第九章微分方程1 (2)共32页文档

合集下载

常微分方程

常微分方程

dy y
P(
x)dx,
ln | y | P( x)dx lnC1 ,(C1为任意常数)
齐次方程的通解为 y Ce P( x)dx (C eC1 )
17
2. 线性非齐次方程 dy P( x) y Q( x) dx
线性齐次方程是线性非齐次方程的特殊情况.
线性齐次方程的通解是 Ce P( x)dx ,
(3)检验改进模型, 观察所得的解能够在多大程度或范围上反映实际问题,
用实际问题检验该模型, 如果存在问题,则需研究, 改进模型.
27
例 冷却问题 将一个温度为50º的物体,放在20º的恒温 环境中冷却,求物体温度变化的规律.
解 冷却定律:“温度为T的物体,在温度为 T0 的环境中 冷却的速率与温差T T0成正比.” 设物体的温度T与时间 t的函数关系为 T T (t),
(t2 x)dt xdx 0 一阶 z x y 一阶
x
未知函数是一元函数的方程为 常微分方程;
未知函数是多元函数的方程为 偏微分方程.
方程中所出现的导数的最高阶数称为 微分方程的阶.
一般的n阶微分方程为 F ( x, y, y,, y(n) ) 0,
或已解出最高阶导数 y(n) f ( x, y, y,, y(n1) ).
9.4 微分方程的应用问题
例 把“大气压随高度变化而降低的速率与所在高度 处的气压成正比”所含关系表示出来.
解:第一步,设未知函数:
设大气压P和高度x之间的函数关系为 P P(x),
大气压随高度变化的速率为 dP
dx
第二步,根据条件写出方程 dP P, 为比例系数,
dx
第三步,取比例系数为正:因 dP 0, 故 0,
第九章 常微分方程

微分方程

微分方程



#
例 例 求解微分方程 解 分离变量 dy dy 2 xy , 2 xdx , dx y
dy 两端积分 2 xdx , y
ln y x 2 C ,
#

例: 1 y 2 3 x 2 y dy 求通解 dx 解: y dy dx 分离变量 2 1 y2 3 x y dy dx 1 1 2 C 两端积分 2 2 1 y 2 2 3x 3x 1 y 得通解 注意
特别的,若n 0,即对任意的t R使得f ( tx,ty ) f ( x, y ), 则称f ( x, y )为变量x, y的0次齐次函数。
xy - y 2 例如,对于函数f ( x, y ) 2 ,因为f ( tx,ty ) f ( x, y ), x 2 xy xy - y 2 所以f ( x, y ) 2 为0次齐次函数。 x 2 xy

2
, C2

2
,
于是 C1 1.
§9.2最简单的微分方程 一阶微分方程的一般形式为 F(x,y,y)=0
若可解出y,则可写成显式方程 可分离变量方程 齐次微分方程 一阶线性微分方程
y=f(x,y)
#
可分离变量方程
( g ( y )和 f ( x ) 连续)
分离变量方程: g( y )dy f ( x )dx
2
练习
2 : 在下列各题中,确定函 数关系式中所含的参数 , 使函数满足所给的初始 条件:
(1) y (C1 C2 x)e 2 x , y x0 0, y x0 1;
( 2) y C1 sin( x C 2 ), y

x
1, y

(完整word版)微分方程及其应用

(完整word版)微分方程及其应用

第九章 微分方程及其应用§9.1 微分方程及其相关概念所谓微分方程,就是含有自变量、自变量的未知函数以及未知函数的导数(或微分)的方程。

例如,以下各式都是微分方程:⑴ 2x dxdy =. ⑵ ).(22t f kx dt dx hx dt x d m =++ ⑶)()(x Q y x P dxdy =+. ⑷0sin 22=++θθθl g dt d h dt d . ⑸0)',,()(=n y y y x F .只含一个自变量的微分方程,称为常微分方程,自变量多于一个的称为偏微分方程。

本章只研究常微分方程,因而以后各节提到微分方程时均指常微分方程。

微分方程中所含有的未知函数最高阶导数的阶数,称为该微分方程的阶。

例如,⑴、⑶为一阶方程,⑵、⑷为二阶方程,而⑸为n 阶方程。

微分方程中可以不含有自变量或未知函数,但不能不含有导数,否则就不成为微分方程。

微分方程与普通代数方程有着很大的差别,建立微分方程的目的是寻找未知函数本身。

如果P196有一个函数满足微分方程,即把它代入微分方程后,使方程变成(对自变量的)恒等式,这个函数就叫做微分方程的解。

例如331x y =显然是⑴的解,因为23)31(x dxx d =。

若方程解中含有独立的任意常数的个数等于微分方程的阶数,则称此解为微分方程的通解,例如π+=331x y 就是⑴的通解。

从通解中取定任意常数的一组值所得到的解,称为微分方程的特解。

例如π+=331x y 就是⑴的一个特解。

用来确定通解中任意常数值的条件称为定解条件,当自变量取某个值时,给出未知函数及其导数的相应值的条件称为初始条件。

在本章中,我们遇到的用来确定任意常数值的条件一般为初始条件。

例如,如果⑴的初始条件为()π=0y ,则在代入到通解c x y +=331后,可以求得π=c ,从而得到特解π+=331x y 。

一般的,因为n 阶微分方程的通解中含有n 个独立的任意常数。

微分方程罗兆富等编第九章非线性偏微分方程Adomian分解法全篇

微分方程罗兆富等编第九章非线性偏微分方程Adomian分解法全篇
F(u)是非线性项, g是自由项 .
学者们已证明, 无论是从算子方程Lxu还是从Lyu开始
都可得到解
u
un
并且这样得到的解都是等价的并且都
收敛于精确解. n0
然而, 在Lx 和Ly 选用哪一个来求解定解问题则依赖 于下列两个基点:
具(1体)能而使言计之算, 量我达们最考小虑;算子形式的非线性微分方程 (2)具有L使xu解 L级yu数具Ru有加F (速u)收 敛g 的附加条件. (9.2.01)
y
),
Lx
4 x4
.
(9.2.04)
(9.2.01)
14
机动 目录 上页 下页 返回 结束
un
0
Lx1g
Lx1
Ly
un
Lx1
R
un
Lx1
An
n0
n0
n0
n0
(9.2.04)
Adomian分解法指出, 通项un的递推公式是
也就是
u0 0 Lx1g,
uun
0LxL1Lx1ygun1Lx1LLyx1uR(uLnx11R)uLxL1xA1nF1(,un)
t xt2dt 0
0
u(x,t) un (x,t)
n0
uu32.((..xx.,,.tt.)).......LL.ntt.11.0.AA.u12.n..(.x.,..t00.t)t00tddtxtt0013
xt
3
x
Lt 1
(
n0
An
)
xt ■
18
机动 目录 上页 下页 返回 结束
例2. 求解非齐次偏微分方程
机动 目录 上页 下页 返回 结束
例3. 计算F(u)=uux的Adomian多项式.

高等数学:第九章 常微分方程1-2

高等数学:第九章 常微分方程1-2

设在微小的时间间隔 [t, t t], o
100 cm
水面的高度由h降至 h h, 则 dV r 2dh,
r 1002 (100 h)2 200h h2 ,
dV (200h h2 )dh,
(2)
比较(1)和(2)得: (200h h2 )dh 0.62 2ghdt,
28
(200h h2 )dh 0.62 2ghdt,
解 设制动后 t 秒钟行驶 s 米, s s(t)
d 2s dt 2 0.4
t 0时, s 0,v ds 20, dt
v
ds dt
0.4t
C1
s 0.2t 2 C1t C2
代入条件后知 C1 20, C2 0
7
例 2 列车在平直的线路上以 20 米/秒的速度行驶,
当制动时列车获得加速度 0.4 米/秒 2,问开始制动
其中c1, …,cn是n个独
立的任意常数,则称y是F=0的一个通解。
例: y=x2+C是方程y'=2x 的通解.yBiblioteka x2 2C1x C2

方程y"=1的通解.
y
y=x2+C
独立:C1 C2 x C3 x 2 不独立:C1x C2 x (C1 C2 )x Cx
0
x
15
5. 特解: 不包含任何常数的解.
隐函数的形式Φ(x,y;c1, …,cn)=0,给出, 把Φ(x,y;c1, …,cn)=0称作方程的通积分。
求微分方程满足某些条件的特解。即
9. 初值问题:求出方程F(x, y, y‘, …, y (n) ) = 0满足
初始条件的解。其中x0,y0,y1,…,yn-1是
已知常数。y(x0 ) y0,

第9章 常微分方程初值问题数值解法

第9章 常微分方程初值问题数值解法
2
数值分析
第9章 常微分方程初值问题数值解法
《常微分方程》中介绍的微分方程主要有:
(1)变量可分离的方程 (2)一阶线性微分方程(贝努利方程) (3)可降阶的一类高阶方程 (4)二阶常系数齐次微分方程 (5)二阶常系数非齐次微分方程 (6)全微分方程 本章主要介绍一阶常微分方程初值问题的数值解法。
进一步: 令
y n1 y n
xn 1 xn
y n 1 y( x n 1 ) , y n y( x n )
f ( x , y( x ))dx h f ( x n , y n )

9

实际上是矩形法
数值分析
第9章 常微分方程初值问题数值解法
(3)
用Taylor多项式近似并可估计误差
解决方法:有的可化为显格式,但有的不行 18
数值分析
第9章 常微分方程初值问题数值解法
与Euler法结合,形成迭代算法 ,对n 0,2, 1,
( yn0 )1 yn hf x n , yn ( k 1) h ( yn1 yn f x n , yn f x n1 , ynk )1 2
7
数值分析
第9章 常微分方程初值问题数值解法
建立数值解法的常用方法
建立微分方程数值解法,首先要将微分方程离散 化. 一般采用以下几种方法: (1) 用差商近似导数
dy yx yx x x dx x y
n 1 n n 1 n
n
,
n
进一步: 令
yn1 y( xn1 ) , yn y( xn )
由 x0 , y0 出发取解曲线 y y x 的切线(存在!),则斜率

微积分9章2线性微分方程

微积分9章2线性微分方程

= ce ∫
1 dx x
= ce ln x = cx
dy = 2y dx dy = 2y 【解 】 dx
(5)

dy − 2y = 0 dx
[ p( x ) = −2 ]
y = ce
− ( −2 ) dx

= ce
2 dx

= ce 2 x
5 16
( 6)
dy = y cos x dx dy = y cos x ⇒ dy − (cos x ) y = 0 dx dx
[ p( x ) = 1 ]
y = ce
= ce − x
( 2) y ′ = y
【解 】 y ′ = y ⇒ y ′ − y = 0
[ p( x ) = −1 ]
y = ce
− ( −1) dx

∫ dx = ce x = ce
[ p( x ) = x ]
− x2
4 16
1 2
( 3) y′ + xy = 0
= ( x + 1) ( x + 1) 2 + c 2 1 = ( x + 1) 4 + c ( x + 1) 2 2
注意
求解一阶线性微分方程, (1) 求解一阶线性微分方程,直接使用通解公式即
可。不必像教材中使用常数变易法,因为计算量太大。 不必像教材中使用常数变易法,因为计算量太大。
14 16
dx 1 + x = y2 或 dy y 这就是说, 当作未知函数, 这就是说,如果把 x 当作未知函数,那么所给出的方程是
一阶线性微分方程。 一阶线性微分方程。 【解】根据一阶线性微分方程的通解公式

第9章微分方程初值问题的数值解法-1

第9章微分方程初值问题的数值解法-1

(x k x k 1 )
y ( x k 1 ) y ( x k ) h y ( ) y ( x k ) h f ( , y ( ) )
记 K*f(,y()) 称为[xk , xk+1]上的平均斜率. 故
y(xk1)y(xk)hK*

y(i) k
y(i)(xk)
时,

y(xk1)yk1O (hp1). 此时①为
p 阶Taylor方法. p=1时即为Euler公式.
例2: 取步长 h = 0.1, 用一阶、二阶和四阶Taylor方法求解下列初 值问题
y y2
,
y(0) 1
0x1. 2
解: (1) 一阶Taylor法
yk1yk 0.1yk2
Taylor公式推导:
y(xk1)y(xk)hy(xk)h 2 2y(k), xkkxk1
yk1ykhf(xk,yk) k0,1,L,n1
Euler公式几何意义:
y
P2 P1 P0
Pk
也称折线法
x
2. 梯形法
若采用梯形公式计算(★)中的积分项,则有
y(xk1)y(xk)h 2[f(xk,y(xk))f(xk1,y(xk1))]
y ( x k 1 ) y ( x k ) h y ( x k ) h 2 2 !y ( x k ) L h p p !y (p )( x k ) O ( h p 1 )

yk 1ykhyk h 22 !yk Lh p p !yk (p)

称之为Taylor级数法. 其中 y k (i)y(i)(x k),i 0 ,1 ,2 ,L,p
y(2y3)6y2y6y4
y(4) 24y3y24y5

第九章 微分方程

第九章 微分方程

二、确定函数关系式 y c1 sin( x c 2 ) 所含的参数,使其 满足初始条件 y x 1 , yx 0 .
练习题答案
一、1、3; 2、2; 3、1; 4、2.
二、C1 1, C 2 . 2
第九章 微分方程
第二节 一阶微分方程
§9.2 一阶微分方程 复习:
例 y y,
y y 0,
特解 y 2ex;
特解 y 2sin x cos x;
(3)初始条件: 用来确定任意常数的条件. 如:
T
t 0
100
y
x 1
2
一般地,一阶微分方程y' f ( x, y)的初始条件为:
y
x x0
y0
一般地,二阶微分方程y'' f ( x, y, y' )的初始条件为:
通解
特殊情形:
dy f ( x) dx
dy g ( y) dx
y f ( x)dx C
1 g ( y)dy x C
解微分方程:xy ' y ln y 0
解 分离变量
1 1 dy dx y ln y x
ln ln y ln x ln C,
两边积分
ln y Cx,
一阶方程的一般形式为 F ( x , y , y ) 0
初值问题: y f ( x , y )
y x x0 y 0
这个方程虽然简单,但常常很难求出解的表达式 本节只讨论几种特殊类型的一阶微分方程的解法。
教学任务
• 可分离变 量的微分 方程
分离变量法
• 齐次微分 方程
变量代换

第九章 常微分方程数值解法1

第九章 常微分方程数值解法1

x0 < x1 < x2 < ... < xn < ...
N:
xi = a + ih, i = 0,1, L , N .
的解析解及其数值解的几何意义: 几何意义 初值问题 (∗)的解析解及其数值解的几何意义:
y
( xN , y N ) • (x , y ) ( x1 , y1) 2 2 • y= • • • ( x0 , y0) •
Tn+1 = g( xn , y( xn ))h
则称 g ( xn , y( xn ))h
p +1
+ O( h
p+ 2
),
为该方法的局部截断误差的主项。 为该方法的局部截断误差的主项。 主项
3. 若 lim ( y( xn ) − yn ) = 0 ,则称方法是收敛的。 则称方法是收敛的。 h→ h→ 0 向前Euler法局部截断误差: 法局部截断误差: 截断误差 向前
第九章 常微分方程数值解法
本章主要介绍一阶常微分方程初值问题的数值解法。 本章主要介绍一阶常微分方程初值问题的数值解法。 一阶常微分方程初值问题的数值解法 本章内容: 本章内容:
1、引言 Euler法 2、Euler法 Rung-Kutta( 3、Rung-Kutta(R-K)法 线性多步法与预估4、线性多步法与预估-校正格式
G = {a ≤ x ≤ b;| y |< ∞ }
且关于 y满足Lipschitz条件,即存在常数 L > 0,使 满足 条件, 条件
| f ( x , y1 ) − f ( x , y2 ) |≤ L | y1 − y2 |; ∀x , y ∈ G
存在唯一解,且解是连续可微 连续可微的 则初值问题 (∗)存在唯一解,且解是连续可微的。

第九章 微分方程与差分方程简介

第九章  微分方程与差分方程简介

第九章 微分方程与差分方程简介基 本 要 求一、了解微分方程及其解、通解、初始条件和特解等概念。

二、掌握变量可分离的方程、齐次方程和一阶线性方程的求解方法。

三、会用降阶法解下列方程:),(),,(),(//////)(y y y y y y f x f x f n ===。

四、会用微分方程解决一些简单的应用问题。

五、了解差分与差分方程及其通解与特解等概念。

习 题 九1、试说出下列微分方程的阶数:(1)x yy y x =-'2'2)(; ………………………………一阶 (2) 02)(22=+-xydy dx y x ;…………………………一阶 (3)022'''''=++y x y xy ;………………………………三阶 (4)x y y y =++'2''')1(.…………………………………二阶 2、验证下列各题中所给函数是否是所对应的微分方程的解: (1)y xy x y 2,5'2==;解:由x y x y 105'2=⇒= ∴y x xy 2102'== ∴25x y =为y xy 2'=的解.(2) 02,sin '''=-+=xy y xy xxy . 解:∵2''sin cos )sin (x x x x x x y -==,32''sin 2cos 2sin xxx x x x y +--= ∴0sin 22'''≠-=-+x xy y xy ,即xxy sin =不是02'''=-+xy y xy 的解.3、求下列微分方程的通解:(1)0'2=+y y x ;解:x Ce y C x y x dx y dy 12ln 1ln =⇒+=⇒-=(2) xy dxdyx =+)1(2; 解:)1(ln )1ln(21ln 122222x C y C x y x xdx y dy +=⇒++=⇒+=(3) y yex x dx dy 12+=; 解:C x e ye dx x x dy ye yyy++=-⇒+=2322)1(311(4) 3'ln xy xy xy +=;解:C x y y C x y y dx x x dy y y +=+⇒+=+⇒=+24212423)(ln 22)(ln 2142ln )( 4、解下列初值问题:(1)0)1(,12=+=y y dx dy; 解:∵)tan(arctan 12C x y C x y dx y dy+=⇒+=⇒=+ 由10)1(-=⇒=C y ∴)1tan(-=x y (2)1)0(,==-y e dxdyy x ;解:∵C e e dx e dy e x y x y +=⇒=由11)0(-=⇒=e C y ∴1-+=e e e x y (3)1)0(,)1(212-=-+=y y x dx dy ;解:∵C x x y y dx x dy y ++=-⇒+=-222)12()1(2由31)0(=⇒-=C y ∴3222++=-x x y y (4)2)2(,132=++=y x x yx dx dy .解:∵13ln )1ln(213ln 13222+=+⇒++=+⇒+=+x C y C x y x xdx y dy 由52)2(=⇒=C y ∴)1(5)3(22x y +=+ 5、求下列齐次方程的通解: (1)xyx y -=';解:令u xu y x y u +=⇒='',方程化为:xdx u du =-21 积分得:xC x C y Cx u C x u 2222121)21(ln ln 21ln 21-=⇒=-⇒+=--- (2) yx y x y -+='; 解:令u xu y x y u +=⇒='',方程化为dx x du uu u u u u xu 1)111(1122'=+-+⇒-+=+ 积分得:Cx u e C x du u u u =+⇒+=+--212arctan 2)1(ln ln )1ln(21arctan即Cx xy exy =+-2122)1(arctan(3)xy xe y xy +='; 解:令u xu y x y u +=⇒='',方程化为dx xu d e e u dx du x u u u 1)(=--⇒+=+- 积分得:)ln ln(ln x C x y C x e u --=⇒-=--(4)x xy y x y xy -=sin sin' x x yy x y x y -=sin sin /;解:令u xu y x y u +=⇒='',方程化为dx xudu 1sin -=积分得:C x xyC x u +=⇒--=-ln cos ln cos(5) 1,02)3(022==--=x y xydx dy x y .解:令u xu y x y u +=⇒='',方程化为x dx du u u u uu =--++--)]25151(1035[2 积分得:C y x y C x u u u =-⇒+=+----3251225ln ln ln 1065ln 1035ln 216、求下列微分方程的通解:(1) x e y y =-3';解:2)()(2333xx x x dx x dx eCe C dx e e C dx e e e y -=+=+⎰=⎰⎰-⎰-(2)22'x e y xy =+;解:方程整理为xe y x y x 22'=+∴)2(1)(1)(222222C e xC dx xe x C dx e x e ey x x dx x x dx x+=⎰+=⎰+⎰⎰=-(3)'xy xy e x =+;解:方程整理为xe y y x=-'∴)(ln )1()(C x e C dx xe C dx e x e ey x x dx x dx+=⎰+=+⎰⎰=-⎰ (4))2,2(,1tan ππθθθ-∈=-y d dy ; 解:方程整理为1tan '=⋅-y y θ∴θθθθθθθθθθcos tan )cos (cos 1)(tan tan CC d C d e e y d d +=+=⎰+⎰⎰=⎰- (5))0('>=++-x e y xy xy x;解:方程整理为xe y x x y x-=++1'∴)1()()(ln )ln (11xC e C dx e x e eC dx e xe ey x x x x x x dx xx x dx xx +=+⎰=+⎰⎰=-+-+-⎰+-+-*(6)21y x dx dy +=. 解:方程整理为2'y x x =-∴y y y dydy Ce y y C dy e y e C dy e y e x +---=+=+⎰⎰=⎰⎰-22)()(2227、求下列微分方程的通解: (1)x x y sin ''+=;解:∵12'cos 2)sin (C x x dx x x y +-=+=⎰ ∴⎰++-=+-=21312sin 6)cos 2(C x C x x dx C x x y(2) '''''44y y xy +=; 解:令 (3)0'''=+y xy ;解:令''''P y P y =⇒=,则原方程为dx xP dP P xP 10'-=⇒=+ 积分得x C P C x P 11ln ln ln =⇒+-=,即211ln C x C y xC dx dy +=⇒= (4) 222x dxy d =; 解:∵132'3C x dx x y +==⎰ ∴2141312)3(C x C x dx C x y ++=+=⎰ (5)xy y xy ''''ln =;解:令''''P y P y =⇒=,则原方程为x P x P P ln '=,令dxdu x u P x P u +=⇒=' ∴原方程为xdxu u du =-)1(ln ,积分有2111111)1(1ln ln ln 1ln ln 11C C x C e y e x P x C x P C x u x C x C +-=⇒=⇒=-⇒+=-++(6) '22''')(y y y yy =-; 解:令dy dP Py y P y =⇒=''')(,原方程化为y P ydy dP =-1∴)()1()(11111C y y C dy yy y C dy yeeP dyy dyy +=⎰+⋅⇒+⎰⎰⎰=-∴xC xC e C e C C y dx C dy C y y C y y y 11221111'1)11()(-=⇒=+-⇒+= (7)x x y y sin cot 2'''=+;解:令''''P y P y =⇒=,则原方程为x x P P sin cot 2'=+,即)cos cos 31(csc )sin ()sin (1321321cot 2cot 2C x x x C xdx x csx C dx e x e P xdx xdx +-=+⎰⇒⎰+⎰⋅⎰=-∴2121222cot 3sin 3csc 2csc sin sin 1sin sin )sin 1(31C x C x x xdx C x d x xx d x y +--=+--=⎰⎰⎰ (8)'''''y y =;解:令''''''P y P y =⇒=,则原方程为dx pdP=,积分得x e C P 1= ∴21'C e C y x += ∴321C x C e C y x ++= (9)2,1,30'0''=====x x y y y y .解:令dydP P y y P y =⇒=''')(,原方程化为dy y PdP 3=,积分得12324C y P +=∵2,10'0====x x yy∴由上式得01=C ,即43'2y y =∴24124C x y +=,同理可得22=C ∴2241+=x y8、求下列函数的差分. (1)C y x =(C 为常数); 解:0=-=∆C C y x (2)x x a y =;解:)1(1-=-=∆+a a a a y x x x x (3)ax y x sin =;解:2sin )21(cos 2sin )1(sin a x a ax x a y x +=-+=∆(4) 2x y x =;解:12)1(22+=-+=∆x x x y x 9、确定下列差分方程的阶. (1)23123=+-++x x x y y x y ; 解:∵3)3(=-+x x ∴其阶为3. (2) 242+--=-x x x y y y .解:∵6)4()2(=--+x x ∴其阶为6.第九章 单 元 测 验 题1、指出下列题的叙述是否正确:(1)方程y x y y xy 2'2)(=-是齐次的;…………………………………………错 (2)方程0)13()2(3'22=+++y x xy x 是线性的;………………………………正确 (3)方程1623'-+-=xy x y y 是可分离的.……………………………………正确 2、求下列微分方程的通解:(1))(cos 2'x yx y xy +=;解:∵)(cos 2'x y x y y += 令''xu y y x y u +=⇒=,原方程化为dx x udu 1sec 2=积分得)arctan(ln ln tan C x x y C x u +=⇒+= (2)xy x x y 1ln 1'=+; 解:xCx C dx x x x y C dx e x ey dx x x dxx x ln 2ln )ln (ln 1)1(ln 1ln 1+=⎰+=⇒+⎰⎰⎰=-*(3) 0)2(22=-+-dy x xy y dx y ; 解:原方程整理得1)21(2=-+x y y dy dx ∴)1()1()(121212)21()12(22y y ydyy y dyy y Ce y x C dy e ye y x C dy eex +=⇒⎰+=⇒⎰+⎰⎰=---2(4)0)1('''2=--xy y x ,且满足1,00'0====x x y y .解::令''''P y P y =⇒=,则原方程为dx x xP dP 21-=,积分得 2121ln 1ln 21ln xC P C x P -=⇒+--= ∴2121arcsin 1C x C y dx x C dy +=⇒-=又∵1,00'0====x x y y ∴代入上式得0,121==C C ∴x y arcsin =3、求曲线方程)(x y y =,它满足方程y x dxdy34=,且在y 轴上的截距等于7. 解:由题得dx x ydy34=,积分有4x Ce y = 又∵曲线在y 轴上的截距等于7 ∴当0=x 时7=y ,代入上式得7=C∴曲线方程为47x e y =.4、求一条曲线,使该曲线的切线、坐标轴与切点的纵坐标所围成的梯形面积等于2a ,并且该曲线过),(a a 点. 解:设该曲线方程为)(x f y =则曲线上任意一点),(00y x A 的切线方程为))((00'0x x x f y y -=-设此切线与y 轴交于点C ,过切点A 作AB 垂直于x 轴于点B ,对梯形ABOC 有:000'0000'0,),()0)((y AB x OB x f x y x x f y OC ==-=-+=∴)](2[22)(0'0002x f x y x a OBAB OC S ABOC -=⇒+=由于点),(00y x A 的任意性,上式可以改写为2'2)2(a xy y x =-整理得22'22xa y x y -=-,积分得)32()2()2(3224222222C xa x C dx x a x C dx e x a ey dx x dxx +=+⎰-=+⎰⎰-⎰=-- 又∵曲线过),(a a 点 ∴a C 31= ∴ax x a y 33222+=。

微积分(下册)第二版 第9章 微分方程

微积分(下册)第二版 第9章  微分方程

又y 0是原方程的解 ,
方程的解为: y C 1 x2 , C为任意常数.
二、齐次方程 形式:
dy dx
f
y x
解法 作变量代换 u y , 即 y xu, x
dy u x du , u x du f (u),
dx
dx
dx

1 du f (u) u
1 dx. x
du f (u) u
◆微分方程的分类: 分类1: 常微分方程, 偏微分方程.
分类2: 一阶微分方程 F ( x, y, y) 0, y f ( x, y); 高阶微分方程 F ( x, y, y,, y(n) ) 0,
y(n) f ( x, y, y,, y(n1) ).
2023/8/29
2
分类3: 线性与非线性微分方程: y P( x) y Q( x), x( y)2 2 yy x y 0.
1 dx, x
例3
求解 dy x y 1. , 令u y,
dx
x
x
则y xu, dy u x du ,
dx
dx
u x du 2 u, dx
即 x du 2, dx
x du 2, dx
du 2 dx, 两边积分,得 u ln x2 c, x
如: y y, 通解 y cex;
y y 0, 通解 y c1 sin x c2 cos x.
(2)特解: 通解中任意常数为确定值的解.
初始条件: 用来确定任意常数的条件.
2023/8/29
5
§9.2 可分离变量的微分方程 一、 可分离变量的微分方程 二、 齐次方程
一、可分离变量的微分方程
dx
dx
2 y3 dy 2xy2 2x3 dx

线性微分方程及差分方程

线性微分方程及差分方程

u x
du dx
u

1 u
2
2
即: x
2
du dx
1 u 1 8) (9
当 1 u 0时 , 分 离 变 量 得 : du 1 u
2

dx x
16
两边积分: arcsin u ln x C
再将:u arcsin y x
y x
2
二、微分方程的阶 微分方程中,未知函数的最高阶导数的阶数 定义2 称为微分方程的阶 三、微分方程的解
定义3
如果某个函数代入微分方程后使其两端恒等,则称 此函数为该微分方程的解,如果微分方程的解所含 独立的任意常数个数等于方程的阶数,则称此解为 微分方程的通解。而微分方程任意确定的解称为微 分方程的特解
一 线性方程
(Linear differential equation)
二 伯努利方程
(Bernoulli differential equation)
三 小结 思考判断题
25

线性方程(Linear differential equation)
一阶线性微分方程的标准形式:
dy dx
当 Q ( x ) 0,
3
4
§9.2 一阶微分方程
一、可分离变量的微分方程
1 .形 如 M ( x ) d x N ( y ) d y 0 1 3) (9 的方程称为变量已分离的微分方程
将 (9 1 3) 式 两 边 同 时 积 分 , 得
M ( x )dx N ( y )dy C (9-14)
11
解:这是一个可分离变量的初值问题,分离变量德 dx adt ( xm x ) x

各种 微分方程的概念及其解法

各种 微分方程的概念及其解法

第九章微分方程第一节基本概念一.解释下列名词术语1.微分方程:含有未知函数的导数(或微分)的方程.注意:(1)微分方程的一般形式:,在这个方程中是自变量,是的未知函数,是对的一阶、二阶、n阶导数;(2)方程中未知函数及自变量的记号可以不出现,如:;但未知函数的导数则必须出现.2.微分方程的阶:微分方程中所含的未知函数的最高阶导数的阶数.如:是一阶是二阶是n阶3.微分方程的解:代入微分方程能使方程成为恒等式的函数.例如:是的解.4.微分方程的通解:n阶微分方程的含有n个独立的任意常数的解.例如:是的通解;但是的解,而非通解.注意:这里要说明一下“两个常数独立”的含义----即对于任意给定的不同的的取值,则应得到不同的解,则称两个常数是互相独立的.之所以不是的通解,就是因为不是互相独立的.比如:取或者都可得到解.5.微分方程的初始条件:用来确定通解中的任意常数的一种定解的条件.一阶微分方程的初始条件通常为二阶微分方程的初始条件通常为例如:已知是的通解,可由初始条件通常为。

初始条件的个数与微分方程的阶数相同。

6.微分方程的特解:通解中所含的所有任意常数都确定后的解。

比如:是的满足初始条件的特解。

7.积分曲线:微分方程的解的图形(特解是一条积分曲线;通解是一组积分曲线)二。

用微分方程求解实际问题中的未知函数的步骤:1.建立微分方程和初始条件(难点);------这通常使一部分同学感到为难,因为它除了需要数学知识之外,还往往要用到力学、物理学、化学、电学、工程技术等方面的知识,甚至还要用到语文的知识。

2.求通解;3.求特解。

我们这一章的重点是:给定一个微分方程,如何求其通解或特解.第二节一阶微分方程一.可分离变量的微分方程求解微分方程有一个特点:就是“对号入座”,什么样的微分方程,就用什么方法去解决,这几乎成了一个固定的格式.因此,判定所给的方程是什么类型就是首要问题。

这是本章的特点.今天,就给大家介绍一种最简单的一阶微分方程:可分离变量的微分方程.1.引例求解解:因为,所以是是的一个原函数。

文科经管类微积分第九章常微分方程

文科经管类微积分第九章常微分方程

的切线的斜率为 2x,求此曲线 L 的方程.
解 设曲线的方程为y y(x),则有
d y 2x. dx
(1) 微分方程
此外,函数y y(x) 应满足条件
y(x) 2,
(2)
x1
将(1)式两边关于x 积分,得
y 2xd x x2 C
(3)
初始条件 通解
将(2)代入(3),得 C 1, 故所求的曲线方程为
由(1)式,积分一次, 得
v0.4t20,
—(5)
s0.4tC1; —(3) 再积分一次, 得
s0.2t220t. —(6) 在(5)式中令v0, 得t50(s).
s0.2t2 C1tC2, —(4) 再把t50代入(6), 得
这里C1, C2都是任意常数.
s0.25022050500(m).
下页
•微分方程

ln y x3 C1

令 C eC1
说明: 在求解过程中每一步不一定 是同解变形,
减解.
因此可能增、
( C 为任意常数 )
( 此式含分离变量时丢失的解 y≡0 )
作业P172
1. (1)(2)(3)(4) 2. (1)(2)(5) 3. (1)
高等院校非数学类本科数学课程
大 学 数 学(一)
下页
❖几个基本概念
•微分方程的解 满足微分方程的函数叫做该微分方程的解.
提示: 在例1中, 微分方程y2x的解有yx2C和yx21. 在例2中, 微分方程s0.4的解有 s0.2t2 C1tC2, s0.2t2 20tC2和s0.2t220t.
下页
例2 验证函数 y 2sin x 3cos x是方程
y e P( x)dx elnC ,

第九章 fx微分方程与差分方程简介

第九章 fx微分方程与差分方程简介
dp p = f ( y, p) dy
y′ = p(y)
p = ψ ( y , C1 )
dp dy′ =p y′′ = dx dy
y′ = ψ ( y , C1 )
dy ∫ ψ ( y , C1 ) = x + C 2 .
3
第九章 微分方程与差分方程简介
7.
y′′ + py′ + qy = 0
2
λ + pλ + q = 0
x 1 1 2 = − + y + C. y y 2
1 3 x = −1 + y + Cy . 2
′ = ± 1 − u2 xu du dx ± = . 2 x 1− u
7
5. 求以 y = Ce
第九章 微分方程与差分方程简介
− x2
为通解的微分方程 . − x2 y ′ = − 2 xCe = − 2 xy y ′ + 2 xy = 0 . x 2x x −x 6. 已知 y1 = xe + e , y2 = xe + e ,
y 3 = xe x + e 2 x − e − x 为二阶线性非齐次
微分方程的三个解,求 此微分方程 . 微分方程的三个解, 因Y1 = y1 − y3 = e− x , Y2 = y1 − y2 = e2x − e−x , Y3 = Y1 +Y2 = e2x ,
e 和 e 是二阶线性齐次微分方 程线性无关特解, λ1 = −1, λ 2 = 2, (λ + 1)(λ − 2) = 0, λ2 − λ − 2 = 0.
2
5. y′′ = f ( x , y′ ) y′ = p(x) y′′ = p′(x) p′ = f ( x , p ) p = ϕ ( x , C1 ) y′ = ϕ ( x , C1 )

常微分方程教材

常微分方程教材

第九章 微分方程一、教学目标与根本要求(1) 了解微分方程与其解、通解、初始条件和特解的概念。

(2) 掌握变量可别离的方程和一阶线性方程的解法,会解齐次方程。

(3) 会用降阶法解以下方程:),(),,(),()(y y f y y x f y x f y n '='''=''=。

(4) 理解二阶线性微分方程解的性质以与解的结构定理。

(5) 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。

(6) 会求自由项多项式、指数函数、正弦函数、余弦函数,以与它们的和与二阶常系数非齐次线性微分方程的特解和通解。

(7) 会用微分方程解决一些简单的应用问题。

二、本章教学容的重点和难点1、理解和熟悉微分方程的一些根本概念;2、掌握一阶和高阶微分方程的各种初等积分法;3、熟悉线性方程的根底理论,掌握常系数二阶线性齐次与非齐次方程的解法;4、会列微分方程与其始值问题去解决实际问题。

三、本章教学容的深化和拓宽:1、别离变量法的理论根据;2、常用的变量代换;3、怎样列微分方程解应用题;4、黎卡提方程;5、全微分方程的推广;6、二阶齐次方程;7、高阶微分方程的补充;8、求线性齐次方程的另一个线性无关的解;9、求线性非齐次方程的一个特解;10、常数变易法。

本章的思考题和习题解以下方程〔第1-6题〕1、2)0(,)1(==+'+y x y y x2、()[]f dx x f e e x f xx x ,)(02⎰+=可微 3、21222sin 22sin 1X e y x y y x ++='•+ 4、0)3(24=+-xydx dy x y5、21)0(,1)0(,022-='=='+''y y y x y 6、2y y y x y '-'+'=7、可微函数)(x f 满足⎰-=+x x f f x f x x f dx x f 12)()1(,1)()()(和求; 8、)(,,1)(21)(10x f f x f da ax f 求可微+=⎰; 9、求与曲线族C y x =+2232相交成 45角的曲线; 10、一容器的容积为100L ,盛满盐水,含10kg 的盐,现以每分钟3L 的速度向容器注入淡水冲淡盐水,又以同样的速度将盐水抽入原先盛满淡水的同样大小的另一容器,多余的水便沉着器流出,问经过多少时间,两容器的含盐量相等?§9.1微分方程的根本概念一、容要点:先从实例引入建立几个微分方程的模型,引入微分方程的一系列概念;常微分方程:常微分方程的阶数、解、通解、全部解、特解、积分曲线族的定义;二、教学要求和注意点了解微分方程与微分方程的阶、解、通解、初始条件和特解以与积分曲线说明1:一个微分方程加上初始条件和初值问题的解是对某实际问题两种等价的描述形式。

第二节微分方程的基本概念一阶微分方程共31页文档

第二节微分方程的基本概念一阶微分方程共31页文档
dx
解得 tanu()xc
24
从而 tan x(y1)xc.
24
1 1 sinu
du
1sinu cos2 u du

1 sinu
1
sinu
( c
o2suc
o2su)d
u
c o2u sd u
c o2u sd u
s e2u c duc1 o2u sdcoustanuco1us c
1
1 s inu
第九章 微分方程
第一节 第二节 第三节 第四节
微分方程的基本概念 一阶微分方程 高阶微分方程 微分方程在经济学中的应用
第一节 微分方程的基本概念
一.微分方程的定义
1.微分方程 含有自变量、未知函数以及未
知函数的导数或微分的方程,称为微分方程.
2.阶 未知函数最高阶导数(或微分)的阶数.
y
yxyx2ysix n (xex y)dxxdy
四.一阶线性齐次微分方程
一般形式: yP(x)y0

分离变量 1 dy P(x)dx
y
两边积分 1ydyP(x)dx
整理得
lnyP(x)dxl nc
yceP(x)dx.
补充 微分方程 xyy0,y(1 )1 , 求方程的特解 y . (08年考研真题4分)
1 u
v
令 u z 则 uvz du z v dz
v
dv
dv
代入上式得 z v dz 1 z
dv 1 z

dz 1 12zz2
dv v 1z

1z
1
12zz2
dz dv v
积分得 1ln1(2zz2) lnv 1 ln c

高数第9章微分方程讲义

高数第9章微分方程讲义
������2 ������ ������������2
= −0.4, ������(0) = 0, ������′ (0) = 20.
于是������ = ������′ (������) = −0.4������ + ������1 , ������ = ������(������) = −0.2������2 + ������1 ������ + ������2 ,代入初始条件得������2 = 0, ������1 = 20,于是列车 的运动方程为������ = −0.2������2 + 20������,列车停住意味着速度������′ (������) = −0.4������ + 20 = 0,那么������ = 50(������) 将刹车所用的时 间50������ 代入运动方程, 则走过的路程为������(50) = −0.2 × (50)2 + 20 × 50 = 500(������). 从以上两个例子可以看到方程中含有未知函数的导数, 于是我们称含有未知函数的导数或微分的方 程叫微分方程, 习惯上记作
������ 3 1−2������������ 2 ;
������������ (2)������2 + ������������ 2 = 0, 2������ + ������ 2 + 2������������ ������������ = 0.
4.证明: 若曲线上任意点的切线的斜率与该点的横坐标成比例, 则曲线一定是抛物线������ = ������������2 + ������ .
������������ 解: ������������ ������������ = −������������, ������ (0) = ������0 ,其中������ > 0,显然这是因为 ������������ < 0. ������������ ������
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5
如果微分方程的解中不含任意常数, 则称为微分方程 的特解,确定通解中的任意常数的取值从而得到特解的条 件称为定解条件. 常见的定解条件有初始条件. 例1中的 y(1)=2, 例2中的 s(0)=0, s(0)=20 都是初始条件. n阶微分方程 y(n)=f(x, y, y, y…, y(n1))的初始条件为:
再设列车制动后T秒才停住, 则有: s(T)=0, 即, 0.4T+20=0, T=50(秒),
s ( 5 ) 0 0 .2 5 2 0 2 5 0 5 0( m 0 ),0
3
定义 含有未知函数及其导数的等式称为微分方程. 未知函数是一元函数的微分方程称为常微分方程. 未知函数是多元函数的微分方程称为偏微分方程.
流出.已知小孔截面积A=1(cm2). 从水力学知: 当水面高度
为h (cm)时,水从小孔流出的速率为:
h
0.6A 22g(h cm 3/s)
100
求水面高度 h与时间 t 的函数关系。
h
解: 在轴截面上取坐标系,
h+dh O
在[t, t+dt]时间段内, 水面高度有h下降到
h+dh(dh<0), 容器内水的体积减少量的微元:
二阶导数的物理意义:
d2s dt2
0.4,
(2)
且s=s(t)还应满足: s(0)=0, s(0)=20,
(2)的两边积分得: s 0 .4 t C 1, 再积分一次得: s 0 .2 t2 C 1 t C 2,
2
由s(0)=0, s(0)=20, 得: 0=C2, 0+C1=20,
故, s0.2t22t0,
h(y)
两边积 hd (分 y)y得 g(x)d: xC, 13
例1. 求微分方程 dy2xy的通解 . dx
解: 分离变量得: dy 2xdx, y
两边积 :d分 yy得 2xd,x
ln |y|x2C 1, C1是任意常数 .
|y|ex 2 C 1eC 1ex 2, yeC1ex2,
记eC1 C, 得:yCex2,C是任意常 . 数
由y(1)=2, 得: 1+C=2, C=1,
所求曲线为方程: yx31.
1
例2. 一列车在直线轨道上以 20 m/s的速度行驶, 当制动
时列车获得的加速度为0.4m/s2, 问开始制动后列车行驶
了多少时间才停车?又问列车在这段时间内行驶了多少 距离?
解: 设列车在制动后t秒时间内行驶了s=s(t)米,
定义 微分方程中出现的未知函数导数的最高阶数
称为微分方程的阶.
例如 , dy3x2, 是一阶微分方程, dx
d2s dt2
0.4,
是二阶微分方程,
一般地, n阶微分方程的形式是:
F (x ,y ,y ,y ..y ( .n )) , 0 .
4
定义 若把某一个函数代替微分方程中的未知函数能使
方程成为恒等式, 则称此函数为该微分方程的解.
10C的速率升温。今若电动机环境具有良好的通风条件, 使环境能保持恒温15C , 则电动机在运转过程中同时受空 气冷却, 按牛顿冷却定律, 冷却速率正比与机温与室温之差 (设比例系数为K)。 试求电动机温度T与时间t的函数关系。
解: 设时刻t的电动机的温度为T(t), 在[t, t+dt]内,电动机温度升高: 10dt, 电动机自然降温: k(T15)dt,
9.1 微分方程的基本概念 9.1.1 定义
例1. 已知一曲线通过点(1, 2), 且该曲线上任一点M(x, y) 处的切线斜率为3x2, 求此曲线方程.
解: 设所求曲线方程为: y=y(x),
y(x)应满 :d y 足 3x2,(1) dx
和y(1)2,
(1)两边积分得: y3x2dx x3C, C是任意 ,
dv= r2 dh= [1002(100h)2]dh=(200hh2)dh,
10
流出的水的体积微元: 0.622ghd,t
(2h 0 h 2 0 )d h 0 .62 2 gd h ,t
即ddh t0(2.602h02gh2h),
且 h(0)10.0
11
例7. 一电动机在不考虑冷却的情况下, 运转时将以每小时
8
例4. 求曲线 y=C1x+C2x2 所满足的微分方程.
解: 求导得: yC 1 2 C 2x , y2C2,
得:
C2
y, 2
C 1yx y,
代 入 曲 : y线 (y方 xy)x 程 yx2,得
2
化:简 2 y 2 x y 得 x 2 y 0 .
9
9.1.2 建立微分方程举例
例6.有一半径为1 (m)的半球形容器, 盛满水, 水从底部小孔
电动机温度改变量的微元为: dT=10dt k(T15)dt,
即: dT=(10 kT+15k)dt, 即d)1.5
12
9.2 一阶微分方程 一阶微:分 F(x 方 ,y,y程 )0
dy f(x, y) dx 9.2.1 可分离变量的微分方程程
dyg(x)h(y), dx 分离变 dy量 g(x : )d,x
例 ,y 如 x 3 C 及 y x 3 1 都 d 是 y 3 x 2 的 , 解 dx
s 0 .2 t2 C 1 t C 2及 s 0 .2 t2 2t都 0 是
d2s dt2
0.4
的解,
如果微分方程的解中含有一些独立的任意常数, 任 意常数的个数与方程的阶数相同, 则称这样的解为微分 方程的通解.
7
例3. 验证 yx(e x xd x C )是方 xyy程 xx 的 e 通 . 解: yexxdxCxexxexxdxCex,
左 端 xyyx (e x x d x C ex)x (e x xd x C )
xex 右端 ,
故 ,yx (e x x d x C )是x 方 y y 程 xx 的 e , 解 yx(exxdxC),有一个任意 , 常数 yx(e x xd x C )是方 xyy程 xx 的 e 通 . 解
y(x0)=y0, y(x0)=y1, y(x0)=y2,…, y(n1)(x0)= yn1,
6
并称
y (n )f(x ,y ,y ,..y .(n , 1 )), y (x 0 )y 0 ,y (x 0 )y 1 ,..y .(n , 1 )(x 0 )y n 1 ,
为初始问题. 微分方程解的图形称为微分方程的积分曲线.
相关文档
最新文档