC )2=41(AB 2+AC 2).模型2 已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”.ABCDDCBA模型分析等腰三角形中有底边中点时,常作底边的中线,利用等腰三角形“三线合一”的性质得到角相等,为解题创造更多的条件,当看见等腰三角形的时候,就应想到: “边等、角等、三线合一”. 模型实例如图,在△ABC 中,AB =AC =5,BC =6,M 为BC 的中点,MN ⊥AC 于点N ,求MN 的长度.NM CB A解答: 连接AM .∵AB =AC =5,BC =6,点M 为BC 中点, ∴AM ⊥BC ,BM =CM =21BC =3. ∵AB =5, ∴AM =4352222=-=-BM AB .∵MN ⊥AC ,∴S △ANC =21MC ·AM =21AC ·MN . 即:21×3×4=21×5×MN .∴MN =512跟踪练习1.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AE ⊥DE ,AF ⊥DF ,且AE =AF ,求证:∠EDB =∠FDC .F证明:连结AD ,∵AB =AC ,D 是BC 的中点, ∴AD ⊥BC ,∠ADB =∠ADC =90° 在Rt △AED 与Rt △AFD 中,⎩⎨⎧==ADAD AFAB , ∴Rt △AED ≌Rt △AFD .(HL ) ∴∠ADE =∠ADF , ∵∠ADB +∠ADC =90°, ∴∠EDB =∠FDC .2.已知Rt △ABC 中,AC =BC ,∠C =90°,D 为AB 边的中点,∠EDF =90°,∠EDF 绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .(1)当∠EDF 绕D 点旋转到DF ⊥AC 于E 时(如图①),求证:S △DEF +S △CEF =21S △ABC ; (2)当∠EDF 绕D 点旋转到DE 和AC 不垂直时,在图②和图③这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立, S △DEF 、S △CEF 、S △ABC 又有怎样的数量关系?请写出你的猜想,不需要证明.③图②图①图ABDEFACDDCA解:(1)连接CD ;如图2所示: ∵AC =BC ,∠ACB =90°,D 为AB 中点, ∴∠B =45°,∠DCE =21∠ACB =45°,CD ⊥AB ,CD =21AB =BD , ∴∠DCE =∠B ,∠CDB =90°,∵∠EDF =90°,∴∠1=∠2,在△CDE 和△BDF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠B DCB BD CD 21, ∴△CDE ≌△BDF (ASA ),∴S △DEF +S △CEF =S △ADE +S △BDF =21S △ABC ; (2)不成立;S △DEF −S △C EF =21S △ABC ;理由如下:连接CD ,如图3所示:同(1)得:△DEC ≌△DBF ,∠DCE =∠DBF =135° ∴S △DEF =S 五边形DBFEC , =S △CFE +S △DBC ,=S △CFE +21S △ABC , ∴S △DEF -S △CFE =21S △ABC .∴S △DEF 、S △CEF 、S △ABC 的关系是:S △DEF -S △CEF =21S △ABC . 21ABCDE模型3 已知三角形一边的中点,可考虑中位线定理构造中位线取另一边中点EDDA模型分析在三角形中,如果有中点,可构造三角形的中位线,利用三角形中位线的性质定理:DE ∥BC ,且DE =21BC 来解题.中位线定理中既有线段之间的位置关系又有数量关系,该模型可以解决角问题,线段之间的倍半、相等及平行问题.模型实例如图,在四边形ABCD 中,AB =CD ,E 、F 分别是BC 、AD 的中点,连接EF 并延长,分别与BA 、CD 的延长线交于点M ,N .求证:∠BME =∠CNE .NM FEDCBA解答如图,连接BD ,取BD 的中点H ,连接HE 、HF . ∵E 、F 分别是BC 、AD 的中点, ∴FH =21AB ,FH ∥AB ,HE =21DC ,HE ∥NC . 又∵AB =CD ,∴HE =HF .∴∠HFE =∠HEF . ∵FH ∥MB ,HE ∥NC ,∴∠BME =∠HFE ,∠CNE =∠FEH . ∴∠BME =∠CNE .练习:1.(1)如图1,BD ,CE 分别是△ABC 的外角平分线,过点A 作AD ⊥BD ,AE ⊥CE ,垂足分别为D ,E ,连接DE ,求证:DE ∥BC ,DE =12(AB +BC +AC );(2)如图2,BD ,CE 分别是△ABC 的内角平分线,其他条件不变,上述结论是否成立? (3)如图3,BD 是△ABC 的内角平分线,CE 是△ABC 的外角平分线,其他条件不变,DE 与BC 还平行吗?它与△ABC 三边又有怎样的数量关系?请写出你的猜想,并对其中一种情况进行证明.E D CBA图1G FEDCBA图2FED CBA图31.解答(1)如图①,分别延长AE ,AD 交BC 于H ,K . 在△BAD 和△BKD 中,ABD DBK BD BDBDA BDK ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BAD ≌ △BKD (ASA ) ∴AD =KD ,AB =KB .同理可证,AE =HE ,AC =HC . ∴DE =12HK .又∵HK =BK +BC +CH =AB +BC +AC . ∴DE =12(AB +AC +BC ).(2)猜想结果:图②结论为DE =12(AB +AC -BC ) 证明:分别延长AE ,AD 交BC 于H ,K . 在△BAD 和△BKD 中ABD DBK BD BDBDA BDK ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BAD ≌△BKD (ASA ) ∴AD =KD ,AB =KB同理可证,AE =HE ,AC =HC . ∴DE =12HK . 又∵HK =BK +CH -BC =AB +AC -BC∴DE =12(AB +AC -BC )GABCDEKHF 图2(3)图③的结论为DE =12(BC +AC -AB ) 证明:分别延长AE ,AD 交BC 或延长线于H ,K . 在△BAD 和△BKD 中,ABD DBK BD BDBDA BDK ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BAD ≌△BKD (ASA ) ∴AD =KD ,AB =KB .同理可证,AE =HE ,AC =HC . ∴DE =12KH . 又∵HK =BH -BK =BC +CH -BK =BC +AC -AB∴DE =12(BC +AC -AB ).ABCD EKHF图32.问题一:如图①,在四边形ABCD 中,AB 与CD 相交于点O ,AB =CD ,E ,F 分别是BC ,AD 的中点,连接EF ,分别交DC ,AB 于点M ,N ,判断△OMN 的形状,请直接写出结论.问题二:如图②,在△ABC 中,AC >AB ,D 点在AC 上,AB =CD ,E ,F 分别是BC ,AD 的中点,连接EF 并延长,与BA 的延长线交于点G ,若∠EFC =60°,连接GD ,判断△AGD 的形状并证明.图1NMO F E DC BAE图2G ABCDF2.证明(1)等腰三角形(提示:取AC 中点H ,连接FH ,EH ,如图①)(2)△AGD 是直角三角形如图②,连接BD ,取BD 的中点H ,连接HF ,HE . ∵F 是AD 的中点, ∴HF ∥AB ,HF =12AB . ∴∠1=∠3.同理,HE ∥CD ,HE =12CD , ∴∠2=∠EFC , ∴AB =CD , ∴HF =HE . ∴∠1=∠2.∵∠EFC =60°,∴∠3=∠EFC =∠AFG =60°. ∴△AGF 是等边三角形. ∴AF =FG . ∴GF =FD .∴∠FGD =∠FDG =30°.∴∠AGD =90°,即△AGD 是直角三角形.图2321G A BCDF H模型4 已知直角三角形斜边中点,可以考虑构造斜边中线DCBA模型分析在直角三角形中,当遇见斜边中点时,经常会作斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半,即CD =12AB ,来证明线段间的数量关系,而且可以得到两个等腰三角形:△ACD 和△BCD ,该模型经常会与中位线定理一起综合应用. 模型实例如图,在△ABC 中,BE ,CF 分别为AC ,AB 上的高,D 为BC 的中点,DM ⊥ EF 于点M ,求证:FM =EM .M FEDCBA证明连接DE ,DF .BE ,CF 分别为边AC ,AB 上的高,D 为BC 的中点,DF =12BC ,DE =12BC .DF =DE ,即△DEF 是等腰三角形. DM ⊥EF ,点M 是EF 的中点,即FM =EM .ABCDEFM练习:1.如图,在△ABC 中,∠B =2∠C ,AD ⊥BC 于D ,M 为BC 的中点,AB =10,求DM 的长度.1.解答取AB 中点N ,连接DN ,MN .在Rt △ADB 中,N 是斜边AB 上的中点, ∴DN =12AB =BN =5.∴∠NDB =∠B .在△ABC 中,M ,N 分别是BC ,AB 的中点, ∴MN ∥AC∴∠NMB =∠C ,又∵∠NDB 是△NDM 的外角, ∴∠NDB =∠NMD +∠DNM .即∠B =∠NMD +∠DNM =∠C +∠DNM . 又∵∠B =2∠C ,∴∠DNM =∠C =∠NMD . ∴DM =DN . ∴DM =5.N MD CBA2.已知,△ABD 和△ACE 都是直角三角形,且∠ABD =∠ACE =90°,连接DE ,M 为DE 的中点,连接MB ,MC ,求证:MB =MC .MEDCBA2.证明延长BM 交CE 于G ,∵△ABD 和△ACE 都是直角三角形, ∴CE ∥BD .∴∠BDM =∠GEM .又∵M 是DE 中点,即DM =EM , 且∠BMD =∠GME , ∴△BMD ≌△GME . ∴BM =MG .∴M 是BG 的中点,∴在Rt △CBG 中,BM =CM .3.问题1:如图①,三角形ABC 中,点D 是AB 边的中点,AE ⊥ BC ,BF ⊥AC ,垂足分别为点E ,F .AE 、BF 交于点M ,连接DE ,DF ,若DE =kDF ,则k 的值为 . 问题2:如图②,三角形ABC 中,CB =CA ,点D 是AB 边的中点,点M 在三角形ABC 内部,且∠MAC =∠MBC ,过点M 分别作ME ⊥BC ,MF ⊥ AC ,垂足分别为点E ,F ,连接DE ,DF ,求证:DE =DF .问题3:如图③,若将上面问题2中的条件“CB =CA ”变为“CB ≠CA ”,其他 条件不变,试探究DE 与DF 之间的数量关系,并证明你的结论.图1MF DCBA图2ABCDE FM图3ABCDF M3.解答∵(1)AE ⊥BC ,BF ⊥AC ,∴△AEB 和△AFB 都是直角三角形, ∵D 是AB 的中点, ∴DE =12AB ,DF =12AB .∴DE =DF . ∵DE =KDF , ∴k =1. (2)∵CB =CA , ∴∠CBA =∠CAB . ∵∠MAC =∠MBC ,∴∠CBA -∠MBC =∠CAB -∠MAC ,即∠ABM =∠BAM . ∴AM =BM .∵ME ⊥BC ,MF ⊥AC , ∴∠MEB =∠MF A =90°. 又∵∠MBE =∠MAF ,∴△MEB ≌△MF A (AAS ) ∴BE =AF .∵D 是AB 的中点,即BD =AD , 又∵∠DBE =∠DAF ,∴△DBE ≌△DAF (SAS ) ∴DE =DF .(3)DE =DF .图1M F E DCB A如图,作AM的中点G,BM的中点H,连DG,FG,DH,EH. ∵点D是边AB的中点,∴DG∥BM,DG=12 BM.同理可得:DH∥AM,DH=12AM.∵ME⊥BC于E,H是BM的中点.∴在Rt△BEM中,HE=12BM=BH.∴∠HBE=∠HEB.∴∠MHE=2∠HBE.又∵DG=12BM,HE=12BM,∴DG=HE.同理可得:DH=FG. ∠MGF=2∠MAC.∵DG∥BM,DH∥GM,∴四边形DHMG是平行四边形.∴∠DGM=∠DHM.∵∠MGF=2∠MAC,∠MHE=2∠MBC,∠MBC=∠MAC,∴∠MGF=∠MHE.∴∠DGM+∠MGF=∠DHM+∠MHE.∴∠DGF=∠DHE.在△DHE与△FGD中DG HEDGF DHEDH FG=⎧⎪∠=∠⎨⎪=⎩∴△DHE≌△FGD(SAS)∴DE=DF.图2AB CDEFM。
共顶点模型-【压轴必刷】2023年中考数学压轴大题之经典模型(学生版)
共顶点模型解题策略模型1:等腰三角形共顶点已知在等腰△ACB与等腰△DCE中,CA=CB,CD=CE,且∠ACB=∠DCE.如图,连接BD,AE,交于点F,则:(1)△BCD≌△ACE;(2)AE=BD;(3)∠AFB=∠ACB;(4)FC平分∠BFE.模型2:等腰直角三角形共顶点已知在等腰Rt△ACB与等腰Rt△DCE中,∠ACB=∠DCE=90o.如图1,连接BD,AE,交于点F,连接FC,AD,BE,则:(1)△BCD≌△ACE;(2)AE=BD;(3)AE⏊BD;(4)FC平分∠BFE;(5)AB2+DE2=AD2+BE2(6)BF=AF+2FC,EF=DF+2FC;模型3:等边三角形共顶点已知等边△ABC与等边△DCE,B,C,E三点共线.如图,连接BD,AE,交于点F,BD与AC交于点G,AE与DC交于点H,连接CF,GH,则:(1)△BCD≌△ACE;(2)AE=BD;(3)∠AFB=∠DFE=60o;(4)FC平分∠BFE;(5)BF=AF+FC,EF=DF+FC;(6)△CGH 为等边三角形;模型4:相似三角形共顶点已知在△ACB 和△ECD 中,AC EC =BC DC,∠ACB =∠ECD .如图,连接BD ,AE ,交于点F ,则:(1)△BCD ∾△ACE ;(2)∠AFB =∠ACB经典例题例1.(2022·全国·九年级专题练习)如图,△ABC 为等边三角形,D 为AC 边上一点,连接BD ,M 为BD 的中点,连接AM .(1)如图1,若AB =23+2,∠ABD =45°,求△AMD 的面积;(2)如图2,过点M 作MN ⊥AM 与AC 交于点E ,与BC 的延长线交于点N ,求证:AD =CN ;(3)如图3,在(2)的条件下,将△ABM 沿AM 翻折得△AB 'M ,连接B 'N ,当B 'N 取得最小值时,直接写出BN -DE MN的值.例2.(2022·江苏·八年级专题练习)(1)问题发现:如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,连接AD,BE,点A、D、E在同一条直线上,则∠AEB的度数为__________,线段AD、BE之间的数量关系__________;(2)拓展探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,连接AD,BE,点A、D、E不在一条直线上,请判断线段AD、BE之间的数量关系和位置关系,并说明理由.(3)解决问题:如图3,△ACB和△DCE均为等腰三角形,∠ACB=∠DCE=α,则直线AD和BE的夹角为_____ _____.(请用含α的式子表示)例3.(2022·江苏·八年级课时练习)如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系和数量关系,并说明理由;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.①试猜想BD与AC的数量关系,并说明理由;②你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.例4.(2021·福建·闽江学院附中九年级期中)正方形ABCD和正方形AEFG的边长分别为3和1,将正方形AEFG绕点A逆时针旋转.(1)当旋转至图1位置时,连接BE,DG,则线段BE和DG的关系为;(2)在图1中,连接BD,BF,DF,求在旋转过程中△BDF的面积最大值;(3)在旋转过程中,当点G,E,D在同一直线上时,求线段BE的长.培优训练一、解答题1.(2022·四川自贡·九年级专题练习)问题:如图1,在等边三角形ABC内,点P到顶点A、B、C的距离分别是3,4,5,求∠APB的度数?探究:由于PA、PB、PC不在同一个三角形中,为了解决本题,我们可以将△ABP绕点A逆时针旋转60°到△ACP′处,连结P P′,这样就将三条线段转化到一个三角形中,从而利用全等的知识,求出∠APB的度数.请你写出解答过程:应用:请你利用上面的方法解答:如图2,△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点,且∠EAF=45°,求证:BE2+FC2=EF22.(2022·全国·九年级专题练习)【探究发现】(1)如图1,在四边形ABCD中,对角线AC⊥BD,垂足是O,求证:AB2+CD2=AD2+BC2.【拓展迁移】(2)如图2.以三角形ABC的边AB、AC为边向外作正方形ABDE和正方形ACFG,求证:CE⊥BG.(3)如图3,在(2)小题条件不变的情况下,连接GE,若∠EGA=90°,GE=6,AG=8,则BC的长_____________.(直接填写答案)3.(2022·全国·八年级课时练习)两个顶角相等的等腰三角形,如果具有公共的顶角顶点,并将它们的底角顶点分别对应连接起来得到两个全等三角形,我们把这样的图形称为“手拉手”图形.如图1,在“手拉手”图形中,AB=AC,AD=AE,∠BAC=∠DAE,连结BD,CE,则△ABD≌△ACE.(1)请证明图1的结论成立;(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,求∠BOC的度数;(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系.4.(2022·重庆开州·八年级期末)在正方形ABCD中,连接对角线AC,在AC上截取AE=BC,连接BE,过点A作AF⊥BE于点F,延长AF交BC于点M.(1)如图1,连接ME并延长交AD的延长线于点Q,若BC=5,求△AQM的面积;(2)如图2,过点A作AP⊥AM于点A,交CD的延长线于点P,求证:AP-2FM=BE.5.(2022·福建省福州延安中学模拟预测)如图,在Rt△ABC中,∠ACB=90°,AC=BC,D为斜边AB上一动点(不与端点A,B重合),以C为旋转中心,将CD逆时针旋转90°得到CE,连接AE,BE,F为AE的中点.(1)求证:BE⊥AB;(2)用等式表示线段CD,BE,CF三者之间数量关系,并说明理由;(3)若CF=32,CD=5,求tan∠BCE的值.6.(2022·浙江湖州·中考真题)已知在Rt△ABC中,∠ACB=90°,a,b分别表示∠A,∠B的对边,a>b.记△ABC的面积为S.(1)如图1,分别以AC,CB为边向形外作正方形ACDE和正方形BGFC.记正方形ACDE的面积为S1,正方形BGFC的面积为S2.①若S1=9,S2=16,求S的值;②延长EA交GB的延长线于点N,连结FN,交BC于点M,交AB于点H.若FH⊥AB(如图2所示),求证:S2-S1=2S.(2)如图3,分别以AC,CB为边向形外作等边三角形ACD和等边三角形CBE,记等边三角形ACD的面积为S1,等边三角形CBE的面积为S2.以AB为边向上作等边三角形ABF(点C在△ABF内),连结EF,CF.若EF⊥CF,试探索S2-S1与S之间的等量关系,并说明理由.7.(2022·贵州遵义·三模)某校数学兴趣学习小组在一次活动中,对一些特殊几何图形具有的性质进行了如下探究:(1)发现问题:如图1,在等腰△ABC中,AB=AC,点M是边BC上任意一点,连接AM,以AM为腰作等腰△AMN,使AM=AN,∠MAN=∠BAC,连接CN.求证:∠ACN=∠ABM.(2)类比探究:如图2,在等腰△ABC中,∠B=30°,AB=BC,AC=4,点M是边BC上任意一点,以AM为腰作等腰△AMN,使AM=MN,∠AMN=∠B.在点M运动过程中,AN是否存在最小值?若存在,求出最小值,若不存在,请说明理由.(3)拓展应用:如图3,在正方形ABCD中,点E是边BC上一点,以DE为边作正方形DEFG,H是正方形DEFG的中心,连接CH.若正方形DEFG的边长为6,CH=22,求△CDH的面积.8.(2022·重庆一中七年级期中)如图,等腰三角形ABC和等腰三角形ADE,其中AB=AC,AD=AE.(1)如图1,若∠BAC=90°,当C、D、E共线时,AD的延长线AF⊥BC交BC于点F,则∠ACE=______;(2)如图2,连接CD、BE,延长ED交BC于点F,若点F是BC的中点,∠BAC=∠DAE,证明:AD⊥CD;(3)如图3,延长DC到点M,连接BM,使得∠ABM+∠ACM=180°,延长ED、BM交于点N,连接AN,若∠BAC=2∠NAD,请写出∠ADM、∠DAE它们之间的数量关系,并写出证明过程.9.(2022·重庆巴蜀中学一模)在等边△ABC中,点D在AB上,点E在BC上,将线段DE绕点D逆时针旋转60°得到线段DF,连接CF.(1)如图(1),点D是AB的中点,点E与点C重合,连接AF.若AB=6,求AF的长;(2)如图(2),点G在AC上且∠AGD=60°+∠FCB,求证:CF=DG;(3)如图(3),AB=6,BD=2CE,连接AF.过点F作AF的垂线交AC于点P,连接BP、DP.将△BDP沿着BP翻折得到△BQP,连接QC.当△ADP的周长最小时,直接写出△CPQ的面积.10.(2022·江苏·八年级课时练习)△ACB和△DCE是共顶点C的两个大小不一样的等边三角形.(1)问题发现:如图1,若点A,D,E在同一直线上,连接AE,BE.①求证:△ACD≌△BCE;②求∠AEB的度数.(2)类比探究:如图2,点B、D、E在同一直线上,连接AE,AD,BE,CM为△DCE中DE边上的高,请求∠ADB的度数及线段DB,AD,DM之间的数量关系,并说明理由.(3)拓展延伸:如图3,若设AD(或其延长线)与BE的所夹锐角为α,则你认为α为多少度,并证明.11.(2022·浙江·诸暨市浣江初级中学一模)【问题探究】(1)如图1,锐角△ABC中,分别以AB、AC为边向外作等腰直角△ABE和等腰直角△ACD,使AE=AB,AD=AC,∠BAE=∠CAD=90°,连接BD,CE,试猜想BD与CE的大小关系,不需要证明.【深入探究】(2)如图2,四边形ABCD中,AB=5,BC=2,∠ABC=∠ACD=∠ADC=45°,求BD2的值;甲同学受到第一问的启发构造了如图所示的一个和△ABD全等的三角形,将BD进行转化再计算,请你准确的叙述辅助线的作法,再计算;【变式思考】(3)如图3,四边形ABCD中,AB=BC,∠ABC=60°,∠ADC=30°,AD=6,BD=10,则CD= .12.(2022·河南周口·九年级期末)观察猜想(1)如图1,在等边△ABC中,点M是边BC上任意一点(不含端点B、C),连接AM,以AM为边作等边△AMN,连接CN,则∠ABC与∠ACN的数量关系是______.(2)类比探究如图2,在等边△ABC中,点M是BC延长线上任意一点(不含端点C),(1)中其它条件不变,(1)中结论还成立吗?请说明理由.(3)拓展延伸如图3,在等腰△ABC中,BA=BC,点M是边BC上任意一点(不含端点B、C),连接AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连按CN.试探究∠ABC与∠ACN的数量关系,并说明理由.13.(2021·辽宁·东港市第七中学一模)如图,在△ABC、△ADE中,AB=AC,AD=AE,设∠BAC=∠DAE=α.连接BD,以BC、BD为邻边作▱BDFC,连接EF.(1)若α=60°,当AD、AE分别与AB、AC重合时(图1),易得EF=CF.当△ADE绕点A顺时针旋转到(图2)位置时,请直接写出线段EF、CF的数量关系________;(2)若α=90°,当△ADE绕点A顺时针旋转到(图3)位置时,试判断线段EF、CF的数量关系,并证明你的结论;(3)若α为任意角度,AB=6,BC=4,AD=3,△ADE绕点A顺时针旋转一周(图4),当A、E、F三点共线时,请直接写出AF的长度.14.(2022·江苏·苏州高新区实验初级中学三模)【学习概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.【理解运用】(1)如图1,对余四边形中,AB =5,BC =6,CD =4,连接AC ,若AC =AB ,则cos ∠ABC =___________,sin ∠CAD =__________.(2)如图2,凸四边形中,AD =BD ,AD ⊥BD ,当2CD 2+CB 2=CA 2时,判断四边形ABCD 是否为对余四边形,证明你的结论.【拓展提升】(3)在平面直角坐标中,A (-1,0),B (3,0),C (1,2),四边形ABCD 是对余四边形,点E 在对余线BD 上,且位于△ABC 内部,∠AEC =90°+∠ABC .设AE BE=u ,点D 的纵坐标为t ,请在下方横线上直接写出u 与t 的函数表达,并注明t 的取值范围____________________________.15.(2022·陕西咸阳·八年级期末)△ABC和△ADE如图所示,其中∠ABC=∠ACB,∠ADE=∠AED,∠BAC=∠DAE.(1)如图①,连接BE、CD,求证:BE=CD;(2)如图②,连接BE、CD、BD,若∠BAC=∠DAE=60°,CD⊥AE,AD=3,CD=5,求BD的长.16.(2022·河北保定·八年级期末)如图1,∠ACD=90°,AC=DC,MN是过点A的直线,过点D作DB⊥MN于点B,连接CB;过点C作CE⊥CB,与MN交于点E.(1)连接AD,AD是AC的______倍;(2)直线MN在图1所示位置时,可以得到线段BD和AE的数量关系是______,BD-BA与BC之间的数量关系是______,请证明你的结论;(3)直线MN绕点A旋转到图2的位置,若BD=2,BC=2,则AB的长为______(直接写结果);(4)直线MN绕点A旋转到图3的位置时,直接写出线段BA,BC,BD之间的数量关系______.17.(2021·江苏苏州·八年级期中)【理解概念】当一个凸四边形的一条对角线把原四边形分成两个三角形.若其中有一个三角形是等腰直角三角形,则把这条对角线叫做这个四边形的“等腰直角线”,把这个四边形叫做“等腰直角四边形”,当一个凸四边形的一条对角线把原四边形分成两个三角形.若其中一个三角形是等腰直角三角形,另一个三角形是等腰三角形,则把这条对角线叫做这个四边形的“真等腰直角线”,把这个四边形叫做“真等腰直角四边形”.(1)【巩固新知】如图①,若AD=3,AD=DB=DC,BC=32,则四边形ABCD______(填“是”或“否”)真等腰直角四边形.(2)【深度理解】在图①中,如果四边形ABCD是真等腰直角四边形,且∠BDC=90°,对角线BD是这个四边形的真等腰直角线,当AD=4,AB=3时,则边BC的长是______.(3)如图②,四边形ABCD与四边形ABDE都是等腰直角四边形,且∠BDC=90°,∠ADE=90°,BD>AD>AB,对角线BD、AD分别是这两个四边形的等腰直角线.求证:AC=BE.(4)【拓展提高】在图3中,已知:四边形ABCD是等腰直角四边形,对角线BD是这个四边形的等腰直角线.若BD正好是分得的等腰直角三角形的一条直角边,且AD=3,AB=4,∠BAD=45°,求AC 的长.18.(2022·江苏·八年级课时练习)如图,在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=α,连接BD和CE相交于点P,交AC于点M,交AD于点N.(1)求证:BD=CE.(2)求证:AP平分∠BPE.(3)若α=60°,试探寻线段PE、AP、PD之间的数量关系,并说明理由.19.(2022·全国·八年级课时练习)在△ABC中,∠B=90°,D为BC延长线上一点,点E为线段AC,CD的垂直平分线的交点,连接EA,EC,ED.(1)如图1,当∠BAC=50°时,则∠AED=_______°;(2)当∠BAC=60°时,①如图2,连接AD,判断△AED的形状,并证明;②如图3,直线CF与ED交于点F,满足∠CFD=∠CAE.P为直线CF上一动点.当PE-PD的值最大时,用等式表示PE,PD与AB之间的数量关系为_______,并证明.20.(2021·安徽合肥·八年级阶段练习)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE,BD与CE交于点O,BD与AC交于点F.(1)求证:BD=CE.(2)若∠BAC=48°,求∠COD的度数.(3)若G为CE上一点,GE=OD,AG=OC,且AG∥BD,求证:BD⊥AC.21.(2021·福建省福州延安中学九年级期中)如图,△ABC为等边三角形,点D为线段BC上一点,将线段AD以点A为旋转中心顺时针旋转60°得到线段AE,连接BE,点D关于直线BE的对称点为F,BE 与DF交于点G,连接DE,EF.(1)求证:∠BDF=30°(2)若∠EFD=45°,AC=3+1,求BD的长;(3)如图2,在(2)条件下,以点D为顶点作等腰直角△DMN,其中DN=MN=2,连接FM,点O为FM的中点,当△DMN绕点D旋转时,求证:EO的最大值等于BC.22.(2021·河南许昌·九年级期中)如图,在等腰直角三角形ABC和ADE中,AC=AB,AD=AE,连接BD,点M、N分别是BD,BC的中点,连接MN.(1)如图1,当顶点D在边AC上时,请直接写出线段BE与线段MN的数量关系是 ,位置关系是 .(2)当△ADE绕点A旋转时,连接BE,上述结论是否依然成立,若成立,请就图2情况给出证明;若不成立,请说明理由.(3)当AC=8时,在△ADE绕点A旋转过程中,以D,E,M,N为顶点可以组成平行四边形,请直接写出AD的长.23.(2021·福建莆田·九年级期中)如图1,在等边△ABC中,∠A=60°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,∠MPN=;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,则上面题(1)中的两个结论是否依然成立,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN周长的最大值24.(2021·四川·成都七中八年级期中)已知,在△ABC中,AB=AC,(1)如图1,∠ABC=2α,∠BDA=α,若α=30°,且点D在CA的延长线上时,求证:CD2=BD2+AD2;(2)如图2,∠ABC=2α,∠BDA=α,若α=30°,试判断AD,BD,CD之间的等量关系,并说明理由(3)如图3,若∠BDA=∠ABC=45°,AD=62,BD=5,求CD的长.25.(2021·河南南阳·八年级期中)在△ABC中,∠BAC=90°,AB=AC,D为BC的中点.(1)如图1,E、F分别是AB、AC上的点,且BE=AF、求证:△DEF是等腰直角三角形经过分析已知条件AB=AC,D为BC的中点.容易联想等腰三角形三线合一的性质,因此,连结AD (如图2),以下是某同学由已知条件开始,逐步按层次推出结论的流程图.请帮助该同学补充完整流程图.补全流程图:①___≅____,②∠EDF=___(2)如果E、F分别为AB、CA延长线上的点,仍有BE=AF,其他条件不变,试猜想△DEF是否仍为等腰直角三角形?请在备用图中补全图形、先作出判断,然后给予证明.26.(2021·四川·成都嘉祥外国语学校九年级期中)正方形ABCD中,点E、F在BC、CD上,且BE=CF,AE与BF交于点G.(1)如图1,求证AE⊥BF;(2)如图2,在GF上截取GM=GB,∠MAD的平分线交CD于点H,交BF于点N,连接CN,求证:AN+CN=2BN;(3)在(2)的条件下,若tan∠AEB=3,S△CHN=95,求AB的长。
婆罗摩笈多模型(解析版)-中考数学必备
婆罗摩笈多模型婆罗摩笈多模型条件:1)公共顶点:顶点C2)等线段:BC=DC CE=CG3)顶角相等:∠DCB=∠GCE=90°一、基础模型【问题一已知中点证垂直】已知:四边形ABCD、CEFG为正方形,连接BE、DG,I、C、H三点共线若点I为中点,则CH⊥BE,BE=2IC,S∆DCG=S∆BCE证明(思路):①延长IC到点P,使PI=IC,连接PG先证明∆DIC≌∆GIP(SAS),所以DC=PG,∠DCI=∠P 则DC‖PG ∵四边形ABCD、CEFG为正方形∴DC=BC CE=CG∠GCE=∠BCD=90°∴BC=PG∵∠PGC==180°-∠DCG(两直线平行同旁内角互补)∠BCE=360°-90°-90°-∠DCG=180°-∠DCG∴∠PGC=∠BCE则∆PCG≌∆BEC(SAS)∴∠PCG=∠CEB∵∠PCG+∠ECH=180°-90°=90°∴∠CEB+∠ECH=90°∴∠CHE=90°∴CH⊥BE②∵∆PCG≌∆BEC∴PC=BE∴BE=2IC③S∆EBC=S∆PCG=S∆PIG+S∆GCI=S∆DIC+S∆GCI=S∆DCG【问题二已知垂直证中点】已知:四边形ABCD、CEFG为正方形,连接BE、DG,I、C、H三点共线若CH⊥BE, 则点I为中点,BE=2IC,S∆DCG=S∆BCE证明(思路):①分别过点D、G作DM⊥CI与点M,NG⊥CI于点N∵∠2+∠3=90°,∠1+∠2=90°∴∠1=∠3由已知条件可得∆CDM≌∆BCH(AAS)∴DM=CH CM=BH同理∆GCN≌∆CEH(AAS)∴NG=CH NC=HE∴NG=DM再证明∆DMI≌∆GNI(AAS)∴DI=IG MI=NI则点I为中点②BE=BH+HE=CM+NC=NM+NC+NC=2NI+2NC=2IC③∵S∆BHC=S∆DMC S∆GNC=S∆CHE S∆DMI=S∆GNI∴S∆DCG=S∆DCI+S∆GNI+S∆CNG=S∆DMC+S∆GNC=S∆BHC+S∆CHE=S∆BCE 二、变形变形一:如图∆AOB、∆COD为等腰直角三角形,连接AC、BD,MN过点O且与AC交于点N、BD交于点M则有如下结论:1)若点N为中点,则MN⊥BD,2)若MN⊥BD,则点N为中点3)BD=2ON4)S∆BOD=S∆AOC证明(思路):1)延长MN至点H,使NH=NO,连接HC先证明∆ANO≌∆CNH(SAS),所以AO=HC,∠AON=∠H 则AO‖HC再证明∆HOC≌∆BDO(SAS)∴∠COH=∠ODB HO=BD∴BD=2ON,S∆BOD=S∆AOC∵∠COH+∠DOM=90°K∴∠ODB+∠DOM=90°∴∠OMD=90°∴MN⊥BD2)方法一:构造一线三垂直模型(与问题二证明方法相同)方法二:在BD上截取一点P,使BP=ON,连接OP先证明∆ANO≌OBP(SAS)∴∠ANO=∠BPO AN=OP ON=BP再证明∆NOC≌∆PDO(SAS)∴NC=OP ON=PD∴BD=2ON,S∆BOD=S∆AOC变形二:如图∆AOB、∆COD为等腰直角三角形,连接AC、BD,MN过点O且与AC交于点N、BD交于点M则有如下结论:1)若点N为中点,则MN⊥BD,2)若MN⊥BD,则点N为中点3)BD=2ON4)S∆BOD=S∆AOC证明(自行证明):1)延长ON至点H,使ON=NH,连接AH2)在BD上截取DH=ON,连接OH【培优训练】1.(2021秋·重庆·八年级重庆市大学城第一中学校校联考期中)如图,在锐角△ABC中,AF是BC边上的高,分别以AB、AC为一边,向外作等腰Rt△ABD和等腰Rt△ACE其中∠BAD=∠CAE=90°,连接BE、DE、DC,DE与FA的延长线交于点G,下列5个结论:①BE=DC;②BE⊥DC;③AE=EG;④∠DAG=∠ABC;⑤S△ABC=S△ADE.其中正确的有( )A.5个B.4个C.3个D.2个【答案】B【分析】通过证明△ACD≌△AEB,即可证明①,②;过点D作DM⊥AG于点M,过点E作EN⊥AG 于点N,证明△DMG≌△ENG,△CAF≌△AEN,△DMG≌△ENG,即可证明③,⑤;根据直角三角形两个锐角互余,通过角度的等量代换,即可证明④.【详解】解:①∵△ABD△ACE为等腰直角三角形,∴AD=AB,AE=AC,∵∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE,在△ACD和△AEB中,AD=AB∠DAC=∠BAE AE=AC,∴△ACD≌△AEB SAS,∴BE=DC,故①正确;②∵△ACD≌△AEB,∴∠CDA=∠EBA,∵∠CDA+∠BDC+∠DBA=90°,∴∠EBA+∠BDC+∠DBA=90°,∴BE⊥DC,故②正确;③过点D作DM⊥AG于点M,过点E作EN⊥AG于点N,∵AF⊥BC,∴∠BFA=∠DMA=90°,∵∠BAD=90°,∴∠DAF+∠DAM=90°,∵∠ABF+∠DAM=90°,∴∠DAF=∠ABM,在△DAM和△BAF中,∠BFA=∠DMA ∠DAF=∠ABM AD=AB,∴△DAM≌△BAF AAS,∴DM=AF,同理可得:△CAF≌△AEN AAS,∴NE=AF,∴DM=NE,在△DMG和△ENG中,∠DGM=∠EGN ∠DMG=∠ENG DM=EG,∴△DMG≌△ENG AAS,∴DG=EG,即AG为△ADE的中线,当∠DAE=90°时,AE=EG,∵△ABC为锐角三角形,∴∠DAE≠90°,故③不正确,不符合题意;④∵∠DAB=90°,∴∠DAG+∠BAF=90°,∵AF是BC边上的高,∴∠ABC+∠BAF=90°,∴∠DAG=∠ABC,故④正确;⑤由③可知:△DMG≌△ENG,△CAF≌△AEN,△DMG≌△ENG,∵S△ABC=S△ABF+S△ACF,S△ADE=S△ADG+S△AEG=S△ADG+S△DMG+S△AEN=S△ADM+S△AEN,∴S△ABC=S△ADE.综上,正确的有①②④⑤,故选:B.【点睛】本题主要考查了等腰三角形的性质,三角形全等的性质和判定,解题的关键是熟练掌握全等三角形对应边相等,对应角相等,根据题意画出辅助线,构建全等三角形.2.(2022春·四川自贡·八年级校考期中)如图,在锐角三角形ABC中,AH是BC边上的高,分别以AB,AC为一边,向外作正方形ABDE和ACFG,连接CE,BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE;②BG⊥CE;③AM是△AEG的中线;④∠EAM=∠ABC,其中正确结论是( )A.①②③B.①②④C.①③④D.①②③④【答案】D【分析】根据正方形的性质和SAS可证明△ABG≌△AEC,然后根据全等三角形的性质即可判断①;设BG、CE相交于点N,AC、BG相交于点K,如图1,根据全等三角形对应角相等可得∠ACE=∠AGB,然后根据三角形的内角和定理可得∠CNG=∠CAG=90°,于是可判断②;过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,如图2,根据余角的性质即可判断④;利用AAS即可证明△ABH≌△EAP,可得EP=AH,同理可证GQ=AH,从而得到EP=GQ,再利用AAS可证明△EPM≌△GQM,可得EM=GM,从而可判断③,于是可得答案.【详解】解:在正方形ABDE和ACFG中,AB=AE,AC=AG,∠BAE=∠CAG=90°,∴∠BAE+∠BAC=∠CAG+∠BAC,即∠CAE=∠BAG,∴△ABG≌△AEC(SAS),∴BG =CE ,故①正确;设BG 、CE 相交于点N ,AC 、BG 相交于点K ,如图1,∵△ABG ≌△AEC ,∴∠ACE =∠AGB ,∵∠AKG =∠NKC ,∴∠CNG =∠CAG =90°,∴BG ⊥CE ,故②正确;过点E 作EP ⊥HA 的延长线于P ,过点G 作GQ ⊥AM 于Q ,如图2,∵AH ⊥BC ,∴∠ABH +∠BAH =90°,∵∠BAE =90°,∴∠EAP +∠BAH =90°,∴∠ABH =∠EAP ,即∠EAM =∠ABC ,故④正确;∵∠AHB =∠P =90°,AB =AE ,∴△ABH ≌△EAP (AAS ),∴EP =AH ,同理可得GQ =AH ,∴EP =GQ ,∵在△EPM 和△GQM 中,∠P =∠MQG =90°∠EMP =∠GMQ EP =GQ,∴△EPM ≌△GQM (AAS ),∴EM =GM ,∴AM 是△AEG 的中线,故③正确.综上所述,①②③④结论都正确.故答案为:D .【点睛】本题考查了正方形的性质、三角形的内角和定理以及全等三角形的判定和性质,作辅助线构造出全等三角形是难点,熟练掌握全等三角形的判定和性质是关键.3.(2022·浙江温州·校考一模)如图,在△ABC 中以AC ,BC 为边向外作正方形ACFG 与正方形BCDE ,连结DF ,并过C 点作CH ⊥AB 于H 并交FD 于M .若∠ACB =120°,AC =3,BC =2,则MD 的长为( ).A.72B.2 C.32D.3【答案】A【分析】过D作DN⊥CF于点N,作DP⊥HM于点P,过点F作FQ⊥HM,交HM的延长线于点Q,依据勾股定理即可求得DF的长,再根据全等三角形的对应边相等可得FQ=DP,进而判定△FQM≌△DPM,即可得到M是FD的中点,据此可得DM=12DF.【详解】解:如图,过D作DN⊥CF于点N,作DP⊥HM于点P,过点F作FQ⊥HM,交HM的延长线于点Q,∵∠ACB=120°,∠ACF=∠BCD=90°,∴∠DCN=60°,∠CDN=30°,又∵BC=DC=2,AC=FC=3,∴CN=12CD=1,FN=CF-CN=3-1=2,DN=CD2-CN2=22-12=3,Rt△DFN中,DF=DN2+FN2=3+4=7,∵四边形BCDE是正方形,∴BC=CD,∠BCD=90°,又∵CH⊥AB,∴∠DCP+∠BCH=∠CBH+∠BCH=90°,∴∠DCP=∠CBH,又∵∠DPC=∠BHC=90°,∴△DCP≌△CBH(AAS),∴DP=CH,同理可得△ACH≌△CFQ,∴FQ=CH,∴FQ=DP,又∵∠Q=∠DPM=90°,∠FMQ=∠DMP,∴△FQM≌△DPM(AAS),∴FM =DM ,即M 是FD 的中点,∴DM =12DF =72.故选:A .【点睛】本题主要考查了正方形的性质、全等三角形的判定与性质以及勾股定理的综合运用,通过作辅助线构造全等三角形,灵活运用全等三角形的对应边相等是解决问题的关键.4.(2022秋·浙江温州·九年级温州市第十二中学校考阶段练习)如图,在△ABC 中,∠A =90°,AB >AC ,分别以△ABC 的三边为边向外作三个正方形ABDE ,ACGF ,BCHI ,延长IB ,交边DE 于点J ,连接JH ,分别交边AB ,BC 于点M ,N ,已知MN =5,CH =8,则正方形ACGF 的边长为( )A.92B.25C.245D.161313【答案】D【分析】证明△ABC ≌△JDB ,△CHN ≌△BJN ,求得NB =4,过点M 作MP ⊥BC 于点P ,得出NP =1,PB =3,证明△MPB ∽△CAB ,根据相似三角形的性质即可求解.【详解】解:∵正方形ABDE ,ACGF ,∴∠CBI =∠CBJ =∠ABD =90°,AB =BD ,∠D =90°,∴∠ABC =∠DBJ ,∵∠CAB =90°,∴∠CAB =∠D ,在△ABC 与△JDB 中,∠ABC =∠DBJAB =BD∠CAB =∠D∴△ABC ≌△JDB ,∴BC =JB ,∵四边形BCHI 是正方形,∴CH =CB ,CH ∥BI ,∴CH =JB ,∵CH ∥BI ,∴∠NJB =∠NHC ,在△CHN 与△BJN 中,∠NJB =∠NHC∠JNB =∠HNC JB =HC,∴△CHN ≌△BJN∴CN =NB =12BC ,∵BC =8,∴NB =4,在Rt △NJB 中,BJ =CH =8,NJ =NB 2+BJ 2=45,∵MN =5,∴MJ =NJ -MN =35,如图,过点M 作MP ⊥BC 于点P ,∴MP ∥JB ,∴MN MJ =PN PB =13,∵NB =4,∴NP =1,PB =3,在Rt △MNP 中,MP =MN 2-PN 2=5-1=2,在Rt △MPB 中,MB =MP 2+PB 2=22+32=13,∵∠MPB =∠BAC =90°,∠MBP =∠CBA ,∴△MPB ∽△CAB ,∴MP AC =MB BC ,即2AC=138,解得:AC =161313,即正方形ACGF 的边长为161313,故选:D .【点睛】本题考查了勾股定理,正方形的性质,全等三角形的性质与判定,相似三角形的性质与判定,缕清线段之间的关系是解题的关键.5.(2022秋·吉林长春·八年级校考阶段练习)在锐角三角形ABC 中,AH 是BC 边上的高,分别以AB ,AC 为一边,向外作正方形ABDE 和ACFG ,连接CE ,BG 和EG ,EG 与HA 的延长线交于点M ,下列结论:①BG =CE ;②BG ⊥CE ;③AM 是△AEG 的中线;④∠EAM =∠ABC ,其中正确结论的个数是( )A.4个B.3个C.2个D.1个【答案】A【分析】根据正方形的性质和全等三角形的性质逐项分析即可得出答案.【详解】根据正方形的性质可得AB=AE,AC=AG,∠BAE=∠CAG=90°,然后求出∠CAE=∠BAG,再利用“边角边”证明△ABG和△AEC全等,根据全等三角形对应边相等可得BG=CE,判定①正确;设BG、CE相交于点N,根据全等三角形对应角相等可得∠ACE=∠AGB,然后求出∠CNG=90°,根据垂直的定义可得BG⊥CE,判定②正确;过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,根据同角的余角相等求出∠ABH=∠EAP,再利用“角角边”证明△ABH和△EAP全等,根据全等三角形对应角相等可得∠EAM=∠ABC判定④正确,全等三角形对应边相等可得EP=AH,同理可证GQ=AH,从而得到EP=GQ,再利用“角角边”证明△EPM和△GQM全等,根据全等三角形对应边相等可得EM=GM,从而得到AM是△AEG的中线,故③正确.综上所述,①②③④结论都正确.故选A.考点:全等三角形的判定与性质;正方形的性质.【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,在解答时作辅助线EP⊥HA的延长线于P,过点G作GQ⊥AM于Q构造出全等三角形是难点,运用全等三角形的性质是关键.6.(2022秋·八年级课时练习)在锐角三角形ABC中,AH是边BC的高,分别以AB,AC为边向外作正方形ABDE和正方形ACFG,连接CE,BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE;②BG⊥CE;③AM是△AEG的中线;④∠EAM=∠ABC.其中正确的是_________.【答案】①②③④【分析】根据正方形的性质和SAS可证明△ABG≌△AEC,然后根据全等三角形的性质即可判断①;设BG、CE相交于点N,AC、BG相交于点K,如图1,根据全等三角形对应角相等可得∠ACE=∠AGB,然后根据三角形的内角和定理可得∠CNG=∠CAG=90°,于是可判断②;过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,如图2,根据余角的性质即可判断④;利用AAS即可证明△ABH≌△EAP,可得EP=AH,同理可证GQ=AH,从而得到EP=GQ,再利用AAS可证明△EPM≌△GQM,可得EM=GM,从而可判断③,于是可得答案.【详解】解:在正方形ABDE和ACFG中,AB=AE,AC=AG,∠BAE=∠CAG=90°,∴∠BAE+∠BAC=∠CAG+∠BAC,即∠CAE=∠BAG,∴△ABG≌△AEC(SAS),∴BG=CE,故①正确;设BG、CE相交于点N,AC、BG相交于点K,如图1,∵△ABG≌△AEC,∴∠ACE=∠AGB,∵∠AKG=∠NKC,∴∠CNG=∠CAG=90°,∴BG⊥CE,故②正确;过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,如图2,∵AH⊥BC,∴∠ABH+∠BAH=90°,∵∠BAE=90°,∴∠EAP+∠BAH=90°,∴∠ABH=∠EAP,即∠EAM=∠ABC,故④正确;∵∠AHB=∠P=90°,AB=AE,∴△ABH≌△EAP(AAS),∴EP=AH,同理可得GQ=AH,∴EP=GQ,∵在△EPM和△GQM中,∠P=∠MQG=90°∠EMP=∠GMQ EP=GQ,∴△EPM≌△GQM(AAS),∴EM=GM,∴AM是△AEG的中线,故③正确.综上所述,①②③④结论都正确.故答案为:①②③④.【点睛】本题考查了正方形的性质、三角形的内角和定理以及全等三角形的判定和性质,作辅助线构造出全等三角形是难点,熟练掌握全等三角形的判定和性质是关键.7.(2022·湖北武汉·统考中考真题)如图,在Rt△ABC中,∠ACB=90°,AC>BC,分别以△ABC的三边为边向外作三个正方形ABHL,ACDE,BCFG,连接DF.过点C作AB的垂线CJ,垂足为J,分别交DF,LH于点I,K.若CI=5,CJ=4,则四边形AJKL的面积是_________.【答案】80【分析】连接LC、EC、EB,LJ,由平行线间同底的面积相等可以推导出:S△JAL=S△CAL,S△BAE=S△EAC,由△CAL≅△EAB,可得S△CAL=S△EAB,故S△JAL=S△CAL=S△BAE=S△EAC,证得四边形ALKJ是矩形,可得S矩形ALKJ=2S△ALJ,在正方形ACDE中可得:S正方形ACDE=2S△EAC,故得出:S矩形ALKJ=AC2.由△ACJ∼△CBJ,可得CJBJ=AJCJ,即可求出AJ=8,可得出【详解】连接LC、EC、EB,LJ,在正方形ABHL,ACDE,BCFG中∠ALK=∠LAB=∠EAC=∠ACD=∠BCF=90°,AL=AB,EA=AC,BC=CF,AC=CD,AE∥CD,AB∥LH,S正方形ACDE=2S△EAC.∵CK⊥LH,∴∠CKL=90°,CK⊥AB∴∠CKL+∠ALK=180°,∠CJA=∠CJB=90°∴CK∥AL,∴S△CAL=S△JAL.∵∠JKL=∠ALK=∠JAL=90°,∴四边形ALKJ是矩形,∴S矩形ALKJ=2S△ALJ.∵∠LAB=∠EAC,∴∠LAB+∠BAC=∠EAC+∠BAC,∴∠EAB=∠CAL,∵AL=AB,EA=AC,∴△CAL≅△EAB,∴S△CAL=S△EAB.∵AE∥CD,∴S△EAB=S△EAC.∴S△JAL=S△CAL=S△BAE=S△EAC∴S矩形ALKJ =2S△EAC=S正方形ACDE=AC2.∵∠DCA=∠BCF=90°,∠DCF=∠BCD.∴∠DCF=∠BCD=90°,∵BC=CF,AC=CD,∴△ABC≅△DCF,∴∠CAB=∠CDF,AB=DF,∵∠ACB=90°,∠CJB=90°,∴∠CAB+∠ABC=90°,∠JCB+∠CBJ=90°,∴∠CAB=∠JCB,∵∠DCI=∠JCB,∴∠DCI=∠IDC,∴ID=CI=5,∵∠IDC+∠DFC=90°,∠DIC+∠ICF=90°,∴∠ICF=∠IFC,∴IF=CI=5,∴DF=10,∴AB=10.设AJ=x,BJ=10-x,∵∠CAJ=∠BCJ,∠CJA=∠CJB,∴△ACJ∼△CBJ,∴CJ BJ =AJ CJ,∴4 10-x =x4,∴x1=2,x2=8,∵AC>BC,∴AJ>BJ,∴x>10-x,∴x>5,∴x=8.∴AC2=CJ2+AJ2=42+82=80,∴S矩形ALKJ=AC2=80.故答案为:80.【点睛】此题考查正方形的性质、矩形的性质与判定、相似三角形的判定与性质、勾股定理,平行线间同底的两个三角形,面积相等;难度系数较大,作出正确的辅助线并灵活运用相关图形的性质与判定是解决本题的关键.8.(2023秋·四川南充·八年级四川省南充高级中学校考期末)如图,以△ABC的两边AB,AC为边向形外作正方形ABEF,ACGH,则称这两个正方形为外展双叶正方形.有以下5个结论:①△ABC面积与△AFH面积相等.②过点A作边BC的垂线交FH于点D,则FD=HD.③O为边BC的中点,OA 延长线与HF交于点P,则AP⊥HF且HF=2AO.④连接FC、HB相交于点R,则FC=HB且FC ⊥HB.⑤连结EG,S为EG的中点,则SB=SC且SB⊥SC.其中正确的结论是_________ (填序号).【答案】①②③④⑤【分析】①作CM⊥AB,作HN⊥FA,证明△AMC≌△ANH AAS,推出CM=HN,由三角形面积公式即可判断;②作出图2的辅助线,证明△AKB≌△FTA AAS/,推出AK=FT,得到FT=HQ,再证明△TFD≌△QHD AAS,即可判断;③作出图3的辅助线,证明△BOL≌△COA SAS,再证明△ABL≌△FAH SAS,即可判断;④作出图4的辅助线,证明△FAC≌△BAH SAS,推出FC=HB,∠AFC=∠ABH,再证明∠BRW =90°,即可判断;⑤作出图5的辅助线,证明△ESI≌△GSC SAS和△BEI≌△BAC SAS,推出∠IBC=90°,再根据直角三角形的性质即可判断.【详解】解:①如图1,过点C作CM⊥AB于点M,过点H作HN⊥FA的延长线于点N,则∠AMC=∠N=90°,∵四边形ABEF和四边形ACGH都是正方形,∴∠BAF=∠CAH=90°,AB=AF,AC=AH,∴∠BAC+∠FAH=360°-∠BAF-∠CAH=360°-90°-90°=180°,又∵∠HAN+∠FAH=180°,∴∠BAC=∠HAN(同角的补角相等),在△AMC和△ANH中,∠AMC=∠N=90°∠BAC=∠HAN AC=AH,∴△AMC≌△ANH AAS,∴CM=HN,又∵S△ABC=12AB⋅CM,S△AFH=12AF⋅HN,且AB=AF,∴△ABC面积与△AFH面积相等,故①正确;②如图2,过点A作BC的垂线交FH于点D,设垂足为K,过点H作HQ⊥AD于点Q,过点F作FT ⊥AD的延长线于点T,则∠AKB=∠AKC=∠HQD=∠HQA=∠T=90°,∵∠BAF=90°,∠T=90°,∴∠KAB+∠TAF=90°,∠TFA+∠TAF=90°,∴∠KAB=∠TFA(同角的余角相等),在△AKB和△TFA中,∠AKB=∠T=90°∠KAB=∠TFA AC=AH,∴△AKB≌△FTA AAS,∴AK=FT,同理可证HQ=AK,∴FT=HQ,在△TFD和△QHD中,∠T=∠HQD=90°∠TDF=∠QDA FT=HQ,∴△TFD≌△QHD AAS,∴FD=HD,故②正确;③如图3,延长AO至L,使LO=AO,连接BL,则AL=2AO,∵O为边BC的中点,∴OB=OC,在△BOL和△COA中,OB=OC∠BOL=∠COA LO=AO,∴△BOL≌△COA SAS,∴∠L=∠CAO,BL=AC,∴BL∥AC,∴∠ABL+∠BAC=180°,由②得∠BAC+∠FAH=180°,∴∠ABL=∠FAH,∵BL=AC,AC=AH,∴BL=AH在△ABL和△FAH中,AB=AF∠ABL=∠FAH BL=AC,∴△ABL≌△FAH SAS,∴AL=HF,∠BAL=∠AFH,∵∠BAF=90°,∴∠BAL+∠FAP=90°,∴∠FPA=180°-(∠AFH+∠FAP)=180°-90°=90°∴AP⊥HF∵AL=HF,AL=2AO∴HF=2AO,故③正确;④如图4,连接FC、HB相交于R,设FC交AB于点W,∵∠BAF=∠CAH=90°∴∠BAF+∠BAC=∠CAH+∠BAC,即∠FAC=∠BAH在△FAC和△BAH中,AB=AF∠FAC=∠BAH AC=AH,∴△FAC≌△BAH SAS,∴FC=HB,∠AFC=∠ABH,∵∠BAF=90°,∴∠AFC+∠AWF=90°,∴∠ABH+∠AWF=90°,又∵∠BWR=∠AWF,∴∠ABH+∠AWR=90°,∴∠BRW=180°-(∠ABH+∠AWR)=180°-90°=90°,∴FC⊥HB,故④正确;⑤如图5,延长CS至I,使SI=SC,连接BI并延长交AF于J,∵四边形ABEF和四边形ACGH都是正方形,∴BE∥AF,AH∥CG,BE=AB,AC=CG,∠ABE=90°,∵S是EG的中点,∴SE=SG,在△ESI和△GSC中,SE=SG∠ESI=∠GSC SI=SC,∴△ESI≌△GSC SAS,∴IE=CG,∠IES=∠CGS,∴EJ∥CG,又∵AH∥CG,∴EJ∥AH,∴∠EJA=∠FAH,又∵∠BAC+∠FAH=180°,∴∠BAC+∠EJA=180°,∵BE∥AF,∴∠BEI+∠BJA=180°,∴∠BEI=∠BAC,∵AC=CG,IE=CG,∴IE=AC,在△BEI和△BAC中,BE=AB∠BEI=∠BAC IE=AC,∴△BEI≌△BAC SAS,∴BI=BC,∠IBE=∠CBA,∴∠IBE+∠IBA=∠CBA+∠IBA,即∠ABE=∠IBC,又∵∠ABE=90°,∴∠IBC=90°,又∵SI=SC,∴SB=1CI=SC,2∵BI=BC,且SI=SC,∴SB⊥CI,即SB⊥SC,故⑤正确;综上所述,正确的有①②③④⑤,故答案为:①②③④⑤.【点睛】本题考查了正方形的性质,三角形的面积公式,全等三角形的判定和性质,直角三角形斜边中线的性质,等腰三角形的判定和性质,熟练掌握各性质定理是解题的关键.9.(2020·黑龙江鹤岗·统考中考真题)以RtΔABC的两边AB、AC为边,向外作正方形ABDE和正方形ACFG,连接EG,过点A作AM⊥BC于M,延长MA交EG于点N.(1)如图1,若∠BAC=90°,AB=AC,易证:EN=GN;(2)如图2,∠BAC=90°;如图3,∠BAC≠90°,(1)中结论,是否成立,若成立,选择一个图形进行证明;若不成立,写出你的结论,并说明理由.【答案】(1)见解析;(2)∠BAC=90°时,(1)中结论成立,证明见解析;∠BAC≠90°时,(1)中结论成立,证明见解析.【分析】(1)由等腰直角三角形的性质得出∠MAC=45°,证得∠EAN=∠NAG,由等腰三角形的性质得出结论;(2)如图1,2,证明方法相同,利用“AAS”证明△ABM和△EAP全等,根据全等三角形对应边相等可得EP=AM,同理可证GQ=AM,从而得到EP=GQ,再利用“AAS”证明△EPN和△GQN全等,根据全等三角形对应边相等可得EN=NG.【详解】(1)证明:∵∠BAC=90°,AB=AC,∴∠ACB=45°,∵AM⊥BC,∴∠MAC=45°,∴∠EAN=∠MAC=45°,同理∠NAG=45°,∴∠EAN=∠NAG,∵四边形ABDE和四边形ACFG为正方形,∴AE=AB=AC=AG,∴EN=GN.(2)如图1,∠BAC=90°时,(1)中结论成立.理由:过点E作EP⊥AN交AN的延长线于P,过点G作GQ⊥AM于Q,∵四边形ABDE是正方形,∴AB=AE,∠BAE=90°,∴∠EAP+∠BAM=180°-90°=90°,∵AM⊥BC,∴∠ABM+∠BAM=90°,∴∠ABM=∠EAP,在ΔABM和ΔEAP中,∠ABM=∠EAP ∠AMB=∠P=90°AB=AE,∴ΔABM≌ΔEAP AAS,∴EP=AM,同理可得:GQ=AM,∴EP=GQ,在ΔEPN和ΔGQN中,∠P=∠NQG∠ENP=∠GNQ EP=GQ,∴ΔEPN≌ΔGQN AAS,∴EN=NG.如图2,∠BAC≠90°时,(1)中结论成立.理由:过点E作EP⊥AN交AN的延长线于P,过点G作GQ⊥AM于Q,∵四边形ABDE是正方形,∴AB=AE,∠BAE=90°,∴∠EAP+∠BAM=180°-90°=90°,∵AM⊥BC,∴∠ABM+∠BAM=90°,∴∠ABM=∠EAP,在ΔABM和ΔEAP中,∠ABM=∠EAP ∠AMB=∠P=90°AB=AE,∴ΔABM≌ΔEAP AAS,5∴EP=AM,同理可得:GQ=AM,∴EP =GQ ,在ΔEPN 和ΔGQN 中,∠P =∠NQG∠ENP =∠GNQ EP =GQ,∴ΔEPN ≌ΔGQN AAS ,∴EN =NG .【点睛】本题是四边形综合题,考查了正方形的性质,全等三角形的判定及性质,等腰三角形的性质,等腰直角三角形的性质等知识;正确作出辅助线,构造全等三角形,运用全等三角形的性质是解题的关键.10.(2020·福建·统考模拟预测)求证:对角线互相垂直圆内接四边形,自对角线的交点向一边作垂线,其延长线必平分对边.要求:(1)在给出的圆内接四边形作出PE ⊥BC 于点E ,并延长EP 与AD 交于点F ,不写作法,保留作图痕迹(2)利用(1)中所作的图形写出已知、求证和证明过程.【答案】(1)见解析;(2)DF =FP =AF ,点F 为AD 的中点,过程见解析【分析】(1)过P 作BC 的垂线即可得到答案;(2)根据题意写好已知,求证,利用圆周角定理及直角三角形的性质证明【详解】解:(1)补全的图形如图所示;(2)已知:四边形ABCD 为圆内接四边形,AC ⊥BD ,PE ⊥BC .延长EP 交AD 于点F .求证:点F 为AD 的中点证明:∵AC ⊥BD ,PE ⊥BC∴∠CPD =∠CEF =∠APD =90°∵EF 是线段∴∠CPE +∠CPD +∠DPF =180°,即∠CPE +∠DPF =90°∵在Rt △CEP 中,∠CPE +∠ECP =90°∴∠ECP =∠DPF∵∠ACB 与∠ADB 为同弧所对的圆周角∴∠ACB =∠ADB ,即∠ECP =∠PDF∴∠DPF=∠PDF∴△DPF为等腰三角形,DF=FP∵∠APF=∠APD-∠DPF=90°-∠DPF,∠PAF=90°-∠PDF∴∠APF=∠PAF∴△APF为等腰三角形,PF=AF即DF=FP=AF,点F为AD的中点.【点睛】本题考查的是过一点作已知直线的垂线,圆周角定理,等腰三角形的判定,直角三角形两锐角互余,掌握以上知识是解题的关键.11.(2020·全国·九年级专题练习)如图,在△ABC外分别以AB,AC为边作正方形ABDE和正方形ACFG,连接EG,AM是△ABC中BC边上的中线,延长MA交EG于点H.求证:(1)AM=12EG;(2)AH⊥EG;(3)EG2+BC2=2(AB2+AC2).【答案】(1)详见解析;(2)详见解析;(3)详见解析【分析】(1)延长AM到点N,使MN=MA,连接BN,先证得△MBN≌△MCA,得到∠BNM=∠CAM,NB=AC,从而得到BN∥AC,NB=AG,进一步得到∠NBA=∠GAE,根据SAS证得△NBA≌△GAE,即可证得结论;(2)由△NBA≌△GAE得∠BAN=∠AEG,进一步求得∠HAE+∠AEH=90°,即可证得∠AHE=90°,得到AH⊥EG;(3)连接CE、BG,易证△ACE≌△ABG,得出CE⊥BG,根据勾股定理得到EG2+BC2=CG2+BE2,从而得到2(AB2+AC2).【详解】(1)证明:延长AM到点N,使MN=MA,连接BN,∵AM是△ABC中BC边上的中线,∴CM=BM,在△MBN和△MCA中AM=MN∠AMC=∠NMB CM=BM∴△MBN ≌△MCA (SAS ),∴∠BNM =∠CAM ,NB =AC ,∴BN ∥AC ,NB =AG ,∴∠NBA +∠BAC =180°,∵∠GAE +∠BAC =360°-90°-90°=180°,∴∠NBA =∠GAE ,在△NBA 和△GAE 中NB =AG∠NBA =∠GAEBA =EA∴△NBA ≌△GAE (SAS ),∴AN =EG ,∴AM =12EG ;(2)证明:由(1)△NBA ≌△GAE 得∠BAN =∠AEG ,∵∠HAE +∠BAN =180°-90°=90°,∴∠HAE +∠AEH =90°,∴∠AHE =90°,即AH ⊥EG ;(3)证明:连接CE 、BG ,∵四边形ACFG 和四边形ABDE 是正方形,∴AC =AG ,AB =AE ,∠CAG =∠BAE =90°,∴∠BAG =∠CAE ,∴△ACE ≌△ABG∴CE ⊥BG ,∴EG 2+BC 2=CG 2+BE 2,∴EG 2+BC 2=2(AB 2+AC 2).【点睛】本题是四边形的综合题,考查了正方形的性质,三角形全等的判定和性质,平行线的判定和性质,勾股定理的应用等,作出辅助线构建全等三角形是解题的关键.12.(2019秋·湖北十堰·九年级校联考期末)已知,△ABC 中,BC =6,AC =4,M 是BC 的中点,分别以AB ,AC 为边向外作正方形ABDE ,正方形ACFG ,连接EG ,MA 的延长线交EG 于点N ,(1)如图,若∠BAC =90°,求证:AM =12EG ,AM ⊥EG ;(2)将正方形ACFG 绕点A 顺时针旋转至如图,(1)中结论是否仍然成立?请说明理由;(3)将正方形ACFG 绕点A 顺时针旋转至B ,C ,F 三点在一条直线上,请画出图形,并直接写出AN 的长.【答案】(1)证明见解析;(2)结论不变;(3)AN 的值为125.【分析】(1)方法一:如图1中,直接证明△ABC ≌△AEG 即可解决问题;方法二:如图2中,如图,延长AM 至点H ,使AM =MH ,连接BH .证明△EAG ≌△ABH 即可解决问题.(2)如图3中,结论不变.证明方法类似方法二.(3)分两种情形分别求解即可解决问题.【详解】(1)证明:方法一:如图1中,∵四边形ABDE ,四边形ACFG 均为正方形,∴∠BAE =∠CAG =90°=∠BAC =∠EAG ,且AB =AE ,AC =AG ,在△ABC 和△AEG 中,AB =AE∠BAC =∠BAGAC =AG ,∴△ABC ≌△AEG (SAS ),∴BC =EG ,∠CBA =∠AEG ,又∵M 是AB 的中点,∴AM =BM =12BC ,∴AM =12EG ,∠M BA =∠MAB =∠AEN ,∴∠ANE =180°-(∠NEA +∠EAN )=180°-(∠BAM +∠EAN )=180°-(180°-90°)=90°,∴AM ⊥EG .方法二:如图,延长AM 至点H ,使AM =MH ,连接BH .CM=BM,△ACM≌△HBM(SAS),∴BH=AC,∠BHM=∠CAM,∴AC∥BH,∴∠HBA=∠CAB=90°∵四边形ABDE,四边形ACFG均为正方形,∴∠BAE=∠CAG=90°=∠BAC=∠EAG,且AB=AE,AC=AG,∴BH=AG,在△EAG和△ABH中,AE=AB∠EAG=∠ABH AG=BH,∴△EAG≌△ABH(SAS),∴EG=BC,∠NEA=∠HAB,∴∠ANE=180°-(∠NEA+∠EAN)=180°-(∠HAB+∠EAN)=180°-(180°-90°)=90°,∴AM⊥EG,∵∠BAC=90°,AM为BC中点,∴AM=12BC,∴AM=12EG.(2)如图3中,结论不变.理由:在△ACM和△HBM中,AM=HM∠AMC=∠HMB CM=BM,△ACM≌△HBM(SAS),∴BH=AC,∠BHM=∠CAM,∴AC∥BH,∴∠HBA+∠CAB=90°,∵四边形ABDE,四边形ACFG均为正方形,∴∠BAE=∠CAG=90°,∴∠BAC+∠EAG=180°,∴∠ABH=∠EAG,且AB=AE,AC=AG,∴BH=AG,AG =BH ,△EAG ≌△ABH (SAS ),∴EG =BC ,∠NEA =∠HAB ,∴∠ANE =180°-(∠NEA +∠EAN )=180°-(∠HAB +∠EAN )=180°-(180°-90°)=90°,∴AM ⊥EG ,∵∠BAC =90°,AM 为BC 中点,∴AM =12BC ,∴AM =12EG .(3)①如图4-1中,当点F 在BC 的延长线上时,作CH ⊥AM 于H .易证:△ANG ≌△CHA ,可得AN =CH ,在Rt △ACM 中,∵AC =4,CM =3,∴AM =32+42=5,∵12•AM •CH =12•AC •CM ,∴CH =125,∴AN =CH =125.②如图4-2中,当点F 在线段BC 上时,同法可得AN =CH =125.综上所述,AN 的值为125.【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考常压轴题.13.(2019春·江西新余·九年级新余四中校考阶段练习)如图,分别以△ABC 的边AB ,AC 为腰向外作等腰Rt △ABD 和等腰Rt △ACE ,连DE ,AF 是△ADE 的中线.(1)知识理解:图①所示,当AB=AC时,则AF与BC的位置关系为______,数量关系为____ __;(2)知识应用:图②所示,当AB≠AC时,M,N分别是BC,DE的中点,求证:AM⊥DE且DE= 2AM;(3)拓展提高:图③所示,四边形ABCD中,AD∥BC,AB≠CD,分别以边AB和CD为腰作等腰Rt△ABE和等腰Rt△CDF,连EF,分别取AD、EF的中点H、G,连GH.①求证:GH⊥BC;②直接写出AD,BC,GH之间的数量关系.【答案】(1)AF⊥BC,AF=12BC;(2)详见解析;(3)①详见解析;②2GH=BC-AD【分析】(1)根据题意,延长FA交BC于点H,通过等腰三角形的相关性质得到全等条件,从而证明ΔDAF≅ΔABH,进而即可得解;(2)根据题意,延长CA至F,使FA=AC,FA交DE于点P,并连接BF,先证明ΔFAB≅ΔEAD,再根据等角的余角相等以及中位线的性质即可得解;(3)①根据题意,将ΔABE沿AH方向平移至ΔHMN,ΔDCF沿DH方向平移至ΔHPQ,连接EN,FQ,NG,QG,延长HG至S,使GS=GH,连接HS,QS,通过证明ΔGEN≅ΔGQF及ΔNHS≅ΔHMP进而即可得解;②通过上述问题得到的结论结合GH=12SH=12MP=12(BC-BM-CP)=12(BC-AH-DH)=12(BC-AD)进行求解即可得解.【详解】(1)AF⊥BC,AF=12 BC证明:如下图所示,延长FA交BC于点H∵AB=AC,ΔAEC与ΔAEC为等腰直角三角形∴AD=AB=AC=AE∴ΔADE与ΔABC为等腰三角形,∠ADB=∠ABD=∠AEC=∠ACE=45°∠ADE=∠AED,∠ABC=∠ACB∵∠FDE+∠DBC+∠BCE+∠CED=360°∴2∠ADF+2∠ABC=180°∴∠ADF+∠ABC=90°∵AF 是ΔADE 的中线,AD =AE∴AF ⊥DE∴∠ADF +∠DAF =90°∵∠DAB =90°∴∠BAH +∠DAF =90°∴∠DAF =∠ABH ,∠FDA =∠HAB在ΔDAF 与ΔABH 中∠FDA =∠HABDA =AB∠DAF =∠ABH∴ΔDAF ≅ΔABH (ASA )∴∠DFA =∠AHB =90°,BH =FA∴AH ⊥BC∵AB =AC∴BH =HC =AF∴AF ⊥BC ,AF =12BC ;(2)证明:如下图,延长CA 至F ,使FA =AC ,FA 交DE 于点P ,并连接BF∵ΔAEC 与ΔAEC 为等腰直角三角形∴DA ⊥BA ,EA ⊥AF ,BA =DA ,FA =AE =AC∵∠BAF =90°+∠DAF ,∠DAE =90°+∠DAF∴∠BAF =∠DAE在ΔFAB 与ΔEAD 中FA =AE∠BAF =∠DAEBA =DA∴ΔFAB ≅ΔEAD (SAS )∴BF =DE ,∠F =∠AEN∴∠FPD +∠F =∠APE +∠AEN =90°∴FB ⊥DE又∵CA =AF ,M 是BC 中点∴AM ⎳FB ,2AM =FB∴AM ⊥DE ,DE =2AM ;(3)①证明:将ΔABE 沿AH 方向平移至ΔHMN ,ΔDCF 沿DH 方向平移至ΔHPQ ,连接EN ,FQ ,NG ,QG ,延长HG 至S ,使GS =GH ,连接HS ,QS∵AH =DH ,EN ⎳AH ,EN =AH ,FQ ⎳DH ,FQ=DH∴FQ ⎳EN ,FQ =EN又∵EG =FG∴ΔGEN ≅ΔGQF∴GN =GQ ,∠EGN =∠QGF∵E ,G ,F 三点共线∴N ,G ,Q 三点共线∴四边形NHQS 是平行四边形∴NS =HQ =HP ,∠SNQ =∠NQH∵∠SNH =∠SNQ +∠QNH =∠NQH +∠QNH =180°-∠NHQ∠MHP =360°-∠NHM -∠QHP -∠NHQ =360°-90°-90°-∠NHQ =180°-∠NHQ ∴∠SNH =∠MHP∵NH =HM∴ΔNHS ≅ΔHMP∴∠NHS =∠HMP∵AD ⎳BC ,∠HMP =∠MHA∴∠NHS =∠MHA∴∠MHA +∠AHN =∠90°∴∠NHS +∠AHN =∠90°∴∠AHG =∠90°∴GH ⊥AD∴GH ⊥BC ;②2GH =BC -AD证明:∵GH =12SH =12MP =12(BC -BM -CP )=12(BC -AH -DH )=12(BC -AD )∴2GH =BC -AD .【点睛】本题主要考查了三角形及四边形的相关综合问题,其中重点需要掌握三角形全等的判定,等腰三角形的“三线合一”性质,三角形中位线定理,平行四边形的性质及判定等相关知识,该部分内容比较综合,也是考试重点,要求熟练掌握.14.(2021秋·河南新乡·九年级统考期中)某学习小组在探究三角形相似时,发现了下面这种典型的基本图形.(1)如图1,在△ABC 中,∠BAC =90°,AB AC=k ,直线l 经过点A ,BD ⊥直线I ,CE 上直线l ,垂足分别为D 、E .求证:BD AE=k .(2)组员小刘想,如果三个角都不是直角,那么结论是否仍然成立呢?如图2,将(1)中的条件做以下修改:在△ABC 中,AB AC=k ,D 、A 、E 三点都在直线l 上,并且有∠BDA =∠AEC =∠BAC =α,其中α为任意锐角或钝角.请问(1)中的结论还成立吗?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,在△ABC 中,沿△ABC 的边AB 、AC 向外作矩形ABDE 和矩形ACFG ,AB AE =AC AG=12,AH 是BC 边上的高,延长HA 交EG 于点I .①求证:I 是EG 的中点.②直接写出线段BC 与AI 之间的数量关系:.【答案】(1)见解析(2)结论还成立,证明见解析(3)①见解析②BC =AI 【分析】(1)由条件可证明△ABD ∽△CAE ,可得BD AE =AB AC =k ;(2)由条件可知∠BAD +∠CAE =180°-α,且∠DBA +∠BAD =180°-α,可得∠DBA =∠CAE ,结合条件可证明△ABD ∽△CAE ,同(1)可得出结论;(3)①过点G 作GM ∥AE 交AI 的延长线于点M ,连接EM ,证明△ABC ∽△GMA ,再得到四边形AGME 是平行四边形,故可求解;②由①得到BC =12AM ,再根据四边形AGME 是平行四边形得到BC =AI ,故可求解.【详解】(1)如图1,∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD +∠CAE =90°∵∠BAD +∠ABD =90°,∴∠CAE =∠ABD∵∠ABD =∠CAE ,∠BDA =∠CEA ,∴△ADB ∽△CEA ,∴BD AE =ABAC=k;(2)成立,证明如下:如图2,∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,∴∠DBA=∠CAE,∵∠ABD=∠CAE,∠BDA=∠CEA∴△ADB∽△CEA,∴BD AE =ABAC=k;(3)①过点G作GM∥AE交AI的延长线于点M,连接EM ∵四边形AGFC是矩形,∴∠GAC=90°又AH⊥BC∴∠AHC=90°∴∠5+∠CAH=∠4+∠CAH=90°∴∠5=∠4∵∠BDE=∠AHB=90°∴∠2+∠BAH=∠1+∠BAH=90°∴∠2=∠1又GM∥AE∴∠3=∠2∴∠3=∠1∴△ABC∽△GMA∴AC GA =BCAM=ABGM又∵ABAE=ACAG=12∴AC GA =BCAM=ABGM=ABAE=12∴GM=AE又∵GM∥AE∴四边形AGME是平行四边形∴EI=IG故I为EG的中点;②由①知BC AM =AC AG =AB GM =AB AE =12∴BC =12AM ∵四边形AGME 是平行四边形∴AI =IM∴AI =12AM ∴BC =AI∴线段BC 与AI 之间的数量关系为BC =AI故答案为:BC =AI .【点睛】此题主要考查相似三角形的判断与性质综合,解题的关键是根据题意找到相似三角形,列出比例式求解.15.(2019·安徽合肥·校联考一模)如图,在△ABC 中,分别以AB 、AC 为腰向外侧作等腰Rt △ADB 与等腰Rt △AEC ,∠DAB =∠EAC =90°,连接DC 、EB 相交于点O .(1)求证:BE ⊥DC ;(2)若BE =BC .①如图1,G 、F 分别是DB 、EC 中点,求GF BC的值.②如图2,连接OA ,若OA =2,求△DOE 的面积.【答案】(1)详见解析;(2)①22;②2.【分析】(1)证明△BAE ≌△DAC ,根据全等三角形的性质证明结论;(2)①取DE 的中点H ,连接GH 、FH ,根据三角形中位线定理得到GH ∥BE ,GH =12BE ,得到GH =FH ,GH ⊥FH ,根据勾股定理计算,得到答案;②作AM ⊥BE 于M ,AN ⊥CD 于N ,证明△BAE ≌△BAC ,得到∠BAE =∠BAC =135°,证明△ODA ∽△OAE ,根据相似三角形的性质求出OD •OE ,根据三角形的面积公式就是,得到答案.【详解】(1)证明:∵∠DAB =∠EAC =90°,∴∠EAB =∠CAD ,。
2021年中考一轮复习数学专题4 共顶点模型
九年级数学专题共顶点模型解题策略:1.等边三角形共顶点2.等腰直角三角形共顶点3.等腰三角形共顶点4.相似三角形共顶点能力训练:1.如图,在正方形ABCD中,F是BC边上一点,连接AF,以AF为对角线作正方形AEFG,边FG与正方形ABCD的对角线AC相交于点H,连接DG.以下四个结论:①∠EAB=∠GAD;②△AFC∽△AGD;③2AE2=AH·AC;④DG⊥AC.其中正确的结论个数为()A.1个B.2个C.3个D.4个 2.如图,△ABC 和△CDE 都是等边三角形,且点A ,C ,E 在同一直线上,AD 与BE ,BC 分别交于点F ,M ,BE 与CD 交于点N ,连接MN.下列结论中正确的是 .(写出所有正确结论的序号)①AM=BN ; ②△ABF ≌△DNF ; ③∠FMC+∠FNC=180°; ④CEAC MN 111+=. 3.如图1,在Rt △ABC 中,∠ACB=90°,AC=BC ,点D ,E 分别在AC ,BC 边上,DC=EC ,连接DE ,AE ,BD ,M ,N ,P 分别是AE ,BD ,AB 的中点,连接PM ,PN ,MN. (1)BE 与MN 的数量关系是 .(2)将△DEC 绕点C 逆时针旋转得到图2和图3所示的位置,判断BE 与MN 有怎样的数量关系?写出你的猜想,并利用图2或图3进行证明.4.如图1,菱形AEGH 的顶点E ,H 在菱形ABCD 的边上,且∠BAD=60°. (1)请直接写出HD:GC:EB 的结果;(2)将图1中的菱形AEGH 绕点A 旋转一定角度,如图2,求HD:GC:EB ;(3)把图2中的菱形换成矩形,如图3,且AD:AB=AH:AE=1:2,此时HD:GC:EB 的结果与第(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果;若无变化,请说明理由.5.在菱形ABCD中,∠ABC=60°,P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,则BP与CE的数量关系是,CE与AD 的位置关系是;(2)如图2,当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由.(3)如图3,当点P在线段BD的延长线上时,连接BE.若AB=23,BE=219,求四边形ADPE的面积.6.如图1,点G 在正方形ABCD 的对角线AC 上,GE ⊥BC 于点E ,GF ⊥CD 于点F. (1)【推断】BEAG的值为 ; (2)【探究与证明】如图2,将正方形CEGF 绕点C 顺时针旋转角α(0°<α<45°),试探究线段AG 与BE 之间的数量关系,并说明理由;(3)【拓展与运用】如图3,正方形CEGF 在旋转的过程中,当B ,E ,F 三点在一条直线上时,延长CG 交AD 于点H.若AG=6,GH=22,则BC= .7.(1)【问题】如图1,在Rt △ABC 中,AB=AC ,D 是BC 边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转90°得到AE ,连接EC ,则线段BC ,DC ,EC 之间满足的数量关系是 ; (2)【探索】如图2,在Rt △ABC 与Rt △ADE 中,AB=AC ,AD=AE ,将△ADE 绕点A 旋转,使点D 落在BC 边上,试探索线段AD ,BD ,CD 之间的数量关系,并证明你的结论;(3)【应用】如图3,在四边形ABCD 中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD 的长.8.△ABC 中,CA=CB ,∠ACB=α.P 是平面内不与点A ,C 重合的任意一点.连接AP ,将线段AP 绕点P 逆时针旋转角α得到线段DP ,连接AD ,BD ,CP. (1)【观察与猜想】如图1,当α=60°时,CPBD的值是 ,直线BD 与直线CP 相交所成的较小角的度数是 .(2)【类比探究】如图2,当α=90°时,请写出CPBD的值及直线BD 与直线CP 相交所成的较小角的度数,并说明理由;(3)【解决问题】当α=90°时,若E ,F 分别是CA ,CB 的中点,点P 在直线EF 上,请直接写出点C ,P ,D 在同一直线上时CPAD的值.9.(1)问题背景:如图1,已知△ABC ∽△ADE ,求证:△ABD ∽△ACE ;(2)尝试应用:如图2,在△ABC 和△ADE 中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC 与DE 相交于点F ,点D 在BC 边上,3 BD AD ,求CFDF的值; (3)拓展创新:如图3,D 是△ABC 内一点,∠BAD=∠CBD=30°,∠BDC=90°,AB=4,AC=23,直接写出AD 的长.10.已知△ABC和△DEC均为直角三角形,且∠ACB=∠DCE=90°.(1)如图1,若△ABC和△DEC均为等腰直角三角形,点B,D,E在同一直线上,连接AD,BD.①请探究AD与BD之间的位置关系:;②已知AC=BC=10,DC=CE=2,则线段AD的长为;(2)如图2,已知AC=21,BC=7,CD=3,CE=1,将△DEC绕点C在平面内顺时针旋转,设旋转角∠BCD为α(0°≤α<360°),作直线BD,连接AD,当点B,D,E在同一直线上时,画出图形,并求线段AD的长.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学几何模型2:共顶点模型
共顶点模型,亦称“手拉手模型”,是指两个顶角相等的等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。
寻找共顶点旋转模型的步骤如下: (1)寻找公共的顶点
(2)列出两组相等的边或者对应成比例的边
(3)将两组相等的边分别分散到两个三角形中去,证明全等或相似即可。
两等边三角形 两等腰直角三角形 两任意等腰三角形 *常见结论:
连接BD 、AE 交于点F ,连接CF ,则有以下结论: (1)BCD ACE ≅△△ (2)AE BD = (3)AFB DFE ∠=∠ (4)FC BFE ∠平分
例题1. 以点A 为顶点作等腰Rt △ABC ,等腰Rt △ADE ,其中∠BAC =∠DAE =90°,如图1所示放置,使 得一直角边重合,连接BD 、CE .
(1)试判断BD 、CE 的数量关系,并说明理由; (2)延长BD 交CE 于点F 试求∠BFC 的度数;
(3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由.
变式练习>>>
1. 已知:如图,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°.
(1)求证:BD=AE.
(2)若∠ABD=∠DAE,AB=8,AD=6,求四边形ABED的面积.
例题2. 如图,等边△ABC,等边△ADE,等边△DBF分别有公共顶点A,D,且△ADE,△DBF都在△ADB内,求证:CD与EF互相平分.
变式练习>>>
2. 已如图,已知等边三角形ABC,在AB上取点D,在AC上取点E,使得AD=AE,作等边三角形PCD,QAE和RAB,求证:P、Q、R是等边三角形的三个顶点.
例题3. 在等边△ABC与等边△DCE中,B,C,E三点共线,连接BD,AE交于点F,连接CF.
(1)如图1,求证:BF=AF+FC,EF=DF+FC;
(2)如图2,若△ABC,△DCE为等腰直角三角形,∠ACB=∠DCE=90°,则(1)的结论是否成立?若不成立,写出正确结论并证明.
例题4. 【问题探究】(1)如图①已知锐角△ABC,分别以AB、AC为腰,在△ABC的外部作等腰Rt△ABD 和Rt△ACE,连接CD、BE,试猜想CD、BE的大小关系;(不必证明)
【深入探究】(2)如图②△ABC、△ADE都是等腰直角三角形,点D在边BC上(不与B、C重合),连接EC,则线段BC,DC,EC之间满足的等量关系式为;(不必证明)
线段AD2,BD2,CD2之间满足的等量关系,并证明你的结论;
【拓展应用】(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.
例题5. 如图1,在△ABC中,BC=4,以线段AB为边作△ABD,使得AD=BD,连接DC,再以DC为边作△CDE,使得DC=DE,∠CDE=∠ADB=α.
(1)如图2,当∠ABC=45°且α=90°时,用等式表示线段AD,DE之间的数量关系;
(2)将线段CB沿着射线CE的方向平移,得到线段EF,连接BF,AF.
①若α=90°,依题意补全图3,求线段AF的长;
②请直接写出线段AF的长(用含α的式子表
示).
达标检测领悟提升强化落实1. 如图,在等边△ABC与等边△DCE中,B,C,E三点共线,BD交AC于点G,AE交DC于点H,连
接GH. 求证:GH∥BE.
2. 如图,在正方形ABCD内取一点E,连接AE,BE,在△ABE外分别以AE,BE为边作正方形AEMN 和EBFG,连接NC,AF,求证:NC∥AF.
3. 如图,在等腰Rt△ABC与等腰Rt△DCE中,∠ABC=∠DCE=90°,连接AD,BE,求证:
AB2+DE2=AD2+BE2.
4. 如图,在△ABC中,AB=AC=10,∠BAC=45°,以BC为腰在△ABC外部作等腰Rt△BCD,∠BCD=90°,连接AD,求AD的长.
5. 【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那BD与CE的数量关系是.
【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.
【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.
6. 已知线段AB⊥直线l于点B,点D在直线l上,分别以AB、AD为边作等边三角形ABC和等边三角形ADE,直线CE交直线l于点F.
(1)当点F在线段BD上时,如图①,求证:DF=CE﹣CF;
(2)当点F在线段BD的延长线上时,如图②;当点F在线段DB的延长线上时,如图③,请分别写出线段DF、CE、CF之间的数量关系,在图②、图③中选一个进行证明;
(3)在(1)、(2)的条件下,若BD=2BF,EF=6,则CF=.。